
Towards a Monitoring Framework for the Automatic Integration of the Access Control

Policies for Web Services

Mohammed Alodib

Department of Management Information System, Qassim University

Buraidah 51411

Qassim, Saudi Arabia

E-mail: alodib@qu.edu.sa

Abstract

Cloud computing is an emerging model of business computing that can be used to maintain configurable resources
such as processors, networks, storage, operating systems, databases, and servers. Service oriented Architecture (SoA)
is one of most successful paradigms deployed over the Cloud; is a layered architecture to organize software resources
as services and to facilitate their deployment, discovery, and combination to produce new services. The coordination
of innovations carried out between these services is a key challenge of SoA, as any failings in such services could
result in a lack of availability, which may violate Service Level Agreements, leading to financial penalties or customer
dissatisfaction. A service known as the Protocol service can be introduced and integrated within a system to
coordinate innovations. This service may then be linked with a service called the Access Control Policies
(AC_Policies) service, which identifies permissions of invocation of the Protocol service. Next, a real-time Business
Activity Monitoring (BAM) dashboard is automatically generated to supervise the process of assigning the Access
Control Policies, along with the status of the executions of Web services. This approach is achieved by harnessing
the capability of the Model-Driven Architecture (MDA) to facilitate the automatic generation of services. As a proof
of concept, this approach is implemented as a plugin.

Keywords: Web Services, Model Driven Architecture, Access Control Policies, Integration, Monitoring

1. Introduction

Cloud computing, an emerging technology that has
gained popularity swiftly, is based on the sharing of
resources and infrastructure [22]. Service-oriented
Architecture (SoA) is a paradigm that offers a layered
architecture to organize software resources as services;
they can be deployed, discovered, and combined to
produce new services [24]. In this type of architecture, a
service can be executed using remote services or
applications irrespective of their programming language,
operating system or hardware platform. Coordinating of
access control policies for these services is an important
task that aims to ensure that individuals and applications
only invoke services they are permitted to access.
Therefore, an approach to automating of the assignment
of access control policies is proposed.

In [4], a model-driven approach was introduced to
automate the coordination of invocations of Web
services, based on the dynamic discovery of the best
available services, and involving the ranking of Web
services using a history of invocations. In particular, the
method aims to discover the most suitable service to
avoid excessive use of services, thereby, enhancing
system performance. This objective is achieved by
introducing a new service called a Protocol service,
which coordinates and controls all interactions. The
Protocol service is initiated by requests from consumers;
it forwards requests to the target service, obtaining the
results from the provider, and returning the results to the
consumer.

In [3], the approach was extended to consider the
assignment of Access Control Policies (AC_Policies).
This extension is based on the automatic generation of an

International Journal of Networked and Distributed Computing, Vol. 3, No. 3 (August 2015), 137-149

Published by Atlantis Press
Copyright: the authors

137

AC_Policies service, which can act as an engine to check
invocation policies. This service is integrated with the
Protocol service. Consequently, prior to executing the
target service, the Protocol service should interact with
the AC_Policies service to identify whether the
invocation is permitted.

The aim of this paper is to extend the approach to
produce a method of monitoring the assignment of
Access Control Policies and the execution of Web
services. More specifically, the method is designed to
provide a dynamic analysis of the Access Control
Policies by automatically generating of a Business Active
Monitoring (BAM) service, which provides a complete
solution for building interactive, real-time dashboards
and proactive alerts for monitoring business processes
[37, 41]. Such dashboards are based on the visualization
of data as it relates to invocations and the assignment of
access control policies, and thus, they help managers
make better decisions. They also allow users to gauge the
impact on key performance indicators, which affects their
business and allow them to take remediable action for
recovery when necessary [37, 41].

The approach relies on harnessing the capability of
Model Driven Architecture (MDA) to automate the
creation of a BAM service. The BAM service is linked to
the Protocol services, which are generated in a
distributive manner and integrated into the system along
with the AC_Policies service. This ensures that each site
has its own Protocol service, AC_Policies service, and
BAM service. The approach is implemented as a plugin.

This paper is organized in the following manner:
Section 2.2 presents a brief review of SoA; Section 2.3
reviews the Web services; Section 2.4 presents the
principles of MDA; Section 3 describes the problem;
Section 4 presents the solution, implemented as a plugin;
and, finally, Section 5 describes the implementation of
the approach.

2. Preliminaries

2.1. Cloud Computing

Cloud computing is one of the most rapidly emerging
technologies for sharing resources. It consists of a shared
pool of configurable resources, including processors,
networks, storage, operating systems, databases, and
servers [22]. The main form of cloud computing is the
virtualization of such resources, which can also be
provided as on-demand Web services, accessed remotely

over a network using a simple cloud interface. These
Web services specify the following essential
characteristics of cloud computing [12]:

 On-demand self-service: services can be
provided to consumer unilaterally and on
demand, without the need for human
interaction.

 Broad network access: services are available
over the network in real time through standard
mechanisms.

 Resource pooling: resources are pooled to
enable the provision of parallel services to
multiple users (a multi-tenant model) and are
adjusted to the specific demands of each user.

 Elasticity: resources are provisioned rapidly in
various fine-grained quantities, enabling
systems to be scaled as required. To the
customer, the resources appear to be unlimited.

 Measured quality of service: the services
leverage quantitative and qualitative metering
capabilities, enabling usage-based billing and
validation of service quality.

The architecture of Cloud computing is designed as
a layered stack [12]; the Infrastructure-as-a-Service
(IaaS) layer is used to describe the hardware (e.g.,
computers, mass storage systems, networks, databases,
etc.). Developers primarily use the Platform as a Service
(PaaS) layer as the Programming Environment (PE), as
well as an Execution Environment (EE) such as Django
Framework [20] or Sun Caroline [15]. This layer also
includes operating systems and the services required for
applications. The Software as a Service (SaaS) layer
enables customers to run applications remotely from the
Cloud (i.e., it is unnecessary to install software locally.).
The data-Storage-as-a-Service (dSaaS) layer involves
storage that can be used by the consumer. The Humans-
as-a-Service (HuaaS) layer demonstrates that the Cloud
paradigm can be extended to include services provided
by humans functioning as resources.

2.2. Service oriented Architecture (SoA)

Component-based systems based on traditional software
architecture have been developed over the past 40 years.
Recently, this effort has involved building distributed
components over the middleware in order to provide
integrated systems, while processes have become a key
demand of the IT industry. In order to meet this demand,
a set of platforms have proposed, including CORBA [32],

Published by Atlantis Press
Copyright: the authors

138

DCOM [38, 23], and Java RMI [18]. However, such
platforms face issues of interoperability as some are
platform dependent, while others are programming
language dependent, such as Java RMI, which only
supports a single programming language (i.e.
applications interacting with each other with the help of
RMI must be programmed by Java). These drawbacks
have led to a lack of heterogeneity and interoperability
when developing integrated and distributed systems [17].
SoA has been introduced to address those challenges.

SoA is directed toward the implementation of
business processes via the composition of interactive
services [24]. A simple SoA infrastructure is made up of
three independent collaborative components [35, 27] (see
Figure 1):

 The service provider: The owner of the services
(company or organization) is responsible for
publishing the services.

 The service requester: a client or organization
wishing to use a service. The requester searches
the service registry for the desired Web services.

 The service registry: A global registry acts as a
central service, providing a directory in which
service descriptions are published by the service
provider. Service requesters locate service
descriptions in the registry and obtain binding
information regarding these services from the
service provider.

Fig. 1. Basic Service-oriented Architecture [27].

2.3. Web Services

Major A Web service is a component of middleware
technology providing integrated and interoperable
interactions over the Internet [13]. Web services offer a
preferred solution to the issue of integration among

autonomous and heterogeneous software systems [29].
They are well-defined, self-contained, loosely coupled,
self-describing, modular applications that can be
published, located and invoked across the Web network
[29]. Such features ensure that Web services can be
invoked dynamically by alternative applications (or Web
services), and they are typically composed in tandem
with other services in order to complete complex tasks.
Thus, Web services are highly reusable components that
act as building blocks to develop service composition and
to resolve issues of application communication and
integration.

The development of a composite Web service is built
on the SoA paradigm [6]. Communication regarding the
composition of Web services is based on the use of well-
accepted standards and the Extensible Markup Language
(XML) messaging framework [28]. Such standards can
be used to encapsulate the service’s business logic and
functionality, in order to expose the functionality (but not
the implementations) arising via the accessible
interfaces. Thus, application programs communicate
with one another, regardless of their programming
language, operating systems, or hardware platforms.

Web services communicate through means of a
common XML, XML Schema Definition (XSD) [40],
and standard TCP/IP-based communication protocols.
Moreover, a number of XML-based standards are used
by Web services to describe their architecture, along with
their capacity for intercommunication, collaboration, and
discovery [29]. In particular, communication messages
taking place between a service requester and a service
provider are encoded into Simple Object Access Protocol
(SOAP) messages (i.e., plain text XML messages). The
Web Services Description Language (WSDL) is used to
describe the invocation details of a Web service,
including the service name, the available operations, and
information related to the input and output variables.
Universal Description Discovery and Integration

(UDDI) provides certain protocols for querying and
updating Web service information. Web services utilize
existing standard TCP/IP protocols for communication
purposes, including HTTP, HTTPS, SMTP, and FTP
[36].

2.4. Model Driven Architecture (MDA)

Model Driven Architecture (MDA) [21, 26] is a
framework introduced by the Object Management Group
(OMG) in order to promote the role of modeling in

Published by Atlantis Press
Copyright: the authors

139

software development. One of the main goals of MDA is
model transformation, a process whereby models in a
source language are mapped in order to facilitate capture
in the destination language. In the context of MDA,
model transformation is defined by a number of
transformation rules that specify the mapping of the
meta-elements of the constructs of the metamodel of the

source language in to the meta-elements of the

destination language. The metamodels of the source and
the target language are specified using a common
language, known as the Meta Object Facility (MOF) [30].
In general, models in MDA are instances of metamodels.
Figure 2 shows that an MDA transformation is defined
from the source metamodel to the destination metamodel.
Subsequently, each model identified as an instance of a
corresponding metamodel is transformed automatically
to an instance of the target metamodel.

Fig. 2. Model-Driven Architecture (MDA) overview

The Meta Object Facility (MOF) Query/View/-
Transformation Specification (QVT) [33] is the OMG
specification, which is proposed as a method to specify
model transformation rules with MOF. QVT provides a
declarative and imperative language, structured into a
layered architecture consisting of Relations, Core, and
Operational Mappings: (1) Relations language is a high-
level language that provides a textual and graphical
notation for defining the mappings; (2) Core language is
a specialist language based on Essential MOF and Object
Constraint Language (OCL) that is used to support
pattern matching and evaluating conditions; and (3) QVT
Operational Mapping language is a high-level imperative
language that acts to extend OCL [34] by facilitating
features that are essential for writing complex
transformation rules (e.g., the ability to define loops)
[33]. QVT Operational Mapping language is used in the
current study to obtain the specifications for the
transformation rules.

QVT Operational Mapping language, specified as a
standard method for providing imperative

implementations, is based on the use of MOF as a
repository for metamodels. The general syntax for the
body of Operational Mapping is depicted in Figure 3,
where the source is the source of the model
transformation. The mappingFunc is the name of the
model transformation, which may require some input, as
captured by variable parms. The target is the destination
model of the transformation. The “init” part has some
code, which can be executed prior to implementing the
main body of the mapping rules. The population is then
used to populate the results of the mapping. The code
included in the end part is executed before the operation
is completed. The “when” part has a Boolean expression

that needs to be verified as true before execution
commences. The “where” part includes the conditions
that required to be satisfied by the model elements
involved in the mapping (i.e., it acts as a post condition
for the mapping operation).

mapping source::mappingFunc(parms):target
when {...}
where {...}
{
init{...}
population{...}
end{...}
}

Fig. 3. The general syntax for the body of a mapping operation

There are a large number of industrial and academic
case tools supporting Model Transformations, including
Kermeta [25], Arcstyler [8], ATLAS [31] and Simple
Transformer (SiTra) [2]. In this paper, SiTra [2]
transformation engine is used to execute the
transformation rules. SiTra is a lightweight Model
Transformation Framework using Java for writing Model
Transformations and for providing a minimal
environment for transformation execution. Figure 4
depicts an overview of SiTra, which consists of two
interfaces: (1) the Rule interface, in which user defined
mapping rules are necessary, and (2) the Transformer
interface, which provides the skeleton of the methods
used to carry out the transformation. The modeler is
needed only to define the transformation rules by
implementing the Rule interface, which consists of three
methods: check(), transform(), and setProperties(). If the
rule is applicable for the source element in question, the
check() method of the rule implementation is returned as
true, and the build() method is executed. The build()
method generates the target model element. The

Published by Atlantis Press
Copyright: the authors

140

setProperties() function is then used to set the attributes
and links for the newly created target element. SiTra has
been successfully applied to Model Transformation in
various application domains [42, 14, 7, 5].

Fig. 4. Overview of SiTra

2.5. Oracle Business Activity Monitoring (BAM)

Oracle Business Activity Monitoring (BAM) is a
framework developed as a tool to visualize data on a real-
time dashboard for monitoring purposes [37, 41]. Such a
promised modeling tool also provides alert facilities.
Different charts (e.g., line, bar, 3D bar, 3D line, 3D area,
3D combo, 3D pie) can be used to represent the data on
the dashboard, offering the following benefits:

 Event capture and data collection from
composite sensors.

 Correlation of data, metrics, and key
performance indicators (KPIs).

 Real-time dashboards and alerts.
 Java Message Service (JMS) messaging and

web service interfaces
The BAM framework enables users to create real-

time dashboards that visualize important data received
from business processes. In order to build a BAM
dashboard, it is necessary to create a Data Object on
which to store data related to activities that required
monitoring. An activity sensor (i.e., a Business Process
Execution Language (BPEL) component that can be
integrated and linked with a BPEL activity in order to
send data to the BAM server) can then be added to a
BPEL activity the user intends to monitor. Such sensors
are responsible for sending information to the JMS and
database providers that store the information. Sensors are
classified into three types [37, 41]:

 Activity sensors, which can be used to monitor
the execution of activities

 Variable sensors, which can be used to monitor
BPEL process variables (e.g., input and output
data of a BPEL process)

 Fault sensors, which are used to monitor BPEL
thrown faults

These sensors need to be associated with a BAM Sensor
Action responsible for sending the required data to a
specific publisher. In this context, a publisher can be 1) a
database; 2) a JMS Queue; 3) a JMS Adapter; or 4) a
BAM adapter. Additional information related to Oracle
BAM can be found in [37, 41].

3. Description of the Problem

The nature of SoA is to support an interoperable
service-to-service interaction allowing the provision of
an architecture in which each service is able to interact
with other services, irrespective of programming
languages, operating systems, and network
configurations. The interaction between two services can
be accomplished using an activity known as Invoke,
which is a BPEL component used to specify the
operations of the service to be executed. Such operations
are identified using Partner links. This requires that the
WSDL file for the target service be assigned to the
Partner Link property for the Invoke activity. In such an
interaction, there is a possibility that the target service
may become unavailable due to technical issues,
including a failure in the system, updating procedures, or
high load of executions, which can cause the process to
crash and throw exceptions. When an execution fails due
to lack of availability, the reliability of the enterprise
system can be affected, potentially violating Service
Level Agreements, thus resulting in financial penalties or
customer dissatisfaction. Therefore, it has become
imperative to develop architectures that determine the
most suitable service and avoid any failure, thereby
enhancing the system’s performance. This has become
particularly important with the emergence of Cloud
computing, which, in order to deliver reliable systems,
requires sophisticated management procedures to ensure
performance, robustness, depend ability and security
[16].

In [4], a model-driven approach was introduced as a
solution to the coordination of the invocations of Web
services using a new service, known as the Protocol
Service. It is designed as the front end of SoA services,
and it is responsible for handling all invocation requests.
The approach is based on the automatic runtime

Published by Atlantis Press
Copyright: the authors

141

replacement of the WSDL file when the target service has
become unavailable or has been overused.

Fig. 5. The proposed Architecture with the Protocol service

Figure 5 depicts the outline of the model-driven
approach. In this architecture, the integrated Protocol
service coordinates interactions between services. The
method requires that all requests be carried out using the
Protocol service, with each service source providing the
name of the target service to the Protocol service. The
Protocol service then checks all services matching the
request. If many services offer the same role, the Protocol
service executes the one identified as being the most
effective in terms of performance and availability.

In [3], an extension was introduced to consider
access control policies. Such policies are necessary for
building interactive enterprise projects based on the SoA
framework (with the approach based on the enhancement
of the Protocol service) in order to consider access
control policies before carrying out the invocation. The
Protocol service, prior to carrying out the invocation,
checks whether the invoker is permitted to execute the
required service. Therefore, a service known as an
Access Control policies service (AC_Policies service) is
introduced, which maintains the information related to
access control policies. In this context, the Protocol
service should interact with the AC_Policies service in
order to determine the probability of accomplishing the
invocation.

With the rapid emergence of Cloud computing, it has
become essential to enhance the architecture dealing with
the services deployed in the Cloud. Therefore, one of the
aims of this paper is to extend the approach in order to

apply it to the Cloud infrastructure, involving the
automatic creation of a monitoring service that permits
the user to supervise the assignment of the access control
policies and the execution of Web services.

4. A Model-Driven Approach

In this paper, an approach to automating the integration
of access control policies for Web services deployed over
the Cloud. The approach also aims to provide a dynamic
monitoring platform permitting users to supervise the
execution of Web services and the assignment of the
access control policies.

Fig. 6. An overview of the approach

Figure 6 shows the outline of the approach; a service

referred to as an Access Control policies service
(AC_Policies service) is introduced, which maintains
information related to access control policies. This
service is integrated with the Protocol service
coordinating services deployed in the Cloud (e.g., on
Amazon AWS). The Protocol service is designed to
receive invocation requests from the source service,
which are then forwarded to the target service. Each
invocation request includes the name and the input values
for the target service. The request is then validated by the
Protocol service in order to determine whether the name
of the service is valid, and guarantee provision of all the
values to fit the required parameters of the destination

Published by Atlantis Press
Copyright: the authors

142

service. Based on the type of invocation, two options are
then available in order to process the request: The first
option is an asynchronous invocation (i.e. no result is
expected from the target service) in which the Protocol
service executes the target service and ends the process.
In the second option, if the request involves two-way
operations (synchronous), the Protocol service executes
the target service and returns the results to the consumer.

In this context, the Protocol service is designed to
handle all invocations passing through the Cloud
interface, i.e., OpenNebula is used as an interface for the
Cloud. OpenNebula is automatically configured to pass
all the requests to the Protocol service, which then
interacts with the AC_Policies service to determine the
probability of accomplishing the invocation.

In addition to the access control policies, it is
essential to monitor the execution of Web services and
the assignment of the access control policies. In order to
do so, the approach is extended to consider the automatic
creation of a monitoring service, based on harnessing the
capability of the MDA to automate the generation of the
monitoring platform using the Oracle BAM. This
framework can be used to build a real-time dashboard for
monitoring the services of SoA. In particular, the
approach extends the method of the generating of the
Protocol service presented in [3] to include a BAM
service.

4.1. The Automatic Generation of the Protocol

Service

A model-driven method is used to automate the creation
and integration of the Protocol service. The outline of this
approach is depicted in Figure 7. The method requires
passing all WSDL files of services and their XSDs as
inputs. The set of Invoke activities are extracted from
each file, after which the Partner link for each Invoke
activity is automatically replaced with the Partner Link
for the Protocol service. For example, Figure 8 depicts a
constructor of an Invoke activity used to execute a
service known as CustomerService: it is automatically
modified by assigning the WSDL file of the Protocol
service to the Partner Link property of the Invoke
activity, as depicted in Figure 9.

In order to complete the task, the name of the target
service needs to be assigned, along with its inputs to the
Protocol service. Thus, the Assign activity precedes the
Invoke activity, and it is used to assign the inputs
required by the target service, while also being modified

in order to assign the inputs and the name of the target
service to the Protocol service. Figure 10 provides an
example of an Assign activity used to copy the variable
known as CustomerID to the input variable of an Invoke
activity named FindCustomerInfo.

Fig. 7. Outline of the Model Transformation method

Published by Atlantis Press
Copyright: the authors

143

<invoke name="CheckCustomerAccount"
partnerLink="CustomerService"
portType="ns1:CustomerService"
operation="CheckCustomerAccount"/>

Fig. 8. Constructor of an Invoke Activity

The automatic modification of the Assign activity is

facilitated with a model transformation requiring the
BPEL metamodel, (as depicted in Figure 12). Figure 11
provides the QVT transformation rule to modify an
Assign activity.
<invoke name="CheckCustomerAccount"
partnerLink="ProtocolService"
portType="ns1:ProtocolService"
operation="CheckCustomerAccount"/>

Fig. 9. Replaced Constructor of the Invoke Activity depicted
in Figure 8

For more information regarding the automatic

generation of the Protocol service, refer to [4].

<assign name="AssignID">
 <copy>
 <from variable="CustomerID"/>
 <to variable="FindCustomerInfoInput"/>
 </copy>
</assign>

Fig. 10. Constructor of an Assign Activity

4.2. Automatic Integration of Access Control

Policies

The approach presented in this paper aims to extend the
previous approach [3] to consider the automatic process
of assigning access control policies to Web services. It
also involves the automatic generation of a monitoring
service that can be used to supervise the assignment of
the access control policies and the execution of Web
services. The key concept behind this extension is based
on the generation of an AC_Policies service able to act as
a platform for assigning access policies. Then,
AC_Policies service is linked with the Protocol service.
These services are eventually linked with a monitoring
service that enables the user to monitor the process of the
assignment of access control policies.
mapping Assign::assign2assign() : Assign
{ name := self.name;
 foreach(e Element | copy:Copy)
 {
 e.form.variable=e.form.variable;
 e.to.variable="ProtocolServiceInput";
 }}
Fig. 11. Transformation Rule for Modifying Assign Activity

The outline for using the Protocol service and the
AC_Policies services is as follows: 1) The Protocol
service receives an invocation request from the source
service; 2) It obtains the invoker details along with the
destination details; 3) It sends a query request to the
AC_Policies service in order to determine whether this
invocation is permitted before proceeding further; 4) If
permitted, the Protocol service forwards the request to
the target service; 5)Each invocation request then
involves the name of the target service and the input
values for the target services; 6) This request is
subsequently validated by the Protocol service in order to
determine whether the name of the service is valid and to
ensure the provision of all the values for the required
parameters of the destination service; 7) Based on the
type of invocation, there are two options for processing
the received request. If it is an asynchronous invocation
(i.e., no result is expected from the target service), the
Protocol service executes the target service and
terminates the process. If the request involves two-way
operations (synchronous), the Protocol service executes
the target service and the result is returned to the
consumer.

Fig. 12. The BPEL metamodel

Published by Atlantis Press
Copyright: the authors

144

4.2.1. Web Service Access Control Policies

The proposed method enables the user to assign access
control policies via an automatically generated interface
permitting the assignment of access control policies for
Web services deployed over the Cloud. The access
control policy’s form of this approach is divided into
three parts: 1) Requester, 2) Provider, and 3) Policy
(Figure 13). The Requester can be assigned to either a
system user or a service, but the Provider needs to be
assigned to a service. The Policy involves two letters: 1)
The first indicates permission for the execution of the
Provider service by the user/service assigned to the
Requester part. If it is assigned to “x”, it is allowed to
carry this invocation, and if it is assigned to “-”, it is not
permitted.2) The second indicates whether this
invocation is an asynchronous operation (i.e., no result is
expected from the target service), or a two-way
operations (synchronous) (i.e., a result should be
returned to the consumer represented by the letter “u”).

Fig. 13. Access Control Policy Structure

For example, assuming the existence of a service
called “service1” with two users (named “user1”and
“user2”) belonging to a group of users known as
“group1”, the potential policies are as follows:“service1”
is permitted to access “service2”, with the execution
returned to the invoker. This policy is represented as
follows (note that “service1” can be replaced by a user
(such as “user1”), which is explained in a similar
manner):
service1::service2::xu

Where “service1” is permitted to execute “service2”

(but without being permitted to return any result to the
invoker), the access control policy is presented as
follows:
service1::service2::x-

Therefore, if “service1” is not permitted to execute

“service2”, the access control policy is depicted as
follows:
service1::service2::--

Such policies can also be attached to groups. The
following example demonstrates the ways in which the users of
a group named “group1” are permitted to execute and receive
results from “service1”.
group1::service1::xu

Fig. 14. Outline of the automatic generation of the monitoring
service

Published by Atlantis Press
Copyright: the authors

145

4.3. Generation of the Monitoring Service

It subsequently becomes essential to monitor the process
of assigning the access control policies, along with the
execution of Web services. The monitoring service is
designed to visualize the assignment of policies and the
execution of Web services, and to ensure the delivery of
reliable and dependable enterprise applications with a
higher quality and within budget. This approach
harnesses the capability of MDA to automate the
generation of the service.

The service produced by this approach is based on
Oracle BAM, which provides a mechanism that can be
used to build a real-time dashboard for monitoring
services deployed within the SoA framework. In
particular, it involves the creation and integration of a
BAM service used to monitor interactions undertaken by
the Protocol service.

Figure 14 outlines the process of generation and the
integration of the BAM service. These steps are
described in detail in the following sections.

4.3.1. The Automatic Creation of the Data Object

A Data Object is a BAM component that is used to
maintain data received from SoA services. Each Data
Object is comprised of a table designed to store
information required for presentation in BAM
dashboards. Columns can be specified and added to the
Data Object, with each column having a specific type. In
this approach, the data object is created with four
columns: 1) ID, 2) service_name, 3) invoker, 4)
AC_Status. The column named “service name” is used to
capture the name of the target service, while the
“invoker” field is used to capture the name of the source
service, and the access control policies status is stored in
the “AC_Status” field.

The Data Object is automatically generated and
integrated into the BAM server (Figure 14). Automatic
creation is accomplished using model transformation,
which requires the meta-model of the relational database.

4.3.2. Automatic Integration of Sensors

Monitoring the assignment of the access control policies
and the execution of the Web services requires collecting
specific data from SoA services relating to the
executions. Oracle BAM provides the user with a number
of ways in which data can be collected efficiently from
SoA services, such as BAM Adapter, Java Message

Service (JMS), MQSeries, and BAM Sensor Action. In
the current approach, BAM sensors are used to collect
and send the required data from SoA services to the BAM
dashboard by linking a sensor to each Invoke activity
included at the Protocol service.

Two main steps needs to be undertaken in order to
link a sensor with an Invoke activity (Figure14). First, an
Activity Sensor is automatically created and named using
the title of the Protocol service file concatenated with
“_sensor.xml”. This file involves the declaration of
activities that should be monitored, along with the
identification of variables, such as data to be passed to
the BAM server. More specifically, each activity sensor
has a specific name assigned to the sensorName attribute.
The target attribute is used to identify the activity linked
to this sensor. The evaluation time of each sensor is also
declared and assigned to evalTime. The value can be
assigned as follows: 1) at the activation of the activity; 2)
after completing the execution of the activity; 3) when a
fault is thrown during the execution; or 4) during a
compensation or retry situation. For example, assigning
“activation” to the evalTime property ensures that the
sensor is triggered when the activity is initiated, while
assigning “all” ensures that the sensor is triggered if any
of the cases have occurred. The configuration of the
sensor also requires identification of the variables whose
data will be passed to the BAM server to be stored in the
Data Object and displayed in the dashboard. Figure 15
depicts a simple example: the declaration of a sensor
named ActivitySensorAssign linked to an Invoke activity
named Invoke GetCustomerInfo. The evaluation time of
the sensor is assigned to “all”, and the data to be sent to
the BAM server after firing the sensor is assigned to the
input variable.
<sensor sensorName="ActivitySensorAssign"
 classname="BpelActivitySensorAgent"
 kind="activity"
 target="Invoke_GetCustomerInfo">
 <activityConfig evalTime="all">
 <variable outputDataType="process"
 target=
"\$inputVariable/payload/client:process"/>
 </activityConfig>
</sensor>

Fig. 15. A simple example of an activity sensor

The second step in the creation of sensors is to link
each Activity sensor with a BAM Sensor Action. This
process is used to send data to the BAM server by
mapping variables in a business process to their

Published by Atlantis Press
Copyright: the authors

146

equivalent fields in a Data Object. The creation and
configuration of a BAM Sensor Action is accomplished
as follows: 1) The Action Name of both the BAM Sensor
Action and the Sensor value are specified. The Action

Name can be assigned to a significant title, while the
Sensor value is assigned to the name of the Activity
Sensor created in the previous step. The sensor action
requires assigning a Data Object that is linked to the one
has already been created in Oracle BAM. 2) The
operation to insert information into the Data Object needs
to be identified. It can be: Upsert (a merge operation);
Insert (used in this approach); Update; or Delete.
Moreover, the BAM Connection Factory Java Naming
and Directory Interface (JNDI) value (which identifies
the runtime server connection pool) is specified. In this
context, the JNDI value is assigned to “eis/bam/soap”. 3)
The Map File, used to map BPEL data values to their
corresponding fields in the BAM Data Object, is created
using the XSL transformation mapper.

4.3.3. Generation of the BAM Dashboard

The BAM Active tool is used to create the dashboard
report (see Figure 16 for a snapshot of the BAM
dashboard). In this approach, the dashboard is designed
to present a number of charts showing important
information related to access to the system services. For
example, the dashboard reveals the number of denied
executions for each service, along with a number of
percentages related to the access policies violations.

Fig. 16. Real-Time BAM dashboard report

5. Implementation of the Current Approach

The approach introduced in this paper is implemented as
an Oracle JDeveloper plugin. The implementation
follows the method outlined and depicted in Figures 7
and 14. This method requires passing all BPEL files and
their XSDs as inputs. All Invoke activities are extracted
for each BPEL service. The Partner link for each Invoke
activity is then automatically replaced with the Partner
Link for the Protocol service. The AC_Policies service is
automatically generated and linked with the Protocol
service.

The administrator interface is implemented as a Java
Graphical User Interface (GUI), which permits the user
to specify different policies for system services based on
groups or individuals. Figure 17 shows a snapshot of the
tool, divided into two parts. The first part is used to
specify policies based on users, where a user and a target
service are selected from the combo box of the users and
services. Subsequently, the tool fetches the current values
and waits for the update from the administrator. The
second part involves on assigning policies based on
groups.

Finally, the BAM dashboard is automatically
generated and configured in the system. The BAM
dashboard is linked to the Protocol service, which
updates the dashboard after each execution.

Fig. 17. AC_Policies assignment interface

Published by Atlantis Press
Copyright: the authors

147

6. Discussion and related works

Access control policies have been studied generally in the
literature, and most of the proposed solutions are based
on logic expressions. A method known as WS-
Policy4MASC [19] was introduced as an extension of
Web Service Policy (WS-Policy) [11] to enable the
Manageable and Adaptive Service Compositions
(MASC) system. The purpose of the method is to
discover either functional exceptions or QoS deviations
by analyzing how a system behaves with respect to the
interaction of client side and provider side policies, as
expressed using WS-Policy. Ardagna et al. [10] proposed
an approach based on using (WS-Policy) framework that
involves describing and communicating the policies of a
Web service to represent its approach.

In [39], a framework known as Authorization-Based
Access Control (ABAC) was proposed. This system
provides locally verifiable authorizations and delegation
tracking that are compatible with common Web tools.
This technique, which is considered reusable, is
distributed and meets the scaling requirements of large
distribution services.

Extensible Access Control Markup Language
(XACML) [1], proposed as an access control language
for an open-world scenario, provides flexibility and
interoperability. This approach is an XML-based
language for expressing and interchanging access control
policies. Ardagna et al. [9] have provided a simple and
effective framework for enforcing the access control
paradigm in order to provide an expressive solution that
can be deployed in the XACML standard.

7. Conclusion

The approach described in this paper introduces a method
for monitoring the assignment of access control policies.
The approach harnesses the capability of MDA to
automate the generation of a BAM service integrated
with a Protocol service generated to coordinate
invocations between services. The Protocol service
described is linked to an Access Control policies
(AC_Policies) service, which is produced automatically
to facilitate the assignment of access control policies to
Web services. The Protocol Service, AC_Policies
service, and BAM service are automatically produced by
parsing the original web services; thus, they generate a
set of modified services with an integrated Protocol
service, an AC_Policies service, and a BAM service.
This approach was implemented as a Plugin.

References

1. eXtensible Access Control Markup Language (XACML)
Version 2.0. Technical report, OASIS Access Control TC,
February 2005.

2. D. H. Akehurst, B. Bordbar, M. J. Evans, W. G. J.
Howells, and K. D. McDonald-Maier. Sitra: Simple
transformations in java. In Models’09, volume 4199, pages
351–364, Italy, 2006.

3. Mohammed Alodib. An approach to automating the
integration of the access control policies for web services.
In 14th IEEE/ACIS International Conference on Software

Engineering, Artificial Intelligence, Networking and

Parallel/Distributed Computing (SNPD2013), USA,
2013.

4. Mohammed Alodib. A framework for the coordination of
the invocations of web services. In The First International

Conference on Building and Exploring Web Based

Environments, Spain, 2013.
5. Mohammed Alodib, Behzad Bordbar, and Basim Majeed.

A model driven approach to the design and implementing
of fault tolerant service oriented architectures. In IEEE

International Conference on Digital Information

Management (ICDIM), pages 464–469,London, 2008.
6. Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay

Machiraju. Web Services Concepts, Architectures and

Applications. Springer, 2004.
7. Kyriakos Anastasakis, Behzad Bordbar, Geri Georg, and

Indrakshi Ray. UML2Alloy: A Challenging Model
Transformation. In ACM/IEEE 10th International

Conference on Model Driven Engineering Languages and

Systems (MoDELS 2007), 2007.
8. Arcstyler. Arcstyler 5.0- interactive objects. 2005.
9. Claudio A. Ardagna, Sabrina De Capitani di Vimercati,

Stefano Paraboschi, Eros Pedrini, Pierangela Samarati,
and Mario Verdicchio. Expressive and deployable access
control in open web service applications. IEEE Trans.

Serv. Comput., 4(2):96–109, 2011.
10. Claudio Agostino Ardagna, Ernesto Damiani, SabrinaDe

Capitani di Vimercati, and Pierangela Samarati. A web
service architecture for enforcing access control policies.
Electron. Notes Theor. Comput. Sci., 142:47–62, 2006.

11. Siddharth Bajaj, Don Box, Dave Chappell, Francisco
Curbera, Glen Daniels, Phillip Hallam-Baker, Maryann
Hondo, Chris Kaler, Dave Langworthy, Anthony Nadalin,
Nataraj Nagaratnam, Hemma Prafullchandra, Claus von
Riegen, Daniel Roth, Jeffrey Schlimmer, Chris Sharp,
John Shewchuk, Asir Vedamuthu, U¨mit Yalcinalp, and
David Orchard. Web services policy 1.2- framework (WS-
policy). Technical report, W3C, 2006.

12. Christian Baun, Marcel Kunze, Jens Nimis, and Stefan
Tai. Cloud Computing: Web-Based Dynamic IT Services.
Springer Publishing Company, Incorporated, 1st edition,
2011.

Published by Atlantis Press
Copyright: the authors

148

13. David Booth, Hugo Haas, Francis McCabe, Eric
Newcomer, Michael Champion, Chris Ferris, and David
Orchard. Web services architecture. W3C, 2004.

14. Behzad Bordbar, Gareth Howells, Michael Evans, and
Athanasios Staikopoulos. Model transformation from owl-
s to bpel via sitra. In Proceedings of the 3rdEuropean

conference on Model driven architecture foundations and

applications, ECMDA-FA’07, pages43–58, Berlin,
Heidelberg, 2007. Springer-Verlag.

15. Project Caroline. http://research.sun.com/projects/caroline
[retrieved: April, 2015].

16. S.A. De Chaves, R.B. Uriarte, and C.B. Westphall.
Toward an architecture for monitoring private clouds.
Communications Magazine, IEEE, 49(12):130–137,2011.

17. Jean Dollimore, Tim Kindberg, and George Coulouris.
Distributed Systems: Concepts and Design (4th Edition)

(International Computer Science Series). Addison
Wesley, 2005.

18. Troy Bryan Downing. Java RMI: Remote Method

Invocation. IDG Books Worldwide, Inc., Foster City,CA,
USA, 1st edition, 1998.

19. Abdelkarim Erradi, Piyush Maheshwari, and Vladimir
Tosic. Ws-policy based monitoring of composite web
services. In Proceedings of the Fifth European Conference

on Web Services, pages 99–108, Washington,DC, USA,
2007. IEEE Computer Society.

20. Django Web Framework. http://www.djangoproject.com,
[retrieved: April, 2014]

21. David S. Frankel. Model Driven Architecture: Applying

MDA to Enterprise Computing. Wiley, 2003.
22. B. Furht and A. Escalante. Handbook of cloud computing.

Computer science. Springer US, 2010.
23. Richard Grimes and Dr Richard Grimes. Professional

Dcom Programming. Wrox Press Ltd., Birmingham, UK,
UK, 1997.

24. Matjaz B. Juric, Benny Mathew, and Poornachandra
Sarang. Business Process Execution Language for Web

Services. Packt Publishing, 2004.
25. kermeta. http://www.kermeta.org/,[retrieved:April, 2014].
26. A. Kleppe, J. Warmer, and W. Bast. MDA Explained: The

Model Driven Architecture Practice and Promise,
Addison-Wesley, 2003.

27. H. Kreger. Web services conceptual architecture. IBM
Software Group, 2001.

28. Ruben Lara, Holger Lausen, Sinuhe Arroyo, Josde Bruijn,
and Dieter Fensel. Semantic web services: description
requirements and current technologies. In ICEC, 2003.

29. Frank Leymann. Web services: Distributed applications
without limits. In 10th Conference on Database Systems

for Business, Technology and Web (BTW’03), pages 26–
28, Leipzig, 2003.

30. MOF. Meta object facility (mof) 2.0 core specification,
object management group, 2004

31. OBEO, INRIA. Atlas transformation language.
http://www.eclipse.org/atl/, [retrieved: April, 2015].

32. OMG. http://www.omg.org/corba/.

33. OMG. MOF QVT Final Adopted Specification,
2005.OMG doc.

34. OMG. OCL 2.0, 2006.
35. Michael P. Papazoglou. A survey of web service

technologies, 2004.
36. H. Petritsch. Service-oriented architecture (soa) vs.

component based architecture. Technical report, Vienna
University of Technology, Vienna, 2006.

37. A. Reynolds and M. Wright. Oracle SoA Suite 11g R1

Developer’s Guide. 2010.
38. Roger Sessions. COM and DCOM: Microsoft’s vision for

distributed objects. John Wiley & Sons, Inc., New York,
NY, USA, 1998.

39. Gayatri Swamynathan, Tyler Close, Sujata Banerjee, and
Rick McGeer. Scalable access control for web services. In

the IEEE International Conference on Creating,

Connecting and Collaborating through Computing, pages
93–98, 2007.

40. Henry S. Thompson, David Beech, Murray Maloney,and
Noah Mendelsohn. Xml schema part 1: Structures,2004.

41. P. Wang. Oracle BAM 11g R1 Handbook. Packt
Publishing,Limited, 2012.

42. Steve K. Wood, David H. Akehurst, Oleg Uzenkov, W. G.
J. Howells, and Klaus D. McDonald-Maier. A model-
driven development approach to mapping uml state
diagrams to synthesizable vhdl. IEEE Trans.Comput.,
57:1357–1371, 2008.

Published by Atlantis Press
Copyright: the authors

149

http://research.sun.com/projects/caroline
http://www.omg.org/corba/

