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Abstract
We consider the task of obtaining themaximum
a posterioriestimate of discrete pairwise random
fields with arbitrary unary potentials and semi-
metric pairwise potentials. For this problem,
we propose an accurate hierarchical move mak-
ing strategy where each move is computed effi-
ciently by solving anst-MINCUT problem. Un-
like previous move making approaches, e.g. the
widely usedα-expansion algorithm, our method
obtains the guarantees of the standard linear pro-
gramming (LP) relaxation for the important spe-
cial case of metric labeling. Unlike the exist-
ing LP relaxation solvers, e.g. interior-point algo-
rithms or tree-reweighted message passing, our
method is significantly faster as it uses only the
efficientst-MINCUT algorithm in its design. Us-
ing both synthetic and real data experiments,
we show that our technique outperforms several
commonly used algorithms.

1 Introduction
Markov random fields (MRFs) offer an expressive and intu-
itive framework for several important problems in artificial
intelligence and machine learning. Given a set of random
variables along with a neighborhood relationship defined
over them, anMRF offers a concise representation of the
probability of each labeling (i.e. a particular assignmentof
labels to the variables) in terms of potentials defined over
the cliques of random variables. Due to the central role of
MRFs in various applications, algorithms that perform effi-
cient and accurate inference on them are highly desirable.
One important and well-studied class of inference, called
maximum a posteriori(MAP) estimation, seeks the labeling
with the maximum probability.

We consider a special case ofMAP estimation, known as
semi-metric labeling [4], where (i) the size of the maximal
clique is2 (a pairwiseMRF); and (ii) the pairwise potentials
are defined by a semi-metric distance function over labels.
Although these may seem like very restrictive assumptions,
several problems in computer vision and related areas can

be expressed using semi-metric labeling, from low level
tasks like image denoising and stereo reconstruction [30]
to high level tasks like pose estimation [9] and scene seg-
mentation [27]. Hence, the semi-metric labeling problem
merits special attention.

We describe a novel algorithm for semi-metric labeling
which approximates a given semi-metric distance function
using a mixture ofr-hierarchically well-separated tree(r-
HST) metrics [1]. Ther-HST metrics form an amenable
class of distance functions which admit elegant divide-and-
conquer approaches for several problems [1, 8]. In our
case, they not only result in easier-to-solve instances of
MAP estimation, they also provide an accurate approxima-
tion of the original problem. Given a mixture ofr-HSTs,
we reformulate semi-metric labeling using a set ofr-HST

metric labeling problems(i.e. MAP estimation forr-HST

metric pairwise potentials), where each problem is speci-
fied by one component of the mixture. We show how each
resultingr-HST metric labeling problem can be solved ac-
curately using an iterative procedure that only employs the
efficientst-MINCUT algorithm [3] in its design. Unlike pre-
viousst-MINCUT based approaches, our method provides
the best known approximation bound for the important spe-
cial case of metric labeling (i.e. when the pairwise poten-
tials are defined by a metric distance function). In prac-
tice, our technique outperforms several state of the art al-
gorithms on both synthetic and real data experiments.

2 Related Work
The most commonly used algorithms for semi-metric la-
beling can be broadly divided into two categories: message
passing and move making. Message passing algorithms at-
tempt to minimize approximations of the free energy as-
sociated with theMRF [10, 14, 15, 29, 34, 36]. Amongst
them, the algorithms of [14, 15, 34] are closely related
to the linear programming (LP) relaxation of semi-metric
labeling [7, 17, 25, 33]. Although message passing algo-
rithms provide accurateMAP estimates, they can be com-
putationally expensive in certain cases [30].

Move making approaches refer to a large class of itera-
tive algorithms whichmovefrom one labeling to the other



while ensuring that the probability of the labeling never
decreases. The move space, i.e. the search space for the
new labeling, is restricted to a subspace of the original
search space that can be explored efficiently. Typically, the
move space is explored using thest-MINCUT algorithm,
e.g. in αβ-swap [4] andα-expansion [5]. However, re-
cently researchers have also used more sophisticated algo-
rithms such as quadratic pseudo-boolean optimization [2]
(e.g. see [13, 21, 35]). Move making algorithms are gener-
ally preferred in applications which involve a large number
of random variables, e.g. on image-sizedMRFs in computer
vision, due to their efficiency.

3 Preliminaries
Consider anMRF defined over a set of random variables
V = {v1, v2, · · · , vN}, each of which can take a value from
a discrete label setL = {l1, l2, · · · , lH}. Furthermore, let
E define the neighborhood such thatva andvb are neigh-
bors if and only if(va, vb) ∈ E . A labeling of theMRF is
a functionf : {1, 2, · · · , N} → {1, 2, · · · , H} such that
variableva takes labellf(a). Associated with each labeling
is its probabilityPr(f |θ) = exp(−Q(f ; θ))/Z, whereZ
is the partition function andQ(·; θ) is the Gibbs energy:

Q(f ; θ) =
∑

va∈V

θa(f(a))+
∑

(va,vb)∈E

θab(f(a), f(b)). (1)

Hereθa(f(a)) andθab(f(a), f(b)) denote unary and pair-
wise potentials respectively. For semi-metric labeling,
the pairwise potentials are of the formθab(f(a), f(b)) =
wabd(f(a), f(b)), wherewab ≥ 0 and d(·, ·) is a semi-
metric distance function. Recall thatd(·, ·) is semi-metric
if and only if: (i) d(i, i) = 0, ∀i; and (ii) d(i, j) =
d(j, i) > 0, ∀i 6= j. Examples of commonly used semi-
metric distance measures include the truncated linear func-
tion, d(i, j) = min{|i − j|, M} where the truncation fac-
tor M ≥ 0, the truncated quadratic function,d(i, j) =
min{(i − j)2, M}, and the uniform metric (a special case
of truncated linear/quadratic function withM = 1). Within
this setting, the problem ofMAP estimation is formally
specified as:f∗ = arg minf Q(f ; θ).

4 The r-HST Metric Labeling Problem
As mentioned earlier, there are two key ingredients to our
MAP estimation algorithm: (i) approximating a given semi-
metric by a mixture ofr-HST metrics; and (ii) solving
each resultingr-HST metric labeling problem. We begin
by definingr-HST metrics and designing an efficient move
making algorithm for the corresponding labeling problem.
The next section describes a simple yet accurate procedure
for approximating semi-metrics.

4.1 Ther-HST Metric
An r-HST metric [1] dt(·, ·) is specified by a rooted tree
whose edge lengths are non-negative and satisfy the fol-
lowing properties: (i) the edge lengths from any node to
all of its children are the same; and (ii) the edge lengths

along any path from the root to a leaf decrease by a fac-
tor of at leastr > 1. Given such a tree, known asr-HST,
the distancedt(i, j) is the sum of the edge lengths on the
unique path between them. Note that, as the name suggests,
an r-HST specifies a metric distance. In other words, it is
a semi-metric distance function that satisfies the triangu-
lar inequality: d(i, j) − d(j, k) ≤ d(i, k), ∀i, j, k. In this
paper, we consider only thoser-HSTs where all the labels
in the setL are at the leaves of ther-HST. As observed
in several earlier works [1, 6, 8],r-HSTs satisfying this as-
sumption are sufficient to provide an accurate approxima-
tion of a given semi-metric distance function. Fig. 1 shows
an exampler-HST overH = 6 labels withr = 2.

Figure 1: An exampler-HST metric. The distances between
nodes are specified by path lengths, e.g.dt(1, 2) = 4, dt(4, 5) =
2 anddt(1, 4) = 11.

4.2 The Move Making Algorithm
For a givenr-HST metric dt(·, ·), we define anMRF pa-
rameterized byθt with arbitrary unary potentialsθt

a(i) and
pairwise potentials of the formθt

ab(i, j) = wabd
t(i, j). We

show how to obtain an accurateMAP estimate for the pa-
rameterθt, known as ther-HST metric labeling problem,
using a novel approach based on thest-MINCUT algorithm.
Our approach is a divide-and-conquer method consisting
of two steps: (i) replace the original problem by a series of
subproblems that are easier to solve; and (ii) combine the
solutions of the subproblems to obtain an accurate solution
of the original problem. Each of the subproblems is spec-
ified by a node in the givenr-HST, and their solutions are
combined using the standardα-expansion algorithm [5].

In more detail, consider a nodep of the givenr-HST. We
say that a labelli belongs tothe nodep (denoted byi ∈ p) if
and only if it is a leaf node in the subtree rooted atp. LetLp

denote the set of labels that belong top, i.e.Lp = {i|i ∈ p}.
The subproblem defined at nodep is to find the labelingfp

of the random variablesV that minimizes the energy under
the constraint that each variableva ∈ V takes a label from
the setLp. Note that ifp is the root node of the givenr-HST,
then the subproblem is the same as the original problem.
On the other hand, ifp is the leaf node, then the solution to
the subproblem is trivial, i.e.fp(a) = p for all va ∈ V . In
fact, as one moves from the root towards the leaves of the
r-HST, the label set of the subproblem keeps reducing in
size thereby making the subproblems easier to solve. This
observation suggests the following hierarchical approach:
solve the easier subproblems at levelm + 1 of ther-HST

and use their labelings to solve the subproblem defined by
their parent nodes at levelm.



It remains to be seen how exactly a subproblem at nodep
can benefit from the labelings of its child nodes. To an-
swer this we consider the stage of the above hierarchical
approach where we have to solve the subproblem defined
at nodep, having already obtained the labelings of the sub-
problems associated with the children ofp. We denote
these labelings byf1, · · · , fC whereC is the number of
child nodes ofp. To find the labelingfp for the subprob-
lem atp efficiently, we restrict the label of each variable
va to be one of theC labels specified by the child nodes.
In other words,fp(a) = fi(a) wherei ∈ {1, · · · , C} is
the index of the child node from whichva takes its label.
Note that different variables can take labels from different
child nodes. In order to find the indices of the child nodes
for all variables, we define a parameterθp such that the
corresponding unary and pairwise potentials are given by

θp
a(i) = θt

a(fi(a)), θp
ab(i, j) = wabd

t(fi(a), fj(b)),

∀(va, vb) ∈ E , i, j ∈ {1, · · · , C}. (2)

We obtain an approximateMAP estimatef ′ for the param-
eterθp usingα-expansion (see [18] for details). Using the
properties ofr-HST metrics, it follows that each move of
α-expansion results in a submodular problem that can be
solved exactly. The labelingf ′ provides the required in-
dices of the child nodes to obtain the labelingfp as

fp(a) = fi(a) wherei = f ′(a), ∀va ∈ V . (3)
The hierarchical approach for solving ther-HST metric
labeling problem terminates when the subproblem corre-
sponding to the root node is solved. Our method is not only
easy to implement and effective in practice, it also provides
the approximation bounds of theLP relaxation [7, 11].
Specifically, the following property holds true:

Theorem 4.1 [18]:Forr-HST metric labeling we obtain an
approximation bound ofO(1).

5 The Semi-Metric Labeling Problem
Similar to MAP estimation, several problems specified on
r-HST metrics are well-known to be amenable to efficient
divide-and-conquer approaches [1, 8]. However, their use
in the AI community has been very limited thus far. The
main reason for this would appear to be their restrictive
form which may not offer an accurate model for real-world
applications. A natural way to address this deficiency is to
use a mixture ofr-HST metrics instead of a singler-HST.

5.1 Learning a Mixture of r-HSTs.
Given a distance functiond(·, ·), we would like to learn a
set ofr-HST metricsD = {dt(·, ·), t = 1, · · · , T } along
with a probability distributionρ on them such that thedis-
tortion is minimized, that is

(D∗, ρ∗) = argmin
D,ρ

(

max
i6=j

∑

t ρtdt(i, j)

d(i, j)

)

. (4)

When the distance function is a metric, Fakcharoenphol
et al. [8] provide a simple yet accurate randomized algo-
rithm for samplingr-HST metrics. Below, we describe their

method forr = 2 while noting that it can be easily extended
for any value ofr.

It is helpful to think of each level of anr-HST as a clustering
of labels such that a nodep defines a cluster of labelsLp =
{i|i ∈ p} (i.e. i is a leaf node of the subtree rooted atp). In
other words, anr-HST defines a hierarchical clustering of
labels. Let the clustering at levelm be denoted byCm. The
root node denotes the trivial clustering which consists of all
the labelsC1 = {1, · · · , H}. Given the clustersCm−1, Cm

is obtained by further clustering the labels{j|j ∈ p} for
each nodep ∈ Cm−1.

Without loss of generality, we assume that the diameter
∆ = maxi6=j d(i, j) = 2δ for an integerδ ≥ 1 and
mini6=j d(i, j) > 1. Due to the above assumptions, ther-
HST would consist of at mostδ levels. The algorithm is ini-
tialized by: (i) picking a random permutationπ of the label
indices{1, 2, · · · , H}, which defines a priority ordering on
the cluster centers; and (ii) choosing a value ofβ ∈ [1, 2]
from the distributionPr(x) = 1/(x log 2). Note that both
the permutationπ and value ofβ are fixed throughout the
process, i.e. they are selected once before running the clus-
tering algorithm for all levels. GivenCm−1, the clustering
at levelm is obtained as follows:

• Consider a nodep ∈ Cm−1. Defineβm = 2δ−mβ.

• For a labeli ∈ p, find the first labelj according to the
permutationπ such thatd(i, j) ≤ βm.

• Assign the labeli to the cluster centered atj.

• Repeat for all labelsi ∈ p and nodesp ∈ Cm−1.

The edge lengthep from a nodep to each of its children
is given by∆p/2 where∆p denotes the diameter of the
cluster of labelsLp specified byp. Fakcharoenpholet al.
[8] showed that∆p reduces by at least a factor ofr = 2 for
metric distances, thereby providing us with anr-HST.

Importantly, the method of [8] can also be applied for ap-
proximating semi-metric distance functions. However, as
the triangular inequality is not satisfied, the resulting tree
will not be anr-HST. Nonetheless, the tree obtained us-
ing this method would provide a metric distance function
which can then be approximated tor-HST metrics by ap-
plying the above procedure again. The only question that
remains is the number ofr-HSTs T to be employed. In or-
der to answer this question, we note that [8] also provided
a deterministic version of the above algorithm for solving a
related problem that we call the dual procedure (DP):

DP(y): min
dt(·,·)

∑

i,j

yijd
t(i, j), s.t.dt(i, j) ≥ d(i, j), (5)

for some values ofyij ≥ 0. In other words,DP provides
oner-HST that minimizes the non-negatively weighted sum
of distances thatdominatethe original distanced(·, ·) (i.e.
dt(i, j) ≥ d(i, j), for all i, j). Note that eachr-HST

sampled from the randomized procedure described above
dominatesd(·, ·). Briefly, DP works by derandomizing the



above procedure using conditional expectation. In other
words, the elements of the permutationπ are obtained se-
quentially by computing the expectation of equation (5)
given the previously selected elements of the permutation.
Using DP, Charikaret al. [6] provided an iterative algo-
rithm to obtain a small mixture ofr-HST metrics (with
O(H log H) r-HSTs). The algorithm initializes the mixture
to oner-HST. In our implementation, we found ther-HST

obtained by solving theDP (5) for the valuesyij = 1 for
all i, j to be a good initialization. Let(D, ρ) denote the
mixture aftern iterations which consists ofn r-HSTs. The
(n + 1)st r-HST is obtained by defining

yij =

{

1
d(i,j) exp

(
P

t
ρtdt(i,j)

λd(i,j)

)

if i 6= j,

0 otherwise,
(6)

and solvingDP(y). Hereλ > 0 is the user defined learning
rate. Note that in the above values ofyij , the pairs of labels
li andlj which result in a bigger distortion are given more
weight while solving theDP. The probability distribution
over then+1 r-HSTs is updated to((1−λ)ρ; λ) where(; )
denotes vector concatenation. Although more sophisticated
clustering algorithms may be used, the above method is ap-
pealing due to its ease of implementation. Furthermore, it
also provides an accurate approximation as evidenced by
the following result from [8] and its simple extension.

Theorem 5.1 [8]: Whend(·, ·) is a metric distance func-
tion, the above approach provides a mixture ofr-HST met-
rics with distortion ofO(log H).

Theorem 5.2: Let d(·, ·) be a semi-metric which satisfies
the following relaxed version of triangular inequality:

d(i, j) − d(j, k) ≤ γd(i, k), ∀i, j, k, (7)

for some value ofγ ≥ 1. The above approach pro-
vides a mixture ofr-HST metrics with a distortion of
O((γ log H)2) with respect tod(·, ·). Note that any dis-
tance function defined over a finite number of labels will
admit a finiteγ.

5.2 Approximating Semi-Metric Labeling
Once the mixture ofr-HSTs is learnt, the original semi-
metric labeling problem parameterized byθ can be approx-
imated by a set ofr-HST metric labeling problems specified
by parametersθt, t = 1, · · · , T , where

θt
a(i) = θa(i), θt

ab(i, j) = wabd
t(i, j). (8)

As shown in the previous section,r-HST metric label-
ing can be solved efficiently and accurately using anst-
MINCUT based approach. Hence, in order to solve semi-
metric labeling, we solve the set ofr-HST metric labeling
problems to obtain the labelingsf t. We then combine these
labelings to obtain the final labelingf , using the same ap-
proach as the one used to combine the labelings of the chil-
dren of nodep of ther-HST (see§ 4.2). Note that, unlike the

problem of combining labelings of child nodes, in this case
the moves ofα-expansion are no longer necessarily sub-
modular. In other words, we are not guaranteed to obtain
the optimal move at each iteration. In order to overcome
this problem, we solve theα-expansion procedure by using
the primal dual scheme of [16]. This has two advantages:
(i) it reduces the run-time ofα-expansion; and (ii) it han-
dles non-submodular moves by truncating the edges with
negative capacities in thest-MINCUT graph to0. At each it-
eration ofα-expansion, we move to a new labeling only if it
decreases the energy. Otherwise we retain the old labeling
and repeat the procedure until we can no longer decrease
the energy for any iteration ofα-expansion. We initialize
the labeling by the lowest energy labeling amongst the set
{f t, t = 1, · · · , T }. Theα-expansion procedure described
above guarantees that the energy is not increased at any it-
eration. In other words, the energy of the labeling obtained
by our approach is bounded from above by the energy of
the best labeling provided by solving the set ofr-HST met-
ric labeling problems. Using this observation along with
Theorems 5.1 and 5.2 allows us to prove the following ap-
proximation bounds for our overall approach.

Theorem 5.3 [18]:For the metric and semi-metric labeling
problems, we obtain an approximation bound ofO(log H)
andO((γ log H)2) respectively.

In practice, when solving a subproblem at nodep of an
r-HST, we use the given distance functiond(·, ·) to spec-
ify the pairwise potentials ofθp instead ofr-HST metric
dt(·, ·). This tends to improve the quality of the labelings
whilst retaining the approximation bound. Specifically,

Observation 5.4 [18]:Theorem 5.3 also holds true if ther-
HST metricdt(·, ·) is replaced by the given distanced(·, ·)
in equation (2) for all subproblems defined by ther-HSTs.

Note that our algorithm provides the guarantees of theLP

relaxation for the metric labeling problem. Together with
the results for truncated convex models [5, 20], this implies
that there exist moving making algorithms which match all
known LP relaxation guarantees when the number of la-
bels is smaller than the number of variables (i.e.H < N ).
Although the above theorem shows that our approach pro-
vides a tight approximation, we can further improve its ac-
curacy by using a hardEM strategy described below.

5.3 Refining the Labeling
For a given semi-metric labeling problem, consider the la-
belingf obtained using the method described above. The
energy defined byf is given by

Q(f ; θ) =
∑

va∈V

θa(f(a)) +
∑

(va,vb)∈E

wabd(f(a), f(b))

(9)
We define a set of non-negative weightsy as

yij =
∑

(va,vb)∈E,f(a)=i,f(b)=j

wab, (10)



(i) (ii) (iii) (iv) (v)
α-exp 48645 52094 50221 48112 47613

αβ-swap 48721 51938 51055 48487 47579
TRW-S 47506 51318 48132 47355 46612
BP-S 50942 60269 52841 48136 47402

R-swap 48045 51842 - - -
R-exp 47998 51641 - - -
Our 47850 51587 48146 47538 46651

Our+EM 47823 51413 48146 47382 46638

(i) (ii) (iii) (iv) (v)
α-exp 0.44 0.36 0.29 0.30 0.36

αβ-swap 0.65 0.86 0.52 0.51 0.47
TRW-S 104.29 178.97 713.70 703.82 709.36
BP-S 15.78 45.63 150.36 129.68 141.79

R-swap 1.97 10.73 - - -
R-exp 5.78 30.73 - - -
Our 10.22 12.84 1.86 10.58 12.25

Our+EM 25.66 64.08 5.02 32.75 57.50

(a) Energy (b) Time

Table 1: Average energy and time (in seconds) ofMAP estimation algorithms computed using100 randomly generatedMRFs. The
columns denote the five cases considered (see text). The three smallest average energy values and average timings are shown in bold.
Note that range swap and range expansion are only applicableto truncated convex models. Hence, their timing and energy is not
reported for other cases. As the results indicate, our approach provides an accurateMAP estimate efficiently.

i.e. yij is the contribution of labelsli and lj to the en-
ergy (9). Specifically, usingy, the energy of the labeling
f can be rewritten as

Q(f ; θ) =
∑

va∈V

θa(f(a)) +
∑

i,j

yijd(i, j). (11)

We obtain anr-HST metricdt(·, ·) by solvingDP (5) for the
values ofy defined above. The metricdt(·, ·) provides an
MRF parameterized byθt as defined in equation (8). Since
the metricdt(·, ·) dominates the given distanced(·, ·) it fol-
lows that
∑

i,j

yijd(i, j) ≤
∑

i,j

yijd
t(i, j) ⇒ Q(f ; θ) ≤ Q(f ; θt). (12)

Now consider the case when the above inequality holds
with an equality. In other words,DP provides anr-HST

metric which exactly models the weighted sum of distances
where the weights are specified byy. We can now solve the
r-HST metric labeling problem corresponding toθt in or-
der to obtain a new labelingf ′. If the labelingf ′ is such
thatQ(f ′; θt) ≤ Q(f ; θt) then we are guaranteed not to in-
crease the energy of the solution by moving from labeling
f to labelingf ′ since

Q(f ′; θt) ≤ Q(f ; θt) = Q(f ; θ) ⇒ Q(f ′; θ) ≤ Q(f ; θ).
(13)

The process of obtaining a newr-HST metric followed by
a new labelingf ′ can be repeated till we reach a local min-
ima. Note that the above inequality is obtained by assum-
ing that theDP can be solved exactly. However, this cannot
be guaranteed for general semi-metric distance functions.
Nonetheless, in practice we use the above procedure to re-
fine the labeling obtained by solving eachr-HST metric la-
beling problem. As the results in the next section show, it
helps further decrease the energy of the labelings obtained
by our method at the cost of more computation time.

6 Experiments
We compare our approach to several state of the artMAP

estimation algorithms using both synthetic and real data
experiments. In all our experiments we setr = 2. Empiri-
cally, we found that the accuracy of our approach saturates
after usingT = 50 r-HSTs to define the mixture.

Synthetic Data. We consider the following cases of the
MAP estimation problem: (i) truncated linear metrics; (ii)
truncated quadratic semi-metrics; (iii)r-HST metrics; (iv)
general metrics; and (v) general semi-metrics. Note that
for uniform metric labeling, our approach reduces toα-
expansion and hence, we do not consider such problems in
our evaluation. In each of the five cases above, we gener-
ated100 random 4-connected grid structuredMRFs of size
100 × 100 with H = 20. The unary potentials were ran-
domly sampled from the uniform distribution defined over
the interval[0, 10] (denoted byu(0, 10)). The pairwise po-
tentials for the five cases were generated as follows. For
the truncated convex models (cases (i) and (ii)) the trunca-
tion factor was sampled fromu(0, 10). For r-HST metrics
we defined a random hierarchical clustering of labels with
the edge lengths at the root sampled fromu(0, 10). The
edge lengths at other levels were sampled while ensuring
that the properties of ther-HST metric hold true. In order
to generate a general metric distance function, we defined
a complete graph over the labels with random edge lengths
from u(0, 10). The distance functiond(i, j) between labels
i andj is given by the shortest path fromi to j. A gen-
eral semi-metric distance was defined by randomly sam-
pling the values ofd(i, j) wherei 6= j from u(0, 10) and
settingd(i, i) = 0 for all i.

The MRFs were used to test several state of the artMAP

estimation algorithms:α-expansion [5],αβ-swap [4], se-
quential tree-reweighted message passing (TRW-S) [14], se-
quential belief propagation (BP-S) [24], range swap [32],
and range expansion [20]. We used publicly available code
for these approaches to compare them with the two variants
of our method: with and without using the hardEM strategy
described in§ 5.3.

The α-expansion algorithm was solved using the primal-
dual scheme of [16] (for both the original problem as well
as the various subproblems used in our approach). Recall
that [16] also handles non-submodular moves and hence, is
capable of solving semi-metric labeling problems like cases
(ii) and (v). All the move making algorithms were initial-
ized to the constant labelingf(a) = 1 for all va. For the
truncated convex models (cases (i) and (ii)) the messages of
TRW-S andBP-S were computed efficiently using the dis-



tance transform technique [9]. We report the results of the
methods described in [20, 32] (denoted by R-exp and R-
swap respectively) only for truncated convex models since
these approaches are not applicable to the other cases.

Table 1 lists the average time required and the average
value of the energy obtained for various methods. Our ap-
proach is slower than previous move making algorithms (α-
expansion andαβ-swap) as it solves a set ofr-HST metric
labeling problems. However, in terms of the energy val-
ues, it significantly outperforms them in all cases. It even
provides similar results to the methods of [20, 32] which
were specifically designed for the truncated convex mod-
els. The energy values obtained by our approach also com-
pare favorably withTRW-S. In terms of speed, our method
is significantly faster thanTRW-S, especially in cases where
the distance transform trick cannot be employed. As men-
tioned earlier, the computational efficiency of our method
is due to the fact that it only uses the efficientst-MINCUT

algorithm in its design. Finally, we also note that the hard
EM strategy decreases the energy of the labeling. However,
it is slower since it has to solve at least one instance of the
DP (5) for eachr-HST in the mixture.

Scene Registration. Given two images of different
scenes with some common elements (e.g. both scenes con-
tain buildings, see Fig. 2), scene registration requires usto
find a point to point correspondence from one image to the
other. In this work, we follow the framework of [22] and
define anMRF whose variables correspond to the pixels of
the first image. The labels of the variables denote the dis-
placement that the pixel undergoes from the first image to
its corresponding pixel in the second image. The neigh-
borhood is defined such that theMRF forms a 4-connected
grid graph. The unary potentials are given by theℓ1 dif-
ference between theSIFT features [23] of corresponding
points. The pairwise potentials, which enforce smoothness
of the displacement map, are defined as

θab(i, j) = κ (min{|u(i) − u(j)|, M} + min{|v(i) − v(j)|, M}) ,
(14)

where(u(i), v(i)) and(u(j), v(j)) are the horizontal and
vertical displacements specified by labelsli andlj respec-
tively, M is the truncation factor andκ is the scaling factor.
Since the above pairwise potential forms a metric distance,
our approach can be applied to obtain the solution.

In our experiments, we use the values ofu(i) ∈ [−5, 5]
andv(i) ∈ [−5, 5], i.e. the total number of labels for each
random variable isH = 121. The truncation factorM was
set to5 and the scaling factorκ = 1. Fig. 2 shows the re-
sults obtained for three pairs of images using six different
MAP estimation algorithms along with the corresponding
energy values and timings. Similar to the synthetic data
experiments, our approach outperforms other move mak-
ing approaches in terms of accuracy, and it outperforms
TRW-S in terms of speed. In fact, the accuracy of our
method is very similar toTRW-S. Note thatTRW-S andBP-S

can be speeded up by using the decomposable model [26].
However, this makes the approximations to the free energy
weaker thereby providing less accurate results.

A related problem to scene registration, known as stereo re-
construction, is concerned with obtaining correspondences
between two images of the same scene. The image pairs
are epipolar rectified, i.e. the vertical displacement of each
pixel is known to be0. The unary potentials are computed
using the difference in theRGB values of the correspond-
ing pixels (instead of theSIFT feature), and the pairwise
potentials are given by equation (14) withM = 5 and
κ = 20. We compared our approach with other algo-
rithms on two standard stereo pairs used in computer vi-
sion, namely ‘teddy’ and ‘tsukuba’. Our method provides a
labeling with lower energy thanα-expansion andαβ-swap
usingH = 40 labels, as shown in Fig. 3.
Image Denoising Image denoising is a classic problem
in low-level computer vision. Given an image with noise
and/or missing pixels, the task is to obtain a ‘clean’ version
of the image, i.e. remove the noise and fill up the missing
pixels. The problem is modeled as anMRF whose variables
correspond to the image pixels and whose edges define a
4-connected grid graph. The labels are the 256 possible
intensity values that lie in the interval[0, 255]. The unary
potentials are given by the squared difference between the
intensity corresponding to the label and the observed in-
tensity in the image. Since natural images are smooth, i.e.
neighboring pixels tend to have similar intensity values, it
is common practice to employ truncated convex pairwise
potentials. In this work, we use

θab(i, j) = 30 min{|i − j|, 50}. (15)

We compared our method with the state of the artMAP esti-
mation algorithms on two standard images, namely ‘house’
and ‘penguin’. Fig. 4 shows the results obtained. Similar
to other synthetic and real data experiments, our approach
obtains labelings with lower energy values than the other
move making algorithms (although it takes a longer time
since it solves a series ofr-HST metric labeling problems).
In terms of the energy values, our method is outperformed
by TRW-S but is computationally more efficient.

The results for scene segmentation are provided in [18].

7 Discussion
We presented a move making approach for the semi-metric
labeling problem which approximates the given semi-
metric into a mixture ofr-HST metrics and solves each of
the resulting problems using an efficientst-MINCUT based
algorithm. Our approach provides the guarantees of the
LP relaxation for the metric labeling problem. Together
with the work of [5, 20], this provides further evidence of
a link between randomized rounding techniques used with
convex relaxations and move making algorithms. We be-
lieve that further investigations in this direction would help



Image-1 Image-2 α-exp αβ-swap TRW-S BP-S Our Our+EM

(Energy, Timing) 82036,1.66 83023,8.15 81118, 1371.11 84396, 218.0481315, 104.89 81258, 373.60

(Energy, Timing) 68572,1.27 69767,2.78 67616, 1058.25 70239, 159.9867682, 73.61 67676, 240.49

(Energy, Timing) 78222,2.06 79808,3.77 77457, 1400.82 80002, 228.9277466, 111.88 77463, 383.34

Figure 2: Scene registration results. The image pairs are obtained from [22]. In each row, the first image is warped into the second
image using the displacements found by variousMAP estimation algorithms. The energy values and timings in seconds for the algorithms
are shown below the corresponding warped image. The three smallest values of the energy and time required are highlighted in bold.

Image-1 Image-2 α-exp αβ-swap TRW-S BP-S Our Our+EM

(Energy, Timing) 78776,12.07 97999,34.59 62777, 263.28 126824,50.38 65116, 152.74 65008, 361.81

(Energy, Timing) 15322,4.49 18425,13.43 13257, 169.12 56280,29.60 14135, 72.09 14135, 203.12

Figure 3:Stereo reconstruction results. Each row shows the displacement map obtained by variousMAP estimation algorithms along
with their corresponding energy values and timings in seconds.

Image α-exp αβ-swap TRW-S BP-S Our Our+EM

Energy 32186163 32189264 32173383 32626969 32181820 32181820
Timing 26.13 90.74 529.60 115.84 294.72 465.57

Energy 11075641 11074426 11068226 11105845 11072828 11072332
Timing 5.09 25.22 174.33 32.94 70.55 204.55

Figure 4: Image denoising results. Each row shows the ‘clean’ image obtained by differentMAP estimation algorithms along with
their corresponding energy values and timings in seconds. The black regions in the original image indicate missing pixels. The unary
potentials for missing pixels is set to be a constant for all labels. The three lowest energy values and timings are highlighted in bold.



design move making algorithms for more complex relax-
ations such as [19, 28]. In practice, the results on both
synthetic and real data experiments show that our method
reduces the gap in performance between move making al-
gorithms and message passing approaches. This is partic-
ularly true for applications where the unary potentials do
not dominate the pairwise potentials, i.e. the prior speci-
fied by theMRF plays a vital role in obtaining good results
(e.g. in scene registration). Such scenarios occur not only
during testing, but during parameter learning ofMRFs as
well (for example, structuredSVMs [31] solve a series of
MAP estimation problems to learn log-linear models). An
interesting direction for future research would be to gener-
alize our move making approach to other hierarchical dis-
tance functions that approximate semi-metric distances ac-
curately and can be learnt efficiently. Similar to the existing
move making algorithms [12], the possibility of extending
our approach to solve special cases of higher order poten-
tials should also be explored.
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