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Abstract

We consider the task of obtaining theaximum

a posterioriestimate of discrete pairwise random
fields with arbitrary unary potentials and semi-
metric pairwise potentials. For this problem,
we propose an accurate hierarchical move mak-
ing strategy where each move is computed effi-
ciently by solving anst-MINCUT problem. Un-

like previous move making approaches, e.g. the
widely useda-expansion algorithm, our method
obtains the guarantees of the standard linear pro-
gramming (P) relaxation for the important spe-
cial case of metric labeling. Unlike the exist-
ing LP relaxation solvers, e.g. interior-point algo-
rithms or tree-reweighted message passing, our
method is significantly faster as it uses only the
efficientst-mINCUT algorithm in its design. Us-
ing both synthetic and real data experiments,
we show that our technique outperforms several
commonly used algorithms.
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be expressed using semi-metric labeling, from low level
tasks like image denoising and stereo reconstruction [30]
to high level tasks like pose estimation [9] and scene seg-
mentation [27]. Hence, the semi-metric labeling problem
merits special attention.

We describe a novel algorithm for semi-metric labeling
which approximates a given semi-metric distance function
using a mixture of-hierarchically well-separated treé--
HST) metrics [1]. Ther-HST metrics form an amenable
class of distance functions which admit elegant divide-and
conquer approaches for several problems [1, 8]. In our
case, they not only result in easier-to-solve instances of
MAP estimation, they also provide an accurate approxima-
tion of the original problem. Given a mixture @fHSTS,

we reformulate semi-metric labeling using a setrefisT
metric labeling problemgi.e. MAP estimation forr-HST
metric pairwise potentials), where each problem is speci-
fied by one component of the mixture. We show how each
resultingr-HST metric labeling problem can be solved ac-
curately using an iterative procedure that only employs the
efficientst-mMINcUT algorithm [3] in its design. Unlike pre-
vious st-MINCUT based approaches, our method provides

Markov random fieldsMRFs) offer an expressive and intu-
itive framework for several important problems in artificia
intelligence and machine learning. Given a set of rando
variables along with a neighborhood relationship define
over them, arMRF offers a concise representation of the
probability of each labeling (i.e. a particular assignmait
labels to the variables) in terms of potentials defined ove? Related Work

the cliques of random variables. Due to the central role ofThe most commonly used algorithms for semi-metric la-
MRFS in various applications, algorithms that perform effi- beling can be broadly divided into two categories: message
cient and accurate inference on them are highly desirablgpassing and move making. Message passing algorithms at-
One important and well-studied class of inference, calledempt to minimize approximations of the free energy as-
maximum a posterioiMAP) estimation, seeks the labeling sociated with thevrF [10, 14, 15, 29, 34, 36]. Amongst
with the maximum probability. them, the algorithms of [14, 15, 34] are closely related
to the linear programming.f) relaxation of semi-metric

semi-metric labeling [4], where (i) the size of the maximal Igbelmg [7’.17’ 25, 33]. AIthoggh message passing algo-
rithms provide accurat®AP estimates, they can be com-

cligue is2 (a pairwiseMRF); and (ii) the pairwise potentials . L .

are defined by a semi-metric distance function over IabeIsF.)UtatlonaIIIy expensive in certain cases [30].
Although these may seem like very restrictive assumptionsiViove making approaches refer to a large class of itera-
several problems in computer vision and related areas cative algorithms whichmovefrom one labeling to the other

the best known approximation bound for the important spe-
cial case of metric labeling (i.e. when the pairwise poten-
ials are defined by a metric distance function). In prac-
ice, our technigue outperforms several state of the art al-
gorithms on both synthetic and real data experiments.

We consider a special case P estimation, known as



while ensuring that the probability of the labeling neveralong any path from the root to a leaf decrease by a fac-
decreases. The move space, i.e. the search space for ttog of at leastr > 1. Given such a tree, known asHsT,
new labeling, is restricted to a subspace of the originathe distancei®(i, 5) is the sum of the edge lengths on the
search space that can be explored efficiently. Typically, th unique path between them. Note that, as the name suggests,
move space is explored using theMINCUT algorithm,  anr-HST specifies a metric distance. In other words, it is
e.g. inaB-swap [4] anda-expansion [5]. However, re- a semi-metric distance function that satisfies the triangu-
cently researchers have also used more sophisticated alglar inequality: d(i, j) — d(j, k) < d(i, k), Vi, j, k. In this
rithms such as quadratic pseudo-boolean optimization [2paper, we consider only thogeHsTs where all the labels
(e.g. see [13, 21, 35]). Move making algorithms are generin the setl are at the leaves of theHST. As observed
ally preferred in applications which involve a large numberin several earlier works [1, 6, 8}-HSTs satisfying this as-

of random variables, e.g. on image-siae”lFs in computer  sumption are sufficient to provide an accurate approxima-
vision, due to their efficiency. tion of a given semi-metric distance function. Fig. 1 shows

3 Preliminaries an example-HsT over H = 6 labels withr = 2.

Consider anvMRF defined over a set of random variables
V = {vy,v9,- -+ ,un}, €ach of which can take a value from
a discrete label sef = {l;,l2, -+ ,ly}. Furthermore, let
£ define the neighborhood such thgtandwv, are neigh-
bors if and only if(v,, vy) € €. A labeling of theMRF is

a functionf : {1,2,--- N} — {1,2,---, H} such that
ya_rlableva taI_<_es label ). Associated with each labeling Figure 1: An exampler-HsT metric. The distances between
is its probabilityPr(f|6) = exp(—Q(f;0))/Z, whereZ  noges are specified by path lengths, €'l, 2) = 4, d*(4, 5) =

is the partition function and)(-; ) is the Gibbs energy: 2andd’(1,4) = 11.

4.2 The Move Making Algorithm

For a givenr-HST metric d*(-,-), we define arMRF pa-
rameterized by)' with arbitrary unary potentialé’ (i) and
Hered, (f(a)) andfu,(f(a), f(b)) denote unary and pair- Pairwise potentials of the for,, (i, j) = wasd' (i, j). We
wise potentials respectively. For semi-metric labeling,Show how to obtain an accurateap estimate for the pa-
the pairwise potentials are of the forfy,(f(a), f(b)) = rameterd’, known as the-HsT metric labeling problem,
wapd(f(a), f(b)), wherew,, > 0 andd(-,-) is a semi- usinganovel approach based on sfre1iNCUT algorithm.
metric distance function. Recall thdt-, -) is semi-metric ~ Our approach is a divide-and-conquer method consisting
if and only if: (i) d(i,i) = 0,Vi; and (i) d(i,j) =  Oftwo steps: (i) replace the original problem by a series of
d(j,i) > 0,Vi # j. Examples of commonly used semi- Subproblems that are easier to solve; and (i) combine the
metric distance measures include the truncated linear fun@olutions of the subproblems to obtain an accurate solution
tion, d(i, j) = min{|i — j|, M} where the truncation fac- Of the original problem. Each of the subproblems is spec-
tor M > 0, the truncated quadratic functionj(i,j) =  ified by a node in the given-HsT, and their solutions are
min{(i — j)2, M}, and the uniform metric (a special case combined using the standasidexpansion algorithm [5].

of truncated linear/quadratic function witi = 1). Within |, more detail. consider a nogeof the givenr-HsT. We
this ;gtting, the problgm ofiapP estimation is formally say that a labdl belongs tdhe node (denoted by € p) if
specified asy* = argmin; Q(f; ). and only if it is a leaf node in the subtree rooteg ak et £?

4 Ther-HST Metric Labeling Problem denote the set of labels that belongtae. £P = {i]i € p}.

As mentioned earlier, there are two key ingredients to ourThe subproblem defined at nodés to find the labeling®™

MAP estimation algorithm: (i) approximating a given semi- of the rand(_)m variabley tha_t minimizes the energy under
metric by a mixture ofr-HST metrics; and (i) solving the constraint that each variahlg € V takes a label from

each resulting-HsT metric labeling problem. We begin (1€ SeiC”. Note thatifp is the rootnode of the givenHsT,
by definingr-HST metrics and designing an efficient move then the SprrOblem,'S the same as the original problem.
making algorithm for the corresponding labeling problem.On the other hand, é is the leaf node, then the solution to

The next section describes a simple yet accurate procedume subproblem is trivial, i.ef"(a) = p forall v, € V. In
for approximating semi-metrics. fact, as one moves from the root towards the leaves of the

r-HST, the label set of the subproblem keeps reducing in
4.1 Ther-HST Metric size thereby making the subproblems easier to solve. This
An r-HST metric [1] d*(,-) is specified by a rooted tree observation suggests the following hierarchical approach
whose edge lengths are non-negative and satisfy the fokolve the easier subproblems at leweH 1 of ther-HST
lowing properties: (i) the edge lengths from any node toand use their labelings to solve the subproblem defined by
all of its children are the same; and (ii) the edge lengthgheir parent nodes at leveh.

Q(f;0) = > bu(fa)+ D ban(fla), F(). (1)

v, €V (Ua7vb)eg



It remains to be seen how exactly a subproblem at node method forr = 2 while noting that it can be easily extended
can benefit from the labelings of its child nodes. To an-for any value ofr.

swer this we consider the stage of the above h|erarch|ca}é is helpful to think of each level of anHST as a clustering
approach where we have to solve the subproblem defmeof labels such that a nogedefines a cluster of label& —
at nodep, having already obtained the labelings of the sub-

problems associated with the children @f We denote {ifi € p} (.e.iis aleaf node of the subtree rootedhtin
these labelings by f whereC is the number of other words, am-HST defines a hierarchical clustering of
1, JC

child nodes ofp. To find the labelingf? for the subprob- labels. Let the clustenng at level be_ denot_ed bglm._The

- . . root node denotes the trivial clustering which consistdlof a
lem atp efficiently, we restrict the label of each variable the labelsC! = {1,--- , H}. Given the cluster§™—1, c™
v, to be one of the” labels specified by the child nodes. . . b o '
In other words, f?(a) = f,(a) wherei € {1,---,C} is is obtained by :‘ﬂtlher clustering the lab€lg|; € p} for
the index of the child node from which, takes its label, ©3¢h N0d® € €™
Note that different variables can take labels from différen Without loss of generality, we assume that the diameter
child nodes. In order to find the indices of the child nodesA = max;; d(i,j) = 29 for an integerd > 1 and
for all variables, we define a parame®@t such that the min;»; d(¢,j) > 1. Due to the above assumptions, the
corresponding unary and pairwise potentials are given by HsTwould consist of at mostlevels. The algorithmis ini-

. " . " tialized by: (i) picking a random permutatianof the label
0a(i) = 0u(fi(a)), 00,(i,5) = ward' (fi(a), £ (b)), indices{1,2,--- , H}, which defines a priority ordering on
V(va,vp) € E,i,5 €{1,---,C}. (2)  the cluster centers; and (ii) choosing a value3ok [1, 2]

We obtain an approximateap estimatef” for the param-  from the distributionPr(z) = 1/(zlog 2). Note that both
eter” usinga-expansion (see [18] for details). Using the the permutationr and value of3 are fixed throughout the
properties ofr-HST metrics, it follows that each move of Process, i.e. they are selected once before running the clus
a-expansion results in a submodular problem that can béering algorithm for all levels. Gived™ ™", the clustering
solved exactly. The labeling’ provides the required in- atlevelm is obtained as follows:

dices of the child nodes to obtain the labeliffyas e Consider anodp € C"~'. Define,, = 2°~"4.
f?(a) = fi(a) wherei = f'(a), Vv, € V. (3) e Foralabel € p, find the first labelj according to the
The hierarchical approach for solving theHsT metric permutationr such thati(i, j) < Bp.

labeling problem terminates when the subproblem corre- e Assign the label to the cluster centered at
sponding to the root node is solved. Our method is notonly e Repeat for all labels € p and nodep € C™ 1.

easyto imp_leme_nt and effective in practice,_it also proside The edge lengtl” from a nodep to each of its children
the approximation bounds of ther relaxation [7, 11]. g given by A? /2 where A? denotes the diameter of the

Specifically, the following property holds true: cluster of labelsC? specified byp. Fakcharoenphadt al.
Theorem 4.1 [18]: For r-HST metric labeling we obtain an  [8] showed thatA? reduces by at least a factorof= 2 for
approximation bound of(1). metric distances, thereby providing us withaRiST.

5 The Semi-Metric Labeling Problem Importantly, the method of [8] can also be applied for ap-

Similar to MAP estimation, several problems specified onproximating semi-metric distance functions. However, as
r-HST metrics are well-known to be amenable to efficientthe triangular inequality is not satisfied, the resultinggtr
divide-and-conquer approaches [1, 8]. However, their usavill not be anr-HsT. Nonetheless, the tree obtained us-
in the Al community has been very limited thus far. The ing this method would provide a metric distance function
main reason for this would appear to be their restrictivewhich can then be approximated teHsT metrics by ap-
form which may not offer an accurate model for real-world plying the above procedure again. The only question that
applications. A natural way to address this deficiency is to€mains is the number ofHsTs T" to be employed. In or-

use a mixture of-HST metrics instead of a singleHST. der to answer this question, we note that [8] also provided
a deterministic version of the above algorithm for solving a

5.1 Learning a Mixture of r-HSTS. related problem that we call the dual procedure)(

Given a distance functiod(-, -), we would like to learn a
set ofr-HST metricsD = {d'(-,-),t = 1,---,T} along DP(Y): mi Cdt(i g bl i »
: e = WA ) o : y): min » yid (i, j), st.d'(i,5) = d(i,j), (5)
with a probability distributiorp on them such that theis- dt(--,-); i (0-9) (.3) (.3)
tortion is minimized, that is
¢ atre for some values ofj;; > 0. In other wordspp provides
. >, P! (i j) Vs . .
(D*, p*) = argmin [ max &L———"-~ (4)  oner-HsTthat minimizes the non-negatively weighted sum
Dp\i#  d(i,]) of distances thaiominatethe original distance(-, -) (i.e.
When the distance function is a metric, Fakcharoenphoti(i,j) > d(i,j), for all i,5). Note that each-HST
et al. [8] provide a simple yet accurate randomized algo-sampled from the randomized procedure described above
rithm for sampling--HST metrics. Below, we describe their dominatesi(-, -). Briefly, Dp works by derandomizing the



above procedure using conditional expectation. In otheproblem of combining labelings of child nodes, in this case
words, the elements of the permutatiorare obtained se- the moves ofx-expansion are no longer necessarily sub-
guentially by computing the expectation of equation (5)modular. In other words, we are not guaranteed to obtain
given the previously selected elements of the permutatiorthe optimal move at each iteration. In order to overcome
Using bpP, Charikaret al. [6] provided an iterative algo- this problem, we solve the-expansion procedure by using
rithm to obtain a small mixture of-HST metrics (with  the primal dual scheme of [16]. This has two advantages:
O(H log H) r-HSTs). The algorithm initializes the mixture (i) it reduces the run-time af-expansion; and (ii) it han-

to oner-HST. In our implementation, we found theHST  dles non-submodular moves by truncating the edges with
obtained by solving ther (5) for the valuesy;; = 1 for  negative capacities in the-MINCUT graph to0. At each it-

all 4, j to be a good initialization. LetD, p) denote the eration ofa-expansion, we move to a new labeling only if it
mixture aftern iterations which consists of -HSTs. The decreases the energy. Otherwise we retain the old labeling

(n + 1)%t r-HsTis obtained by defining and repeat the procedure until we can no longer decrease
the energy for any iteration af-expansion. We initialize
d(,l ~ exXp (Z*”t‘?t.(i’j)) if i#7, the labeling by the lowest energy labeling amongst the set
Yij = 1,7) Ad(i,5) " (6) t o . .
0 otherwise, {ft,t=1,---,T}. Thea-expansion procedure described

above guarantees that the energy is not increased at any it-
and solvingpr(y). Here) > 0 is the user defined learning eration. In other words, the energy of the labeling obtained
rate. Note that in the above valuesyef, the pairs of labels by our approach is bounded from above by the energy of
l; andl; which result in a bigger distortion are given more the best labeling provided by solving the set-efisT met-
weight while solving theop. The probability distribution  ric labeling problems. Using this observation along with
over then + 1 r-HSTs is updated td(1 — A\) p; A) where(;) Theorems 5.1 and 5.2 allows us to prove the following ap-
denotes vector concatenation. Although more sophisticateproximation bounds for our overall approach.

clustering algorithms may be used, the above method is aPrheorem 5.3 [18]: For the metric and semi-metric labeling
pealing due to its ease of implementation. Furthermore, ig

. o . roblems, we obtain an approximation bounditifog H)
also provides an accurate approximation as evidenced b 2 :

. S X ndO((vylog H)?) respectively.
the following result from [8] and its simple extension.
In practice, when solving a subproblem at nqdef an
r-HST, we use the given distance functidf, -) to spec-
ify the pairwise potentials 0f” instead ofr-HST metric
d'(-,-). This tends to improve the quality of the labelings
Theorem 5.2: Let d(-,-) be a semi-metric which satisfies Whilst retaining the approximation bound. Specifically,

the following relaxed version of triangular inequality: Observation 5.4 [18]: Theorem 5.3 also holds true if thre
o , : ;
d(i, §) — d(j, k) < ~d(i, k), Vi, j, k, 7 HST met.ncd (+,-) is replaced by the given distandé, -)
(i,9) (k) < 7d(i, k), ¥i, j 0 in equation (2) for all subproblems defined by theisTs.

for some value ofy > 1. The above approach pro- nte that our algorithm provides the guarantees ofithe
vides a m|>2<ture_ ofr-HST metrics with a distortion of  gjaxation for the metric labeling problem. Together with
O((vlog H)®) with respect tod(-,-). Note that any dis- the results for truncated convex models [5, 20], this inplie
tancg func_tmn defined over a finite number of labels will {hat there exist moving making algorithms which match all
admit a finitey. known LP relaxation guarantees when the number of la-
5.2 Approximating Semi-Metric Labeling bels is smaller than the number of variables (He< N).
Once the mixture of-HsTs is learnt, the original semi- Although the above theorem shows that our approach pro-
metric labeling problem parameterized®gan be approx- vides a tight approximation, we can furt_her improve its ac-
imated by a set of-HST metric labeling problems specified Curacy by using a harém strategy described below.

by parameter§’,¢ = 1,--- , T, where 5.3 Refining the Labeling
. . . o For a given semi-metric labeling problem, consider the la-
t _ t _ t
0o (1) = 0a(i), 04(i,5) = wapd' (4, 7). (8) beling f obtained using the method described above. The
As shown in the previous sectiom;HST metric label-

energy defined by is given by
ing can be solved efficiently and accurately usingsan o
MINCUT based approach. Hence, in order to solve semi- Qf:0) = UZGV 6a(f(a) + Z gwabd(f(a)’ 1))
metric labeling, we solve the set ofHST metric labeling ‘ (vasvs)€ )
probllemsto obta!n the Ia_lbellngfé. _We thgn combine these We define a set of non-negative weigftas
labelings to obtain the final labelinfy using the same ap-
proach as the one used to combine the labelings of the chil- Yij = Z Wab, (10)
dren of node of ther-HST (se€§ 4.2). Note that, unlike the (va,00) EE . (@) =i F (b)=j

Theorem 5.1 [8]: Whend(, -) is a metric distance func-
tion, the above approach provides a mixture-¢fsT met-
rics with distortion ofO(log H).



[0) (it) (iii) (iv) (V) 0] (it) (iit) (iv) v)
a-exp | 48645| 52094 | 50221 | 48112 | 47613 a-exp 0.44 0.36 0.29 0.30 0.36
af-swap | 48721 | 51938 | 51055 | 48487 | 47579 || aB-swap | 0.65 0.86 0.52 0.51 0.47
TRW-S | 47506 | 51318 | 48132 | 47355 | 46612 || TRw-S | 104.29| 178.97| 713.70| 703.82| 709.36
BP-S 50942 | 60269 | 52841 | 48136 | 47402 BP-S 15.78 | 45.63 | 150.36| 129.68| 141.79
R-swap | 48045 | 51842 - - - R-swap 1.97 10.73 - - -
R-exp | 47998 | 51641 - - - R-exp 5.78 30.73 - - -
Our 47850 | 51587 | 48146 | 47538 | 46651 Our 10.22 | 12.84 | 1.86 10.58 | 12.25
Our+eM | 47823 | 51413 | 48146 | 47382 | 46638 || Our+Em | 25.66 | 64.08 | 5.02 32.75 | 57.50
(a) Energy (b) Time
Table 1: Average energy and time (in seconds)vaP estimation algorithms computed usig0 randomly generatedirrs. The
columns denote the five cases considered (see text). Tleestinalest average energy values and average timings amrshobold.
Note that range swap and range expansion are only applicableuncated convex models. Hence, their timing and enesgyot
reported for other cases. As the results indicate, our apggingprovides an accurateAp estimate efficiently.

i.e. y;; is the contribution of label$; and/; to the en-  Synthetic Data. We consider the following cases of the
ergy (9). Specifically, using, the energy of the labeling MAP estimation problem: (i) truncated linear metrics; (ii)
f can be rewritten as truncated quadratic semi-metrics; (if)HST metrics; (iv)
general metrics; and (v) general semi-metrics. Note that
Q(f;0) = Z 0a.(f(a)) + Zyijd(z',j). (11)  for uniform metric labeling, our approach reducescto
va €V i,j expansion and hence, we do not consider such problems in
our evaluation. In each of the five cases above, we gener-
We obtain an-HsT metricd'(-, -) by solvingpp (5) forthe  ated100 random 4-connected grid structure@Fs of size
values ofy defined above. The metri€ (-, -) provides an 100 x 100 with H = 20. The unary potentials were ran-
MRF parameterized bg" as defined in equation (8). Since gomly sampled from the uniform distribution defined over
the metricd' (-, -) dominates the given distandé, -) itfol-  the interval[0, 10] (denoted by(0, 10)). The pairwise po-
lows that tentials for the five cases were generated as follows. For
o P . the truncated convex models (cases (i) and (ii)) the trunca-
Zyiﬂ’d(l’j) < Zyiﬂ’d (i,7) = Q(f:0) < Q(f:60")- (12) ion factor was sampled from(0, 10). Forr-HST metrics
“J “J we defined a random hierarchical clustering of labels with

Now consider the case when the above inequality holddh® €dge lengths at the root sampled fra, 10). The
with an equality. In other wordspp provides anr-HST edge lengths at other levels were sampled while ensuring
metric which exactly models the weighted sum of distancedh@ the properties of the-HST metric hold true. In order
where the weights are specified jpyWe can now solve the to generate a general metric distance function, we defined
r-HST metric labeling problem corresponding @ in or- @ complete graph over the labels with random edge lengths
der to obtain a new labeling/. If the labelingf’ is such  fromu(0, 10). The distance functiod(i, j) between labels
thatQ(f; ') < Q(f;6") then we are guaranteed notto in- andj is given by the shortest path froimto j. A gen-

crease the energy of the solution by moving from labelingEr@! sémi-metric distance was defined by randomly sam-
f to labelingf’ since pling the values ofi(i, j) wherei # j from (0, 10) and

settingd(i, ) = 0 for all 4.
Q(f';0") < Q(f:0") = Q(£:0) = Q(f';0) < Q(f:0)-  The mrFs were used to test several state of thenasp
. , estimation algorithmsa-expansion [5]a8-swap [4], se-
The process of obtaining a newHsT metric followed by quential tree-reweighted message passimy\s) [14], se-
anew labelingf’ can be repeated t_iII we reac_:h a local min- quential belief propagatiorse-s) [24], range swap [32],
ima. Note that the above inequality is obtained by assumzpq range expansion [20]. We used publicly available code
ing that thepp can be solved exactly. However, this cannotsq these approaches to compare them with the two variants

be guaranteed for general semi-metric distance functionsy¢ or method: with and without using the harst strategy
Nonetheless, in practice we use the above procedure t0 rerascribed irf 5.3.

fine the labeling obtained by solving eactisT metric la- _ _ _ _
beling problem. As the results in the next section show, itThe a-expansion algorithm was solved using the primal-
helps further decrease the energy of the labelings obtainedual scheme of [16] (for both the original problem as well

by our method at the cost of more computation time. as the various subproblems used in our approach). Recall
. that [16] also handles non-submodular moves and hence, is
6 Experiments

capable of solving semi-metric labeling problems like sase
We compare our approach to several state of theia®t  (ji) and (v). All the move making algorithms were initial-
estimation algorithms using both synthetic and real datazed to the constant labelinf(a) = 1 for all v,. For the
experiments. In all our experiments we set 2. Empiri-  truncated convex models (cases (i) and (ii)) the messages of

cally, we found that the accuracy of our approach saturate$rw-s and sp-s were computed efficiently using the dis-
after usingl” = 50 r-HSTs to define the mixture.



tance transform technique [9]. We report the results of thecan be speeded up by using the decomposable model [26].
methods described in [20, 32] (denoted by R-exp and RHowever, this makes the approximations to the free energy
swap respectively) only for truncated convex models sinceveaker thereby providing less accurate results.

these approaches are not applicable to the other cases. A related problem to scene registration, known as stereo re-

Table 1 lists the average time required and the averageonstruction, is concerned with obtaining correspondgnce
value of the energy obtained for various methods. Our apbetween two images of the same scene. The image pairs
proach is slower than previous move making algoritheis (  are epipolar rectified, i.e. the vertical displacement athea
expansion and5-swap) as it solves a set ofHST metric  pixel is known to bé&. The unary potentials are computed
labeling problems. However, in terms of the energy val-using the difference in theGs values of the correspond-
ues, it significantly outperforms them in all cases. It evening pixels (instead of theIFT feature), and the pairwise
provides similar results to the methods of [20, 32] whichpotentials are given by equation (14) wifdf = 5 and
were specifically designed for the truncated convex mod+« = 20. We compared our approach with other algo-
els. The energy values obtained by our approach also comiithms on two standard stereo pairs used in computer vi-
pare favorably withrrRw-s. In terms of speed, our method sion, namely ‘teddy’ and ‘tsukuba’. Our method provides a
is significantly faster thamrw-s, especially in cases where labeling with lower energy than-expansion and,3-swap
the distance transform trick cannot be employed. As menusing H = 40 labels, as shown in Fig. 3.
tioned earlier, the computational efficiency of our methodlmage Denoising Image denoising is a classic problem
is due to the fact that it only uses the effici@MINCUT  in low-level computer vision. Given an image with noise
algorithm in its design. Finally, we also note that the hardand/or missing pixels, the task is to obtain a ‘clean’ varsio
EM strategy decreases the energy of the labeling. Howeveof the image, i.e. remove the noise and fill up the missing
itis slower since it has to solve at least one instance of thgixels. The problem is modeled as®@rF whose variables
DP (5) for eachr-HsT in the mixture. correspond to the image pixels and whose edges define a
Scene Registration. Given two images of different 4-connected grid graph. The labels are the 256 possible
scenes with some common elements (e.g. both scenes cdntensity values that lie in the intervél, 255]. The unary
tain buildings, see Fig. 2), scene registration require®us potentials are given by the squared difference between the
find a point to point correspondence from one image to theéntensity corresponding to the label and the observed in-
other. In this work, we follow the framework of [22] and tensity in the image. Since natural images are smooth, i.e.
define anMRF whose variables correspond to the pixels of neighboring pixels tend to have similar intensity values, i
the first image. The labels of the variables denote the disis common practice to employ truncated convex pairwise
placement that the pixel undergoes from the first image tdootentials. In this work, we use
its corresponding pixel in the second image. The neigh-
borhood is defined such that thaF forms a 4-connected Oab (i, §) = 30 min{|i — j|, 50} (15)
grid graph. The unary potentials are given by thedif-
ference between theiFT features [23] of corresponding We compared our method with the state of thevaxb esti-
points. The pairwise potentials, which enforce smoothnesmation algorithms on two standard images, namely ‘house’
of the displacement map, are defined as and ‘penguin’. Fig. 4 shows the results obtained. Similar
to other synthetic and real data experiments, our approach
Oab (i, 7) = w (minf|u(i) — u(j)|, M} + min{|v(i) — v(j)|(711\£)}) » obtains labelings with lower energy values than the other
. . . _ . move making algorithms (although it takes a longer time
where(u(i), v(i)) and(u(j), v(j)) are the horizontal and - g\, o it solves a series ofHsT metric labeling problems).

¥ert||cajlvjtj!spt>:]actementts_ sp;acTed %.Ialt)flandll? re?peic— In terms of the energy values, our method is outperformed
Ively, M s the truncation factor andis the scaling factor. by TRw-s but is computationally more efficient.

Since the above pairwise potential forms a metric distance,
our approach can be applied to obtain the solution. The results for scene segmentation are provided in [18].

In our experiments, we use the valueswutt) € [-5,5] / Discussion

andu(i) € [-5,5], i.e. the total number of labels for each We presented a move making approach for the semi-metric
random variable ig7 = 121. The truncation factolM was labeling problem which approximates the given semi-
set to5 and the scaling factor = 1. Fig. 2 shows the re- metric into a mixture of--HST metrics and solves each of
sults obtained for three pairs of images using six differenthe resulting problems using an efficientmiNCUT based
MAP estimation algorithms along with the correspondingalgorithm. Our approach provides the guarantees of the
energy values and timings. Similar to the synthetic data_.p relaxation for the metric labeling problem. Together
experiments, our approach outperforms other move makwith the work of [5, 20], this provides further evidence of
ing approaches in terms of accuracy, and it outperforms link between randomized rounding techniques used with
TRW-S in terms of speed. In fact, the accuracy of our convex relaxations and move making algorithms. We be-
method is very similar t&dRw-s. Note thatrRw-sandsp-s  lieve that further investigations in this direction woulelp



82036,1.66 83023,8.15 811181371.11 84396, 218.0481315104.89 81258373.60

68572,1.27 69767,2.78

(Energy, Timing) 78222,2.06 79808,3.77 774571400.82 80002, 228.9277466 111.88 77463383.34

Figure 2: Scene registration results. The image pairs are obtainethff22]. In each row, the first image is warped into the second
image using the displacements found by variaa® estimation algorithms. The energy values and timings iniseés for the algorithms
are shown below the corresponding warped image. The threlestivalues of the energy and time required are highlighitebold.

Image-1 Image- af-swap TRW-S BP-S Our Our+Mm

(Energy, Timing)

78776,12.07 97999,34.59 62777263.28 12682450.38 65116152.74 65008 361.81

(Energy, Timing) 15322,4.49 1842513.43 13257169.12 5628029.60 1413572.09 14135 203.12

Figure 3:Stereo reconstruction results. Each row shows the disptece map obtained by variowsap estimation algorithms along
with their corresponding energy values and timings in selson

il 13

af3-swap TRW-S BP-S Our Our+m

Energy 32186163 32189264 32173383 32626969 32181820 32181820

Timing 26.13 90.74 529.60 115.84 294.72 465.57
Energy 11075641 11074426 11068226 11105845 11072828 11072332
Timing 5.09 25.22 174.33 32.94 70.55 204.55

Figure 4: Image denoising results. Each row shows the ‘clean’ imagained by differentapP estimation algorithms along with
their corresponding energy values and timings in secontl& Black regions in the original image indicate missing fEx&he unary
potentials for missing pixels is set to be a constant foraflkls. The three lowest energy values and timings are Igigtad in bold.



design move making algorithms for more complex relax-[14] V. Kolmogorov. Convergent tree-reweighted messagaspa
ations such as [19, 28]. In practice, the results on both
synthetic and real data experiments show that our method-5]
reduces the gap in performance between move making al-

gorithms and message passing approaches. This is parti
ularly true for applications where the unary potentials do

[1e]

not dominate the pairwise potentials, i.e. the prior speci-
fied by themMRF plays a vital role in obtaining good results [17]
(e.g. in scene registration). Such scenarios occur not only

during testing, but during parameter learninghkFs as
well (for example, structuredvms [31] solve a series of

MAP estimation problems to learn log-linear models). An

[18]

interesting direction for future research would be to gener [19]
alize our move making approach to other hierarchical dis-
tance functions that approximate semi-metric distances agqj

curately and can be learnt efficiently. Similar to the exigti

move making algorithms [12], the possibility of extending [21]
our approach to solve special cases of higher order poten-

tials should also be explored.
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