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Abstract

The problem is sequence prediction in the fol-
lowing setting. A sequence x1, . . . , xn, . . . of
discrete-valued observations is generated ac-
cording to some unknown probabilistic law
(measure) µ. After observing each outcome,
it is required to give the conditional proba-
bilities of the next observation. The measure
µ belongs to an arbitrary class C of stochas-
tic processes. We are interested in predictors
ρ whose conditional probabilities converge to
the “true” µ-conditional probabilities if any
µ ∈ C is chosen to generate the data. We
show that if such a predictor exists, then a
predictor can also be obtained as a convex
combination of a countably many elements
of C. In other words, it can be obtained as
a Bayesian predictor whose prior is concen-
trated on a countable set. This result is es-
tablished for two very different measures of
performance of prediction, one of which is
very strong, namely, total variation, and the
other is very weak, namely, prediction in ex-
pected average Kullback-Leibler divergence.

1 Introduction

Given a sequence x1, . . . , xn of observations xi ∈ X ,
where X is a finite set, we want to predict what are
the probabilities of observing xn+1 = x for each x ∈ X ,
before xn+1 is revealed, after which the process con-
tinues. It is assumed that the sequence is generated
by some unknown stochastic process µ, a probabil-
ity measure on the set of one-way infinite sequences
X∞. The goal is to have a predictor whose predicted
probabilities converge (in a certain sense) to the cor-
rect ones (that is, to µ-conditional probabilities). In
general this goal is impossible to achieve if nothing is
known about the measure µ generating the sequence.

In other words, one cannot have a predictor whose
error goes to zero for any measure µ. The problem
becomes tractable if we assume that the measure µ
generating the data belongs to some known class C.
The questions addressed in this work are a part of the
following general problem: given an arbitrary set C of
measures, how can we find a predictor that performs
well when the data is generated by any µ ∈ C, and
whether it is possible to find such a predictor at all. An
example of a generic property of a class C that allows
for construction of a predictor, is that C is countable.
Clearly, this condition is very strong. An example, im-
portant from the applications point of view, of a class
C of measures for which predictors are known, is the
class of all stationary measures. The general question,
however, is very far from being answered.

The contribution of this work to solving this question
is in that we we provide a specific form in which to look
for a solution to the general problem. More precisely,
we show that if a predictor exists, then a predictor
can also be obtained as a weighted sum of a countably
many elements of C. This result can also be viewed
as a justification of the Bayesian approach to sequence
prediction: if there exists a predictor which predicts
well every measure in the class, then there exists a
Bayesian predictor (with a rather simple prior) that
has this property too. In this respect it is important
to note that the result obtained about such a Bayesian
predictor is pointwise (holds for every µ in C), and
stretches far beyond the set its prior is concentrated
on.

The motivation for studying predictors for arbitrary
classes C of processes is two-fold. First of all, predic-
tion is a basic ingredient for constructing intelligent
systems. Indeed, in order to be able to find optimal
behaviour in an unknown environment, an intelligent
agent must be able, at the very least, to predict how
the environment is going to behave (or, to be more
precise, how relevant parts of the environment are go-
ing to behave). Since the response of the environment



may in general depend on the actions of the agent, this
response is necessarily non-stationary for explorative
agents. Therefore, one cannot readily use prediction
methods developed for stationary environments, but
rather has to find predictors for the classes of pro-
cesses that can appear as a possible response of the
environment.

Apart from this, the problem of prediction itself has
numerous applications in such diverse fields as data
compression, market analysis, bioninformatics, and
many others. It seems clear that prediction methods
constructed for one application cannot be expected to
be optimal when applied to another. Therefore, an
important question is how to develop specific predic-
tion algorithms for each of the domains. In order to do
this, the first step is to understand for which classes of
problems (i.e. sets of measures generating the data) a
predictor exists.

Prior work. As it was mentioned, if the class C
of measures is countable (that is, if C can be rep-
resented as C := {µk : k ∈ N}), then there ex-
ists a predictor which performs well for any µ ∈ C.
Such a predictor can be obtained as a Bayesian mix-
ture ρS :=

∑
k∈N wkµk, where wk are summable pos-

itive real weights, and it has very strong predictive
properties; in particular, ρS predicts every µ ∈ C
in total variation distance, as follows from the result
of [Blackwell and Dubins, 1962]. Total variation dis-
tance measures the difference in (predicted and true)
conditional probabilities of all future events, that is,
not only the probabilities of the next observations, but
also of observations that are arbitrary far off in the fu-
ture (see formal definitions below). In the context of
sequence prediction the measure ρS was first studied
by [Solomonoff, 1978]. Since then, the idea of tak-
ing a convex combination of a finite or countable class
of measures (or predictors) to obtain a predictor per-
meates most of the research on sequential prediction
(see, for example, [Cesa-Bianchi and Lugosi, 2006])
and some related topics in AI [Hutter, 2005,
Ryabko and Hutter, 2008a]. In practice it is clear
that, on the one hand, countable models are not suffi-
cient, since already the class µp, p ∈ [0, 1] of Bernoulli
i.i.d. processes, where p is the probability of 0, is
not countable. On the other hand, prediction in to-
tal variation can be too strong to require; predict-
ing probabilities of the next observation may be suffi-
cient, maybe even not on every step but in the Ce-
saro sense. A key observation here is that a pre-
dictor ρS =

∑
wkµk may be a good predictor not

only when the data is generated by one of the pro-
cesses µk, k ∈ N, but when it comes from a much
larger class. Let us consider this point in more detail.
Fix for simplicity X = {0, 1}. The Laplace predictor

λ(xn+1 = 0|x1, . . . , xn) = #{i≤n:xi=0}+1
n+|X | predicts any

Bernoulli i.i.d. process: although convergence in total
variation distance of conditional probabilities does not
hold, predicted probabilities of the next outcome con-
verge to the correct ones. Moreover, generalizing the
Laplace predictor, a predictor λk can be constructed
for the class Mk of all k-order Markov measures, for
any given k. As was found by [Ryabko, 1988], the
combination ρR :=

∑
wkλk is a good predictor not

only for the the set ∪k∈NMk of all finite-memory pro-
cesses, but also for any measure µ coming from a much
larger class: that of all stationary measures on X∞.
Here prediction is possible only in the Cesaro sense
(more precisely, ρR predicts every stationary process
in expected time-average Kullback-Leibler divergence,
see definitions below). The Laplace predictor itself
can be obtained as a Bayes mixture over all Bernoulli
i.i.d. measures with uniform prior on the parame-
ter p (the probability of 0). However, as was ob-
served in [Hutter, 2007] (and as is easy to see), the
same (asymptotic) predictive properties are possessed
by a Bayes mixture with a countably supported prior
which is dense in [0, 1] (e.g. taking ρ :=

∑
wkδk where

δk, k ∈ N ranges over all Bernoulli i.i.d. measures with
rational probability of 0). For a given k, the set of
k-order Markov processes is parametrized by finitely
many [0, 1]-valued parameters. Taking a dense sub-
set of the values of these parameters, and a mixture
of the corresponding measures, results in a predictor
for the class of k-order Markov processes. Mixing over
these (for all k ∈ N) yields, as in [Ryabko, 1988], a pre-
dictor for the class of all stationary processes. Thus,
for the mentioned classes of processes, a predictor can
be obtained as a Bayes mixture of countably many
measures in the class. An additional reason why this
kind of analysis is interesting is because of the dif-
ficulties arising in trying to construct Bayesian pre-
dictors for classes of processes that can not be easily
parametrized. Indeed, a natural way to obtain a pre-
dictor for a class C of stochastic processes is to take a
Bayesian mixture of the class. To do this, one needs to
define the structure of a probability space on C. If the
class C is well parametrized, as is the case with the
set of all Bernoulli i.i.d. process, then one can inte-
grate with respect to the parametrization. In general,
when the problem lacks a natural parametrization, al-
though one can define the structure of the probabil-
ity space on the set of (all) stochastic processes in
many different ways, the results one can obtain will
then be with probability 1 with respect to the prior
distribution (see, for example, [Jackson et al., 1999]),
while pointwise consistency cannot be assured (see e.g.
[Diaconis and Freedman, 1986]). Results with prior
probability 1 can be hard to interpret if one is not sure
that the structure of the probability space defined on



the set C is indeed a natural one for the problem at
hand (whereas if one does have a natural parametriza-
tion, then usually results for every value of the param-
eter can be obtained, as in the case with Bernoulli i.i.d.
processes mentioned above). The results of the present
work show that when a predictor exists it can indeed
be given as a Bayesian predictor, which predicts every
(and not almost every) measure in the class, while its
support is only countable.

The results. Here we show that if there is a predic-
tor that performs well for every measure coming from
a class C of processes, then a predictor can also be ob-
tained as a convex combination

∑
k∈N wkµk for some

µk ∈ C and some wk > 0, k ∈ N. This holds if the
prediction quality is measured by either total varia-
tion distance, or expected average KL divergence: one
measure of performance that is very strong, the other
rather weak. The analysis for the total variation case
relies on the fact that if ρ predicts µ in total vari-
ation distance, then µ is absolutely continuous with
respect to ρ, so that ρ(x1..n)/µ(x1..n) converges to a
positive number with µ-probability 1 and with a pos-
itive ρ-probability. However, if we settle for a weaker
measure of performance, such as expected average KL
divergence, measures µ ∈ C are typically singular with
respect to a predictor ρ. Nevertheless, since ρ predicts
µ we can show that ρ(x1..n)/µ(x1..n) decreases subex-
ponentially with n (with hight probability), and then
we can use this ratio as an analogue of the density
for each time step n, and find a convex combination
of countably many measures from C that has desired
predictive properties for each n. Combining these pre-
dictors for all n then results in a predictor that predicts
every µ ∈ C in average KL divergence. The proof tech-
niques developed have a potential to be used in solving
other questions concerning sequence prediction, in par-
ticular, the general question of how to find a predictor
for an arbitrary class C of measures.

2 Preliminaries

Let X be a finite set. The notation x1..n is used for
x1, . . . , xn. We consider stochastic processes (proba-
bility measures) on (X∞,F) where F is the sigma-field
generated by the cylinder sets [x1..n], xi ∈ X , n ∈ N,
where [x1..n] is the set of all infinite sequences that
start with x1..n. For a finite set A denote |A| its car-
dinality. We use Eµ for expectation with respect to a
measure µ.

Next we introduce the measures of the quality of pre-
diction used in this paper. For two measures µ and
ρ we are interested in how different the µ- and ρ-
conditional probabilities are, given a data sample x1..n.

Introduce the total variation distance

v(µ, ρ, x1..n) := sup
A∈F
|ρ(A|x1..n)− µ(A|x1..n)|.

Definition 1. We say that ρ predicts µ in total vari-
ation if

v(µ, ρ, x1..n)→ 0 µ-a.s.

This convergence is rather strong. In particu-
lar, it means that ρ-conditional probabilities of
arbitrary far-off events converge to µ-conditional
probabilities. Moreover, ρ predicts µ in total
variation if [Blackwell and Dubins, 1962] and only
if [Kalai and Lehrer, 1994] µ is absolutely continu-
ous with respect to ρ. To provide some intu-
ition about this fact, the original interpretation of
[Blackwell and Dubins, 1962] is useful: if ρ agrees
with µ about which events are possible in principle
(µ(A) > 0 implies ρ(A) > 0) then, as more and more
(µ-generated) data is revealed, their opinions about
the future merge.

Thus, for a class C of measures there is a predictor
ρ that predicts every µ ∈ C in total variation if and
only if every µ ∈ C has a density with respect to ρ.
Although such sets of processes are rather large, they
do not include even such basic examples as the set of
all Bernoulli i.i.d. processes. That is, there is no ρ
that would predict in total variation every Bernoulli
i.i.d. process measure δp, p ∈ [0, 1], where p is the
probability of 0. Therefore, perhaps for many (if not
most) practical applications this measure of the quality
of prediction is too strong, and one is interested in
weaker measures of performance.

For two measures µ and ρ introduce the expected cu-
mulative Kullback-Leibler divergence (KL divergence)
as

dn(µ, ρ) :=

Eµ

n∑
t=1

∑
a∈X

µ(xt = a|x1..t−1) log
µ(xt = a|x1..t−1)
ρ(xt = a|x1..t−1)

,

(1)

In words, we take the expected (over data) aver-
age (over time) KL divergence between µ- and ρ-
conditional (on the past data) probability distributions
of the next outcome.

Definition 2. We say that ρ predicts µ in expected
average KL divergence if

1
n
dn(µ, ρ)→ 0.

This measure of performance is much weaker, in the
sense that it requires good predictions only one step



ahead, and not on every step but only on average; also
the convergence is not with probability 1 but in expec-
tation. With prediction quality so measured, predic-
tors exist for relatively large classes of measures; most
notably, [Ryabko, 1988] provides a predictor which
predicts every stationary process in expected average
KL divergence. A simple but useful identity that we
will need (in the context of sequence prediction intro-
duced also in [Ryabko, 1988]) is the following

dn(µ, ρ) = −
∑

x1..n∈Xn
µ(x1..n) log

ρ(x1..n)
µ(x1..n)

, (2)

where on the right-hand side we have simply the KL
divergence between measures µ and ρ restricted to the
first n observations.

Thus, the results of this work will be established with
respect to two very different measures of prediction
quality, one of which is very strong and the other
rather weak. This suggests that the facts established
reflect some fundamental properties of the problem of
prediction, rather than those pertinent to particular
measures of performance. On the other hand, it re-
mains open to extend the results below to different
measures of performance.

3 Main results

Theorem 1. Let C be a set of probability measures
on X∞. If there is a measure ρ such that ρ predicts
every µ ∈ C in total variation, then there is a sequence
µk ∈ C, k ∈ N such that the measure ν :=

∑
k∈N wkµk

predicts every µ ∈ C in total variation, where wk are
any positive weights that sum to 1.

This relatively simple fact can be proven in different
ways, relying on the equivalence of the statements “ρ
predicts µ in total variation distance” and “µ is abso-
lutely continuous with respect to ρ.” The proof pre-
sented below uses techniques that can be then gen-
eralized to the case of prediction in expected average
KL-divergence, where in all interesting cases all mea-
sures µ ∈ C are singular with respect to any predictor
that predicts all of them. The idea of the proof of
Theorem 1 is as follows. For each measure µ ∈ C we
find the set Tµ of sequences x1, x2, . . . on which the
density of µ with respect to ρ exists and is non-zero.
Such a set has µ-probability 1, and, by absolute con-
tinuity, a positive ρ-probability. The idea is then to
cover the union ∪µ∈CTµ with countably many of these
sets, and then construct a new predictor as a sum of
the corresponding measures. To find this countable
collection of sets Tµ, we first find a largest (up to an
ε1) one with respect ρ, then the one who has a largest
(up to an ε2) part not covered by the first set, and so

on (where εk are decreasing). Then we show that any
strictly convex combination of the resulting sequence
of measures has the property that any measure in C is
absolutely continuous with respect to it.

Proof. We break the (relatively easy) proof of this the-
orem into 3 steps, which will make the (more involved)
proof of the next theorem more understandable.

Step 1: densities. For any µ ∈ C, since ρ predicts µ
in total variation, µ has a density (Radon-Nikodym
derivative) fµ with respect to ρ. Thus, for the set Tµ
of all sequences x1, x2, ... ∈ X∞ on which fµ(x1,2,...) >
0 (the limit limn→∞

ρ(x1..n)
µ(x1..n) exists and is finite and

positive) we have µ(Tµ) = 1 and ρ(Tµ) > 0. Next we
will construct a sequence of measures µk ∈ C, k ∈ N
such that the union of the sets Tµk has probability 1
with respect to every µ ∈ C, and will show that this is
a sequence of measures whose existence is asserted in
the theorem statement.

Step 2: a countable cover and the resulting predic-
tor. Let εk := 2−k and let m1 := supµ∈C ρ(Tµ).
Clearly, m1 > 0. Find any µ1 ∈ C such that
ρ(Tµ1) ≥ m1 − ε1, and let T1 = Tµ1 . For k > 1
define mk := supµ∈C ρ(Tµ\Tk−1). If mk = 0 then
define Tk := Tk−1, otherwise find any µk such that
ρ(Tµk\Tk−1) ≥ mk − εk, and let Tk := Tk−1 ∪ Tµk .
Define the predictor ν as ν :=

∑
k∈N wkµk.

Step 3: ν predicts every µ ∈ C. Since the sets
T1, T2\T1, . . . , Tk\Tk−1, . . . are disjoint, we must have
ρ(Tk\Tk−1)→ 0, so that mk → 0. Let

T := ∪k∈NTk.

Fix any µ ∈ C. Suppose that µ(Tµ\T ) > 0. Since µ is
absolutely continuous with respect to ρ, we must have
δ := ρ(Tµ\T ) > 0. Then for every k > 1 we have

mk = sup
µ′∈C

ρ(Tµ′\Tk−1) ≥ ρ(Tµ\Tk−1) ≥ δ > 0,

which contradicts mk → 0. Thus, we have shown that

µ(T ∩ Tµ) = 1. (3)

Let us show that every µ ∈ C is absolutely continuous
with respect to ν. Indeed, fix any µ ∈ C and suppose
µ(A) > 0 for some A ∈ F . Then from (3) we have
µ(A ∩ T ) > 0, and, by absolute continuity of µ with
respect to ρ, also ρ(A∩ T ) > 0. Since T = ∪k∈NTk we
must have ρ(A∩Tk) > 0 for some k ∈ N. Since on the
set Tk the measure µk has non-zero density fµk with
respect to ρ, we must have µk(A ∩ Tk) > 0. (Indeed,
µk(A ∩ Tk) =

∫
A∩Tk fµkdρ > 0.) Hence,

ν(A ∩ Tk) ≥ wkµk(A ∩ Tk) > 0,



so that ν(A) > 0. Thus, µ is absolutely continuous
with respect to ν, and so ν predicts µ in total variation
distance.

Theorem 2. Let C be a set of probability measures on
X∞. If there is a measure ρ such that ρ predicts every
µ ∈ C in expected average KL divergence, then there is
a sequence µk ∈ C, k ∈ N such that the measure ν :=∑
k∈N wkµk predicts every µ ∈ C in expected average

KL divergence, where wk are some positive weights.

A difference worth noting with respect to the formu-
lation of Theorem 1 (apart from a different measure
of divergence) is in that in the latter the weights wk
can be chosen arbitrarily, while in Theorem 2 they can
not. In general, the statement “

∑
k∈N wkνk predicts µ

in expected average KL divergence for some choice of
wk, k ∈ N” does not imply “

∑
k∈N w

′
kνk predicts µ in

expected average KL divergence for every summable
sequence of positive w′k, k ∈ N,” while the implica-
tion trivially holds true if the expected average KL
divergence is replaced by the total variation. An in-
teresting related question (which is beyond the scope
of this paper) is how to chose the weights to optimize
the behaviour of a predictor before asymptotic.

The idea of the proof is as follows. For every µ and
every n we consider the sets Tnµ of those x1..n on which
µ is greater than ρ. These sets have to have (from some
n on) a high probability with respect to µ. Then since
ρ predicts µ in expected average KL divergence, the ρ-
probability of these sets cannot decrease exponentially
fast (that is, it has to be quite large). (The sequences
µ(x1..n)/ρ(x1..n), n ∈ N will play the role of densities
of the proof of Theorem 1, and the sets Tnµ the role
of sets Tµ on which the density is non-zero.) We then
use, for each given n the same scheme to cover the
set Xn with countably many Tnµ , as was used in the
proof of Theorem 1 to construct a countable covering
of the set X∞ , obtaining for each n a predictor νn.
Then the predictor ν is obtained as

∑
n∈N wnνn, where

the weights decrease subexponentially. The latter fact
ensures that, although the weights depend on n, they
still play no role asymptotically. The technically most
involved part of the proof is to show that the sets Tnµ
in asymptotic have sufficiently large weights in those
countable covers that we construct for each n. This is
used to demonstrate the implication “if a set has a high
µ probability then its ρ-probability does not decrease
too fast, provided some regularity conditions.” The
proof is broken into the same steps as the (simpler)
proof of Theorem 1, to make the analogy explicit and
the proof more understandable.

Proof. Define the weights wk := wk−2, where w is the
normalizer 6/π2.

Step 1: densities. Define the sets

Tnµ :=
{
x1..n ∈ Xn : µ(x1..n) ≥ 1

n
ρ(x1..n)

}
. (4)

Using Markov’s inequality, we derive

µ(Xn\Tnµ ) = µ

(
ρ(x1..n)
µ(x1..n)

> n

)
≤ 1
n
Eµ

ρ(x1..n)
µ(x1..n)

=
1
n
,

(5)
so that µ(Tnµ ) → 1. (Note that if µ is singular with
respect to ρ, as is typically the case, then ρ(x1..n)

µ(x1..n) con-
verges to 0 µ-a.e. and one can replace 1

n in (4) by 1,
while still having µ(Tnµ )→ 1.)

Step 2n: a countable cover, time n. Fix an n ∈ N.
Define mn

1 := maxµ∈C ρ(Tnµ ) (since Xn are finite
all suprema are reached). Find any µn1 such that
ρn1 (Tnµn1 ) = mn

1 and let Tn1 := Tnµn1 . For k > 1, let
mn
k := maxµ∈C ρ(Tnµ \Tnk−1). If mn

k > 0, let µnk be
any µ ∈ C such that ρ(Tnµnk \T

n
k−1) = mn

k , and let
Tnk := Tnk−1 ∪ Tnµnk ; otherwise let Tnk := Tnk−1. Ob-
serve that (for each n) there is only a finite number of
positive mn

k , since the set Xn is finite; let Kn be the
largest index k such that mn

k > 0. Let

νn :=
Kn∑
k=1

wkµ
n
k . (6)

As a result of this construction, for every n ∈ N every
k ≤ Kn and every x1..n ∈ Tnk using (4) we obtain

νn(x1..n) ≥ wk
1
n
ρ(x1..n). (7)

Step 2: the resulting predictor. Finally, define

ν :=
1
2
γ +

1
2

∑
n∈N

wnνn, (8)

where γ is the i.i.d. measure with equal probabilities
of all x ∈ X (that is, γ(x1..n) = |X |−n for every n ∈ N
and every x1..n ∈ Xn). We will show that ν predicts
every µ ∈ C, and then in the end of the proof (Step r)
we will show how to replace γ by a combination of a
countable set of elements of C (in fact, γ is just a reg-
ularizer which ensures that ν-probability of any word
is never too close to 0).

Step 3: ν predicts every µ ∈ C. Fix any µ ∈ C.
Introduce the parameters εnµ ∈ (0, 1), n ∈ N, to
be defined later, and let jnµ := 1/εnµ. Observe that
ρ(Tnk \Tnk−1) ≥ ρ(Tnk+1\Tnk ), for any k > 1 and any
n ∈ N, by definition of these sets. Since the sets
Tnk \Tnk−1, k ∈ N are disjoint, we obtain ρ(Tnk \Tnk−1) ≤
1/k. Hence, ρ(Tnµ \Tnj ) ≤ εnµ for some j ≤ jnµ , since
otherwise mn

j = maxµ∈C ρ(Tnµ \Tnjnµ ) > εnµ so that



ρ(Tnjnµ+1\Tnjnµ ) > εnµ = 1/jnµ , which is a contradiction.
Thus,

ρ(Tnµ \Tnjnµ ) ≤ εnµ. (9)

We can upper-bound µ(Tnµ \Tnjnµ ) as follows. First, ob-
serve that

dn(µ, ρ) = −
∑

x1..n∈Tnµ ∩Tnjnµ

µ(x1..n) log
ρ(x1..n)
µ(x1..n)

−
∑

x1..n∈Tnµ \Tnjnµ

µ(x1..n) log
ρ(x1..n)
µ(x1..n)

−
∑

x1..n∈Xn\Tnµ

µ(x1..n) log
ρ(x1..n)
µ(x1..n)

= I + II + III. (10)

Then, from (4) we get

I ≥ − log n. (11)

Observe that for every n ∈ N and every set A ⊂ Xn,
using Jensen’s inequality we can obtain

−
∑

x1..n∈A
µ(x1..n) log

ρ(x1..n)
µ(x1..n)

= −µ(A)
∑

x1..n∈A

1
µ(A)

µ(x1..n) log
ρ(x1..n)
µ(x1..n)

≥ −µ(A) log
ρ(A)
µ(A)

≥ −µ(A) log ρ(A)− 1
2
. (12)

Thus, from (12) and (9) we get

II ≥ −µ(Tnµ \Tnjnµ ) log ρ(Tnµ \Tnjnµ )− 1/2

≥ −µ(Tnµ \Tnjnµ ) log εnµ − 1/2. (13)

Furthermore,

III ≥
∑

x1..n∈Xn\Tnµ

µ(x1..n) logµ(x1..n)

≥ µ(Xn\Tnµ ) log
µ(Xn\Tnµ )
|Xn\Tnµ |

≥ −1
2
− µ(Xn\Tnµ )n log |X | ≥ −1

2
− log |X |, (14)

where in the second inequality we have used the
fact that entropy is maximized when all events are
equiprobable, in the third one we used |Xn\Tnµ | ≤
|X |n, while the last inequality follows from (5). Com-
bining (10) with the bounds (11), (13) and (14) we
obtain

dn(µ, ρ) ≥ − log n− µ(Tnµ \Tnjnµ ) log εnµ − 1− log |X |,

so that

µ(Tnµ \Tnjnµ ) ≤ 1
− log εnµ

(
dn(µ, ρ) + log n+ 1 + log |X |

)
.

(15)
Since dn(µ, ρ) = o(n), we can define the parameters
εnµ in such a way that − log εnµ = o(n) while at the
same time the bound (15) gives µ(Tnµ \Tnjnµ ) = o(1).
Fix such a choice of εnµ. Then, using µ(Tnµ ) → 1, we
can conclude

µ(Xn\Tnjnµ ) ≤ µ(Xn\Tnµ ) + µ(Tnµ \Tnjnµ ) = o(1). (16)

We proceed with the proof of dn(µ, ν) = o(n). For any
x1..n ∈ Tnjnµ we have

ν(x1..n) ≥ 1
2
wnνn(x1..n)

≥ 1
2
wnwjnµ

1
n
ρ(x1..n) =

wnw

2n
(εnµ)2ρ(x1..n), (17)

where the first inequality follows from (8), the sec-
ond from (7), and in the equality we have used wjnµ =
w/(jnµ)2 and jnµ = 1/εµn. Next we use the decomposi-
tion

dn(µ, ν) = −
∑

x1..n∈Tnjnµ

µ(x1..n) log
ν(x1..n)
µ(x1..n)

−
∑

x1..n∈Xn\Tnjnµ

µ(x1..n) log
ν(x1..n)
µ(x1..n)

= I + II. (18)

From (17) we find

I ≤ − log
(wnw

2n
(εnµ)2

)
−

∑
x1..n∈Tnjnµ

µ(x1..n) log
ρ(x1..n)
µ(x1..n)

= (1 + 3 log n− 2 log εnµ − 2 logw)

+

dn(µ, ρ) +
∑

x1..n∈Xn\Tnjnµ

µ(x1..n) log
ρ(x1..n)
µ(x1..n)


≤ o(n)−

∑
x1..n∈Xn\Tnjnµ

µ(x1..n) logµ(x1..n)

≤ o(n) + µ(Xn\Tnjnµ )n log |X | = o(n), (19)

where in the second inequality we have used − log εnµ =
o(n) and dn(µ, ρ) = o(n), in the last inequality we have
again used the fact that the entropy is maximized when
all events are equiprobable, while the last equality fol-



lows from (16). Moreover, from (8) we find

II ≤ log 2−
∑

x1..n∈Xn\Tnjnµ

µ(x1..n) log
γ(x1..n)
µ(x1..n)

≤ 1 + nµ(Xn\Tnjnµ ) log |X | = o(n), (20)

where in the last inequality we have used γ(x1..n) =
|X |−n and µ(x1..n) ≤ 1, and the last equality follows
from (16).

From (18), (19) and (20) we conclude 1
ndn(ν, µ)→ 0.

Step r: the regularizer γ. It remains to show that the
i.i.d. regularlizer γ in the definition of ν (8), can be
replaced by a convex combination of a countably many
elements from C. Indeed, for each n ∈ N, denote

An := {x1..n ∈ Xn : ∃µ ∈ C µ(x1..n) 6= 0},

and let µx1..n := argmaxµ∈C µ(x1..n) for each x1..n ∈
Xn. Define

γ′n(x′1..n) :=
1
|An|

∑
x1..n∈An

µx1..n(x′1..n),

for each x′1..n ∈ An, n ∈ N, and let γ′ :=
∑
k∈N wkγ

′
k.

For every µ ∈ C we have

γ′(x1..n) ≥ wn|An|−1µx1..n(x1..n) ≥ wn|X |−nµ(x1..n)

for every n ∈ N and every x1..n ∈ An, which clearly
suffices to establish the bound II = o(n) as in (20).

4 Discussion

For two measures of quality of prediction that we have
considered, namely, total variation distance and ex-
pected average KL divergence, we have shown that if
a prediction for a class C of measures exists, then a
predictor can also be obtained as a Bayesian mixture
over a countable subset of C. The first possible exten-
sion of these results that comes to mind is to find out
whether the same holds for other measures of perfor-
mance, such as prediction in KL divergence without
time-averaging, or with probability 1 rather then in
expectation. Maybe the same results can be obtained
in more general formulations, such as f -divergences of
[Csiszar, 1967].

More generally, the questions we addressed in this
work are a part of a larger problem: given an arbitrary
class C of stochastic processes, find the best predic-
tor for it. One can approach this problem from other
sides. For example, the first question one may wish
to address is for which classes of processes a predic-
tor exists; see [Ryabko, 2008] for some sufficient con-
ditions, such as separability of the class C. Another

approach is to identify the conditions which two mea-
sures µ and ρ have to satisfy in order for ρ to predict
µ. For prediction in total variation such conditions
have been identified [Blackwell and Dubins, 1962,
Kalai and Lehrer, 1994] and, in particular, in the con-
text of the present work, they turn out to be very
useful. [Kalai and Lehrer, 1994] also provides some
characterization for the case of a weaker notion of
prediction: difference between conditional probabili-
ties of the next (several) outcomes (weak merging of
opinions). In [Ryabko and Hutter, 2008b] some suffi-
cient conditions are found for the case of prediction
in expected average KL divergence, and prediction in
average KL divergence with probability 1. Of course,
another very natural approach to the general prob-
lem posed above is to try and find predictors (in the
form of algorithms) for some particular classes of pro-
cesses which are of practical interest. Towards this
end, the contribution of this work is in providing a
specific form that some solution to this question has to
have, if a solution exists: a Bayesian predictor whose
prior is concentrated on a countable set. This is per-
haps a rather simple form, which may be useful for
constructing practical algorithms.
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