L, Regularization for Learning Kernels
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Kernel methods have been successfully used in a variety OJ
learning tasks (Scholkopf & Smola, 2002; Shawe-Taylor
& Cristianini, 2004) with the best known example of sup-
port vector machines (SVMs) (Boser et al., 1992; Corte
& Vapnik, 1995; Vapnik, 1998). Positive definite sym-
metric (PDS) kernels specify an inner product in an im
plicit Hilbert space where large-margin methods are use
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Abstract

The choice of the kernel is critical to the success
of many learning algorithms but it is typically left
to the user. Instead, the training data can be used
to learn the kernel by selecting it out of a given
family, such as that of non-negative linear combi-
nations ofp base kernels, constrained by a trace
or Ly regularization. This paper studies the prob-
lem of learning kernels with the same family of
kernels but with ari., regularization instead, and
for regression problems. We analyze the prob-
lem of learning kernels with ridge regression. We
derive the form of the solution of the optimiza-
tion problem and give an efficient iterative algo-
rithm for computing that solution. We present a
novel theoretical analysis of the problem based
on stability and give learning bounds for orthog-
onal kernels that contain only an additive term
O(y/p/m) when compared to the standard ker-
nel ridge regression stability bound. We also re-
port the results of experiments indicating tiat
regularization can lead to modest improvements
for a small number of kernels, but to performance
degradationsin larger-scale cases. In contiast,
regularization never degrades performance and
in fact achieves significant improvements with a
large number of kernels.
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weaker commitment can be required from the user when in-
stead the kernel igarned from data. One can then specify

a family of kernels and let a learning algorithm use the data
to select both the kernel out of this family and determine
the prediction hypothesis.

The problem of learning kernels has been investigated in a
number of recent publications including (Lanckriet et al.,
2004; Micchelli & Pontil, 2005; Argyriou et al., 2005; Ar-
gyriou et al., 2006; Srebro & Ben-David, 2006; Ong et al.,
2005; Lewis et al., 2006; Zien & Ong, 2007; Jebara, 2004;
Bach, 2008). Some of this previous work examines fami-
lies of Gaussian kernels (Micchelli & Pontil, 2005) or hy-
perkernels (Ong et al., 2005). But, the most common fam-
ily of kernels considered is that of non-negative combina-
tions of some fixed kernels constrained by a trace condition,
which can be viewed as am, regularization.

This paper studies the problem of learning kernels with the
same family of kernels but with ah, regularization in-
stead. Our analysis focuses on the regression setting also
examined by Micchelli and Pontil (2005) and Argyriou
et al. (2005). More specifically, we will consider the prob-
lem of learning kernels in kernel ridge regression, KRR,
(Saunders et al., 1998). Our study is motivated by ex-
periments carried out with a number of datasets, includ-
ing those used by previous authors (Lanckriet et al., 2004;
Cortes et al., 2008), in some of which usinglanregular-
ization turned out to be significantly beneficial and other-
wise never worse than using, regularization. We report
some of these results in the experimental section.

\We also give a novel theoretical analysis of the problem
f learning kernels in this context. A theoretical study
of the problem of learning kernels in classification was
reviously presented by Srebro and Ben-David (2006) for
VMs and other similar classification algorithms. These
authors proved that previous bounds given by Lanckriet

‘Et al. (2004) and Bousquet and Herrmann (2002) for the

roblem of learning kernels were vacuous. They further
gave novel generalization bounds which, for linear com-

The choice of the kernel is critical to the success of the albinations of kernels with.; regularization, have the form
gorithm but in standard frameworks it is left to the user. AR(h) < R(h) + O(y/(p + 1/p?)/m), whereR(h) is the



true error of a classifiekh, f%(h) its empirical errorp the  denote by)\, the inverse of”, thus,\ = A\gm.
number of kernels combined the sample size, andthe
margin of the learned classifier (the notatiBrhides loga-
rithmic factors in its arguments). Since the standard bou

mR / 2
for SVMs has the forR(h) S R(h) +O(y/1/p2)/m), . thus hypothesis set, the one minimizing the minimum
this suggests that, up to logarithmic factors, the compfexi .
. . I of a bound on the test error defined ovér Here, we
term of the bound is only augmented with an additive term; . . .
limit the search to kernel& that are non-negative combi-

varying Wlt.h p, In contrast with the multlpllcatl_ve fac_tor nations ofp fixed PDS kerneld(;, k € [1, p], and that are
appearing in previous bounds, e.g., that of Micchelli and

. . . thereby guaranteed to be PDS, with & regularization:
Pontil (2005) for the family of Gaussian kernels. K = (57 mKp: p € M}, whereM — {p: p >
We give novel learning bounds with similar favorable guar-0 A || — o l|? < A2}, with g = [p1, ..., 1) Ty prg > 0
antees for KRR withZ, regularization. The complexity a fixed combination vector, antl > 0 a regularization pa-
term of our bound as a function ef andp is of the form  rameter. In view of the multiplieA, we can assume, with-
O(1//m++/p/m) and is therefore only augmented by an out loss of generality, that the minimum componenpgf

additive termO(/p/m) with respect to the standard stabil- is one.
ity bound for KRR, with no additional logarithmic factor. Based on the dual form of the optimization problem for

Our bound is proven for the case where the base kernels 3J€RR, the kernel learning optimization problem can be for-
orthogonal. This assumption holds for the experiments in mulated as follows:

which the L, regularization yields significantly better re- »

;uIFs thanl; but a similar, perhaps slightly weaker_bound, min max —\a o — Z o Kra+2aTy,  (3)
is likely to hold in the general case. Our bound is based weM «
on a careful stability analysis of the algorithm for leaignin

kernels with ridge regression and thus directly relatebéo t

problem of learning kernels. A by-product of our analysiswhereKj, is the Gram matrix associated to the base ker-
is a somewhat tighter stability bound and thus generalizanel K. It is convenient to introduce the vecter =
tion bound for KRR. [v1,...,v,]T wherev, = a'Kja. Note that this de-

. . o fines a convex optimization problem pma, since the ob-
The next two sections describe the optimization proble P P m

for learning kernels with ridge regression and give the forr:jeCtive function is linear i and the pointwise maximum
9 gereg 9 over a preserves convexity, and singd is a convex set.

of its sqlutipn. We then present our stability_ analysis ano\Ne refer in short by LKRR to this learning kernel KRR
generalization bound, leaving to the appendix much of theprocedure and denote by the hypothesis it returns de-
technical details. The last section briefly describes an ite

tive aluorithm for determining the solution of -~ fined byh(z) = >, oK (x;,z) for all z € X, when
ative aigorithm for determining e SoIUton Of FegressIon ;o 4oy the sampl&, whereK denotes the PDS kernel
learning problem that proved efficient in our experiments, .  »p
- : {( =2 et M.
and reports the results of our experiments with a number o

different datasets.

The idea of learning kernels is based on the principle of
n3tructural risk minimization (SRM) (Vapnik, 1998). It con-
Sists of selecting out of increasingly powerful kernels and

k=1

TR

3 Form of the Solution
2 Optimization Problem Theorem 1. The solution p of the optimization problem
(3)isgivenby p = py + Aﬁ with « the unique vector

LetS = s Y1)y - - 5 (T, Yy )) denote the training sam- .
((@1,41) (@m, Ym)) g verifying a = (K + \I) ~ly.

ple andy = [y1,..., ] the vector of training set labels,
where(x;, y;) € X x Rfori € [1,m], and let®(x) denote
the feature vector associatedite X. Then, in the primal,
the KRR optimization problem has the following form
m max —Aa' o+ 2a'y 4+ min —p v, (4)
min [ul? + S Y@ o@) —p)? @ : HEM

v mia wherev = (o' K, ...,a” K,a) . The Lagrangian of
whereC > 0 is a trade-off parameter. For a fixed positive the minimization problemig, = —p" (v + 8) + (|| —
definite kernel (PDS) functiok : X x X — R, the dual  #ol|> — A?) with 3 > 0 andy > 0 and the KKT conditions
of the KRR optimization problem (Saunders et al., 1998) isare

Proof. By von Neumann’s (1937) generalized minimax
theorem, (3) is equivalent to its max-min analogue:

given by: Vul=—=v+08)+2v(p—py) =0
max -\ o — o Ka+2a'y, (2 v+
) VﬂL:uTBZO;‘(TBJruo)TB:O

whereK = (K(z;, x;))1<i j<m IS the Gram matrix asso- ) )
ciated toKX and where\ = m/C. In the following, we will Yl = ol|” = A7) = 0.



Note that ify = 0 then theLs constraint is not met as an We will assume that the hypothesis set considered is
equality, which cannot hold at the optimum. By inspectingbounded, that i§i(z)—y(z)| < M forall z € X, for some

(3), it is clear that theuxs would be chosen as large as M > 0. This bound and the Lipschitz property of the loss
possible. Thus, the first equality impligs— p, = %, in  function implies a bound o\ (h(z) — y)? < 2M Ah(z).

view of which the second gives | 3||> = (£ + pu,)78.  We will also assume that the base kernels are bounded:

: 7T S th istsso > 0 such tha(3>%_, K. 2)1/2 <

Sincev > 0,1 > 0,7 > 0andB > 0, (35 + mo) 'Bis ere” exis ;’;0 =8 ?“Cr ?r(\gt:?:l lg(x’?l){ < Ko
non-negative, which implies|\ﬁ||2 > 0andB = 0. The oralle € X. This implies that for alks € X, K (x,z) =

: - ~ > oher e Kg (2, 2) < rollpll < kolllpoll + A). Thus, we
third eq.ual|ty givesu — po = Ay TV Problem 4 can thus can assume that there exists> 0 such thatK (z,z) < &
be rewritten as

forallz € X.

Now, Ah(z) can be written asAh(z) = Agh(z) +
Axh(x) to distinguish changes due to different samples
(=}s vsa;s) for a fixed kernel and those due to a different
kernelsK for a fixed sample:

max —\a' a+2a'y — p) v —Alv]. (5)

standard KRR withu-kernel K.

Forv # 0, Va|vll = 237_, (4 Kre. Thus, dif-
ferentiating and setting to zero the objective function of

this optimization problem givea = (K + \I) "'y, with Ash(z z [ ZMkKk )+ A" } ZMkKk o)
K= Zz:l (HOI@ + Aﬁ‘uk)Kk = Zi:l :ukKk 0 z:bl
Z [ ZNkKk +)\I 1y} ZNkKk Ti, T
4 Stability analysis =
Agh(z Z [ ZNkKk + AI) 1y] ZNkKk (zi,x

We will derive generalization bounds for LKRR using i=1
the notion of algorithmic stability (Bousquet & Elisseeff,
2002). A learning algorithm is said to be (uniformlg)
stable if the hypotheses’ and & it returns for any two

training samples$ and.S’, that differing by a single point

1)’} ZNkKk (xi,

whereK (S) (resp.K(S’)) is the kernel matrix generated

. 5 5 .
satisfy| [/ () —y]* — [h(z) —y)| < Bforany pointr € X g/ 0o (resp. S’). We bound these two terms separately.
labeled withy € R. The stability coefficieng is a function The main reason for this is that the tee;(z) leads to

of the sample size:. Stability in conjunction with McDi- sparse expressions since the points in S and S’ differ

armid’s inequality can lead to tight generalization bounds only by z,, andz, . To boundA xh(z) other techniques
specific to the algorithm analyzed (Bousquet & Ellsseeff,are needgd K

2002).

- . In what follows, we denote by a feature mapping asso-
We analyze the stability of LKRR. Thus, we consider two ¥ bping

samples of sizen, S and.5’, differing only by (., Ym)
((=],,y.,)inS")and bound théy' (z:)—h(z)|. The analysis
is quite complex in this context and the standard convexity-

ciated to kernelK and by ® the matrix whose columns
are®(x;), i = 1,...,m. Similarly, we denote byp’ the
matrix whose Columns ar@(z}),i = 1,...,m, and for

=1,...,p, we denote byb, a feature mapping associ-

based proofs of Bousquet and Elisseeff (2002) do not rea “ted W|th the base kerndf, and by‘1>k the matrix whose
ily apply. This is because here, a change in a sample poini,| ,mns areby (z;),i=1,.

also changes the PDS kerrf€| which in the standard case

is fixed.
) 4.1 Bound onAgh(x)
Our proofs are novel and make use of the expressiam of

and p supplied by Theorem 1, which can lead to tighter For the analysis ofAgsh(z), the kernel coefficients),
bounds. In particular, the same analysis gives us a novelre fixed. Here, we denote B¢ the kernel matrix of
and somewhat tighter bound on the stability of standardy"?_| 1} K, over the sampleS, and byK’ the one over
KRR than the one obtained via convexity arguments (Bouss’. Now, h(z) can be expressed in terms®fas follows:
quet & Elisseeff, 2002).

Fix x € X. We shall denote byAh(z) the difference
h'(z) — h(x) and more generally use the symibito ab-
breviate the difference between an expression depending
on S’ and one depending of. We derive a bound on Theorem 2. Let A, denote the smallest eigenvalue of
Ah(z) = W (z) — h(x) for LKRR. We denote by’ the ~ ®'®’". Then, the following bound holds for all = € X:
vector of labels, byK” the kernel learned by LKRR, and
by 1}, andp’ the basis kernel coefficients and vector asso-
ciated to the samplé’.

=[®a] ®(x) =y (K+ ) '@ ®(x)
y (@T® + 2\I)'® d(x).

h(x) (6)

()

2kM
|Ash(z)] < —2

_ 8
| o Amin"‘AO"n ( )



Proof. Using the general identity® " ® + \I)"'® " =
T (®®T + \I)~!, we can write equation (7) as
h(z) = (®y) (2@ + \I)"'®(x). (9)

Let U = (®®" + M) and denote byw ' the row
vector (®y)"U~!. Now, we can writeAgh(z) =
(Asw)'®'(z).  Using the identity Ag(U~!) =
—-U~}(AsU)U’~L, valid for all invertible matrice®J and
U’, Asw ' can be expressed as follows:

Asw! = (Ag®Py) U ™" + (®y) ' As(U™)
= (Asg®y) U — (@y) U (AU UL

We observe that

m

(As®y) = As(D_ pi(w) = Y (Asyi®(a:))
= Ag(ym®P(xzm)) and

(AsU) = AS(Z O(z:)®(2:) ") = As(®(2m)®(zm) ).

Thus, we can write\ gw "
=[A5(yn®(@n)" = (8y) U™ As(@(@m) 0 (@m) )| U
= [1n®@) T = @) + (@) U () D)
~ (@) U b)) @ ()| U
=4 = (DB (g — b)) Dm)] T

Since forallz € X, K(z,z) < xand|h(z) —y(zx)] < M,
we have| (x)| < x'/2 and||(y,, —h(2,)) (a7, ) = (Ym —
h(2m))®(z)|| < 26Y2M, thus

lAswT]| < 2612 MU (10)

The smallest eigenvalue 6B’ ®' "+ A1) iS Ayin +A. Thus,
L1/2), .
1AgwT | < 20 Since||® (2) | = K/ (2, 2) < £1/2,

[Ash(z)| < -2 O

min+Aom

By the Cauchy-Schwarz inequality, for any,z € X,
|K (2}, 2)] < /K(2},2})K(z,2) < &, thus the norm
of the vectork,, = [K(2},x),...,K(x},,z)] is bounded
by xv/m and the first termk can be bounded straightfor-

wardly in terms ofA g a: |R| < ky/m||Akall.
The second term can be written as follows

T= Zai D (A Ki(zh,2) =Y (D) (@) ().
=1 k=1 k=1 (11)

By Lemma 1 (see Appendix)Au; can be expressed in
terms of theAwv, s and thug” can be rewritten as

- ,

Ave v S0 (vs + v)) Ay ] N

T=A E _ = oo Dula).
k_l{IV’ll VIV (T + oy | (52 P66

\%4

(12)
Note, in order to isolate the terii each®; must map to
the same feature space. This holds for the empirical kernel
map, or any orthogonal kernels as will be defined below. In
this expression, eacliv;, can be written as a sufv, =
Agvr + Asvi, where

Agv, =y T (K 4+ M) 'K, (S)(K' + M) 'y’ (13)
—y' (K + M) 'K (S)(K+ A\ ty'  (14)
Agvp =y (K + M) 'K (S) (K + \I) "'y (15)
—y (K + M) 'K, (S)(K + AI) " ly. (16)

LetV = V; + Vo whereV; (resp. 13) is the expression
corresponding ta\ i (resp. Ag). We will denote by,

V11, andVyy, each of the terms depending bmappearing in
their sum. The proof of the propositions giving bounds on
[[V1]] and|| V|| are left to the appendix.

Proposition 1. For any samples S and S’ differing by one
point, the following inequality holds:

IVill < 4AyEpm | Ak all. (17)

Recall, Ash(z) represents the variation due to sampleqr hound o, holds fororthogonal base kernels.
changes for a fixed kernel, thus, the bound given by the

theorem is precisely a bound on the stability coefficient o
standard KRR. This bound is tighter than the one obtaine

fDefinition 1. Kernels Ky, ..
galif they admit feature mappings @, : X — F mapping

., K}, are said to be orthogo-

using the techniques of Bousquet and Elisseeff (2002)t:0 thesameHiIbert space £ such that for all = € X, and

[Ash(z)] < 3£, Also, since®'®’" andK’' = &' &/
have the same non-zero eigenvalues, whgn # 0, Amin
is the smallest non-zero eigenvalueldf, \* . (K').

4.2 Bound onAgh(z)

Sincen(z) = Y " | a; K (z;, x), the variation inK can be
decomposed into the following sum:

m

Agh(x) =Y (Axoi)K'(z},2)+ >  aiAgK (2}, 7).

i=1 =1

R T

i#7,

®;(2) " ®;(x) = 0. (18)
This assumption is satisfied in particular by the n-gram
based kernels used in our experiments and more generally
by kernelsK; whose feature mapping can be obtained by
projecting the feature vectdr(z) of some kerneK on or-
thogonal spaces. Thoencatenationtype kernels suggested
by Bach (2008) are also a special case of orthogonal ker-
nels.

Proposition 2. Assumethat the basekernels Ky, k € [1, p]
are orthogonal. Then, for any samples S and S’ differing



by one point, the following inequality holds: Theorem 3. Let h denotethe hypothesisreturned by LKRR
AAM and assume that for for all z € X, |h(z)—y(z)| < M.

[|Va|l < paw— (19)  Then, for any § >0, with probability at least 14,
om
~ log &
- : h) < R(h) + 2 4 M 0
Combining the bounds ovi; andV5;, gives R(n) < R(h) + 26 + ( mf+ ) 2m '
AAM where 3 = O(1/m) + O(/p/m) is the stability bound
VIl < 4Ay/mpm [ Axcedl + o given by Proposition 3.
Aga = —(K’'+ MI)"'(AK)a can be expressed in terms Thus, in view of this theorem our generalization bound has
of the Vs as follows: the formR(h) < R(h) + O(1/\/m + \/p/m).
p
Aga=—(K' + 07> (Vi)' 5 Experimental Results
k=1

In this section we examine the performance bj-

Decomposing/;, as inV;, = V; Vag, using the expres- . .
P I " 1k + V2 g P regularized kernel-learning on a number of datasets.

sion of Vy;, from (24), and collecting al\ x o terms to the
left hand side, leads to the following expression relatingProblem (5) is a convex optimization problem and can thus

Agato theVys: be solved using standard gradient descent-type algorithms
» However, the form of the solution provided by Theorem 1,
Ao = — Z (Ve @) T), 0 @ = (K + AI)~!, motivates an iterative algorithm that
Pt proved to be significantly faster in our experiments. The
following gives the pseudocode of the algorithm, where
with Y = K/ + X+ AY P, Hv’ll aa' Qi andQ, = 5 € (0,1) is an interpolation parameter and> 0 a con-
[Kk e ZT\III(IvaU’ZII)Km] aaTQy has rank one since Vergence error. In our experiments, the number of iteration

aa' is a projection on the line spanned byand its trace Algorithm 1 Interpolated Iterative Algorithm
Trlaa ' Qi) = o’ Qra is non-negative: Input: Ky, & € [1,p)

o Quar = v, U 2o (07 + vivi) ;’p:atmo +AD "y
vl v+ [1v']] /
2 / a —
= _U—kw:”k—kaO, v (a"Kia,...,a'K,a)"
vl vl + V7] u<—uo+A”vH

using the Cauchy-Schwarz inequality. Thus, the eigen- @ —na+ (1 —7)(K(a)+AI)~"
values ofaa T Q) are non-negative and since it has rank until [[o’ — | <€

one andKj is positive-semidefinite, the eigenvalues of
Kyaa'Qy are also non-negative. This implies that the needed on average for convergence was about 10 to 15 with
smallest eigenvalue of is at least and that|Y~'|| <y = 1/2. When using a small number of kernels with few
1/(Aom). Since|| Y27 _, Var @i || < [[Va|v/km, this leads  data points, each iteration took a fraction of a second,avhil

to 12 when using thousands of kernels and data-points each iter-
IV < AAM (4Arp™ 72/ X0 +1) : (21)  ationtook about a second. In view of the space limitations,
o Ao we do not present a bound on the number of iterations. But,
and the following result. it should be clear that bounding techniques similar to what
Proposition 3. The uniform stability of LKRR can be W€ used for the stability analysis can be used to estimate the
bounded as follows: Lipschitz constant of the functiofi: a — (K + A\I)~!

which yields directly a bound on the number of iterations.
Co+C . . . . .
|A(h(z) —y)?| < 2M|Ah(z)| < 2M071\/ﬁ, (22)  We did two series of experiments. First, we validated

Ao our experimental set-up and our implementation for Algo-
with Cy = 2kM + 4AM~kY2(k/Xo + 1) and ¢; =  fithm 1 and previous algorithms for L1 regularization by
16A2M K372 ) \g. comparing our results against those previously presented

by Lanckriet et al. (2004), which use a small number of
A direct application of the general stability bound (Bous- base kernels and relatively small data sets. We then fo-
quet & Elisseeff, 2002) or the application of McDiarmid’s cused on a larger task consisting of learning sequence ker-
inequality yields the following generalization bound for nels using thousands of base kernels as described by Cortes
LKRR. et al. (2008).
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Figure 1: RMSE error reported for the Reuters and variousraent analysis datasets (kitchen, DVDs and electronics).
The upper plots show the absolute error, while the bottortsgloow the error after normalizing by the baseline errap(er
bars aret1 standard deviation).

5.1 UCI datasets Reuters-21578 dataset, though we learn with different base
To verify our implementation, we first evaluated Algorithm kernels. Using the ModApte split we produce 3,299 test
1 on thebreast, ionosphere, sonar andheart datasets from examples and 9,603 training examples from which we ran-
the UCI ML Repository which were previously used for domly subsample 2,000 points to train with over 20 trials.
experimentation by Lanckriet et al. (2004). In order to use

KRR for the classification datasets, we train with labels For features we use th¥ most frequently occurring bi-

and examined both root mean squared error (RMSE) witrgams' whereV is indicated in Figure 1. As suggested in

respect to these target values and the misclassificatien ra ortes et al. (2008), we us¥ rank-l_ base kernels, with .
each kernel corresponding to a particular n-gram. Thus, if

when using the sign of the learned function to classify the .
¢ d fy i € R™ is the vector of the occurrences of ttier n-gram

test set. We found that both measures of error give similat’ the training data. then thb b K | matrix i
comparative results. We use exactly the same experimer("fj‘—clrc.ossd ;{‘rTnlr‘]gT aAa,. en ?seKslr:?e mal fx 1S
tal setup as (Lanckriet et al., 2004), with three kernels: a cnedast; = viv; . ASIScommon for , We aisoin-

. . . lude a constant feature, and thus kernel, which acts as an
Gaussian, a linear, and a second degree polynomial kerneg ’ ’

ffset. Note that these base kernels are orthogonal, since
For comparison, we consider the best performing singleeach®; is the projection onto a single distinct component
kernel of these three kernels, the performance of an evenlyof ®. The parameters andA are chosen via 10-fold cross
weighted sum of the kernels, and the performance of awalidation on the training data.

Ly-regularized algorithm (similar to that of Lanckriet et

al. (2004), however using the KRR objective). We compare the presentdd,-regularized algorithm to

both a baseline of the evenly-weighted sum of all the base
Our results on these datasets validate our implementatiorkernels, as well as to the, -regularized method of Cortes

by reaffirming the results from Lanckriet et al. (2004). Us- et al. (2008) (Figure 1). The results illustrate that fog&r

ing kernel-learning algorithms (whethéy or L, regular-  scale kernel-learning, kernel selection with regulariza-
ized) never does worse than selecting the best single kerngbn improves performance, and thiat regularization can

via costly cross-validation. However, our experiments als in fact be harmful. Note, that all base kernels here repre-
confirm the findings by Lanckriet et al. (2004) that kernel-sent orthogonal features, thus, a sparse solution that elim
learning algorithms for this setting never do significantly inates a subset of the base kernels may negatively impact
better. All differences are easily within one standard devi- performance. Since Lanckriet et al. (2004) do not per-
ation, with absolute misclassification rate of: 0.08:6st),  form learning for large number of base kernels, we cannot
0.08 (onosphere), 0.16 Gonar) and 0.17 keart). As our  directly compare results for this task. However, the best
next set of experiments will show, when the number oferror rate we obtain by classifying the test set by the sign
base kernels is substantially increased, this picturegdsn of the L,-regularized learner is comparable to that reported
completely. The performance of tHg regularized kernel by Lanckriet et al. (2004).

is significantly better than the baseline of evenly-weighte
sum of kernels, that in turn performs significantly better
than thel; regularized kernel.

For our last experiments we consider the task of sentiment
analysis of reviews within several domains: books, dvds,
and kitchen appliances (Blitzer et al., 2007). Each domain
5.2 Sequence-based datasets consists of 2,000 product reviews, each with a rating be-
tween 1 and 5. We create 10 randé6y50 splits of the

In our next experiments, we also make use of one of thgjata into a training and test set. For features we again use
datasets from (Lanckriet et al., 2004), the ACQ task of the



the N most frequently occurring bigrams and for basis ker-yith 7 — Py P
nels again usé& rank-1 kernels, see Figure 1. The results
on these dataset amplify the result from the Reuters AC

dataset; regularization can negatively impact the perfor
mance for large number of kernels, whilg-regularization

improve the performance significantly over the baselin

over the evenly-weighted sum of kernels.

6 Conclusion

We presented an analysis of learning kernels with ridge re-

gression withl, regularization, including an efficient it-

erative algorithm. Our generalization bound suggests that.
with even a relatively large number of orthogonal kernelsfi
the estimation error is not significantly increased. This fa

vorable theoretical situation is also corroborated by some
of our empirical results. Our analysis was based on the sta-

bility of LKRR. We do not expect similar results to hold
for L, regularization sincé,; typically does not ensure the
same uniform stability guarantees.

A Expression of Ay
Lemma 1. For any samples S and S’, Ay can be ex-
pressed in terms of Avy, asfollows:

Avg v 3oy (vi +v)) Av;
VAL VIV DD

Apy = A[ ] (23)

Proof. By definition of i1, we can write

vy Uk T
v vl v/l

_ A{v;’g — Uk va(HVH)}

(vl VI

_ ol — kaIVII]
Nl

. A(]|v]|? AT U?
Observe thatA(]|v]|) = ||vﬁﬂr||”v/)u = H(v%ﬂlv'll)
le A(vi)(viJrv;

NTEIV ).Plugging in this identity in the previ-
ous one yields the statement of the lemma. O

B Proof of Proposition 1

Proof. The termsA vy, appearing inl; have the follow-
ing more explicit expression:

AK’Uk = AK(aTKk(S’)a)
= AK(GT)Kk(S/)aI + OéTKk(S/)AK(Oé).
Thus,V; can be written as a sum = Vi + Vi, according
to this decomposition. We shall show hd is bounded,
V11 is bounded in a very similar way. In view of the ex-

pression forl; (12), and usind{;, = <I>kT<I>k, V12 can be
written as

P
Vis =AY (Aka) Z[@ral",
k=1

(24)

eAp

v 20 S (i) @] @i .
IV T Using the

aT<I>z‘I>ka = a'Ki,a = v, and

vl

fact that|| @, |

%imilarly | ®; || = v;/? and assuming without loss of gen-

erality that||v’|| > ||v||, Va2 can be bounded by

1/2 1/2
s vy X witvDor 2o 224

[Axall M”'I’k” T VTV [T+ TV

By the Cauchy-Schwarz inequality, the first sum
i1 T7//®x|| can be bounded as follows

k=1

P ok
S| <
2 TV]

since||®.|| < v/km. The second sum is similarly simpli-
ed and bounded as follows

VIS e 2) 2 <, (29)
k=1

vl

DS B R i k|

= vl VLRI =+ 11D
P 3/2 P 3/2 7 1/2
v (v;"" 4+ viv;’7)
< k_) < E %) max ||®;]|.
<kz_1 VIl N\ = IVl + (v )

In view of ||®;| < +/km for all i, and using
multiple applications of the Cauchy-Schwarz inequality,
eg. Yioy 0 = S ue/? < [vIIvIlY* and
P wl? < V|lIv[i/?, the second sum is also
bounded by,/spm and ||Vi2|| < 2A/kpm||Aka|. Pro-
ceeding in the same way foVy; leads to||Vi1]] <

2A /mp| Ax | and||Vi|| <4Ampm||Agal. O
C Proof of Proposition 2

Proof. The main idea of the proof is to boufd in terms of
Agsw, the difference of the weight vectaisand’’ already
bounded in the proof of Theorem 2.

By definition,v;, = a"Ka. SinceK;, = &/ @, then
v = ||wi||?, wherew, = ®,(S)a. Thus, in view of (12),
V5 can be written as follows

P 2 ’ 2
As||wgl| v > (v + vi) As||wi] T
=A) < VI i
k=1

(MM N)
We can boundAg ||wy||?| in terms of|| Agwy||:

|Aslwiell?| = [(Aswe) " wh + wi (Aswy)]

= [(Aswi) " (Wi +wi)| < [|wh + wi[[[|Aswi]|.

Thus, since|wy|| = (" ®] ®a)!/2<v)/* and||w}|| <
v’,lg/Q, ||[V2|| can be bounded by

P 1/2(

v
IVal gA(z i

k=1

W i)

[Aswrll
Il

1/2 +v’1/2

. (vi + 1) (v, i )A ) - T)
+ S e 1as il | vl )




The first sum can be bounded as follows

202 (0% + 0l Aswil|

— Ndl
P 1\1/2
_ MHAS(MWHH
= ]Vl
< (Z (bt Lo )(ZHAs (miew)|I?) "
T\ Hi HV'H2
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Argyriou, A., Micchelli, C., & Pontil, M. (2005). Learn-
ing convex combinations of continuously parameterized
basic kernelsCOLT.

Bach, F. (2008). Exploring large feature spaces with hier-
archical multiple kernel learnindNIPS.

Blitzer, J., Dredze, M., & Pereira, F. (2007). Biographies,
Bollywood, Boom-boxes and Blenders: Domain Adap-
tation for Sentiment ClassificatioAssociation for Com-
putational Linguistics.

The first factor is bounded by a constant using multipleggser, B., Guyon, I., & Vapnik, V. (1992). A training algo-

applications of the Cauchy-Schwarz inequality and assum-

ing without loss of generality thatv| < |[v’]]:

) vk+(vkvk)+2vk/2v k/2
k=1 2T

< 4 (the calculation steps are

omitted due to space). The second sum can be bounded as

follows
>, (i + o)) (0)% + 0"} P) | Aswi|
VTV + V'

(01 + V) (v 1/2+v’1/2)
pal VIV R+ D7D

3w

sG] 3 v

k=1

<y

=1

<FQ{Z||AS (uiws) | } HZUM

1
1/2 ,1/2)2 2

The nu-

[ i) 40
where [ = [ =1 VPIVTPUVITFIV )

merator of F», can be bounded using’?_, v < |v|?,

P27 < | v|]P/2||v'||*/? and applications of the

=1 "1
Cauchy- Schwarz inequality such®¥_, (vi + v})? W+

VIR < (I VDAV |\”2) . The inter-
mediate steps are omitted due to space.

1/2 1/2

B, < IVl +IVITZ and
- VI
1/2 /2, P
+ V']l
vl <o (14 LIV S5 g,
IVall < ( + SV ;'Ukwk 3

with F3 = (>0, |\A5ukwk||2)1/2. If the feature vec-
tors wy, are orthogonal, that iwkka/ = 0fork # K
(which holds in particular if®y, (z;) T @ (2;) = 0 for
k # K andi = 1,. m) thenF3 = |\A5w|| and
H Zi:ﬂ’kwku =3 Ukwk Wi =D oy vp < |lv.
Thus, using the bound qmswn from the proof of Theo-
rem 2 yields

VI + V12 a2
< 1 -_
vall < 24 (14 P o2 ) g
AANM 4AM
< 4A||A < < . O
- || SWH - )\min + )\Om - )\Om
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