

GridGain and Azul: The Industry’s Highest Performance
In-Memory Computing Platform for Real-Time Data Processing

Customer Case Study

The GridGain®in-

memory computing

platform accelerates

and scales out data-

intensive applications

across a distributed,

JVM-based

computing architecture. GridGain solves the

performance needs of companies launching digital

transformation, omnichannel customer experience,

Internet of Things, and similar data-intensive initiatives.

GridGain is built on Apache Ignite®, which was

originally contributed to the Apache Software

Foundation (ASF) by GridGain Systems. Ignite is a top

five ASF project and has been downloaded over four

million times since the project launched in 2014.

GridGain can massively scale out to thousands of

nodes and power millisecond performance for

petabytes of in-memory and on-disk data. It supports

multiple access APIs, including ANSI-99 SQL and key-

value, and supports ACID transactions. GridGain is

used for real-time transactions, hybrid

transactional/analytical processing (HTAP), and high

performance data integration hub use cases for

companies in the financial services,

telecommunications, software/SaaS, healthcare,

transportation and logistics, and many additional

industries.

The high performance GridGain platform is ideal for

digital transformation use cases. However, some low

latency/high transaction volume scenarios, such as in

the financial services and telecommunications

industries, strain the capabilities of standard Java

Virtual Machines (JVMs). GridGain keeps all the in-

memory data it caches in unbound, off-heap regions of

memory. Java on-heap memory is utilized extensively

by temporary objects generated by applications in

runtime, though. Traditional JVMs can struggle to

deliver the low latency required for certain transaction-

intensive applications. In those specific use cases,

GridGain users may need to scale out the number of

nodes in their cluster in order to parallelize the

workload.

The alternative to adding more parallelization to the

cluster is Azul Platform Prime®, a 100% Java-

compatible JVM based on Oracle HotSpot. Unlike

traditional JVMs, Azul Platform Prime decouples

application performance from the amount of data kept

in-memory in the Java heap. Azul Platform Prime is

unique in its ability to provide high performance and

low latency for memory-intensive applications. Azul

Platform Prime is able to grow and shrink the memory

heap elastically based on real-time application

demands. The Azul C4 garbage collection algorithm is

also able to limit JVM-relatedpauses to less than 30

milliseconds.

Running GridGain on Azul Platform Prime allows

enterprises to increase the on-heap memory

allocated on each GridGain node. High transaction

applications generate significant Java garbage but it is

cleared efficiently by Azul Platform Prime. As a result,

GridGain users can avoid adding extra nodes to

overcome the typical JVM garbage collection

challenges while maintaining consistently low latency

by avoiding JVM garbage collection pauses. This

allows GridGain users with applications with high

read/write requirements that need low latency with low

jitter to achieve their SLAs with minimal infrastructure

expenditures.

Real-Time Business with GridGain and
Azul Platform Prime
In-memory computing (IMC) platforms can power very
low latency, massively scalable applications for large
datasets. However, the IMC platform must be able to
hold and process large amounts of data in-memory
with highly controlled and limited JVM-related
garbage collection pauses. The GridGain platform
running with Azul Platform Prime delivers the
necessary performance for very low latency
transactional, HTAP and high-performance data
integration hub applications.

No Consistency or Durability Sacrifices
Low latency use cases can typically benefit fromin-

memory computing but often cannot accept data loss

or inconsistency. In some cases, it may be impractical

or unaffordable to keep an application’s entire data set

in RAM. Unlike other in-memory computing platforms,

the memory-centric GridGain architecture can store the

entire data set to disk while maintaining only a subset

of the data in memory. The platform can process the

https://www.gridgain.com/technology/in-memory-computing-platform
https://www.gridgain.com/technology/in-memory-computing-platform
https://www.gridgain.com/technology/in-memory-computing-platform
https://www.gridgain.com/experience/digital-transformation
https://www.gridgain.com/experience/digital-transformation
https://www.gridgain.com/experience/omnichannel-customer-experience
https://www.gridgain.com/experience/internet-of-things

GridGain and Azul: The Industry’s Highest Performance
In-Memory Computing Platform for Real-Time Data Processing

Customer Case Study

data no matter where it resides, preferentially

processing against the data in memory. This active

disk-based storage tier approach allows users to trade

off performance versus infrastructure costs. Combined

with distributed ACID transactions, using GridGain with

Azul is a highly-optimized computing platform that

combines the speed of memory and the durability

guarantees of disk-based systems with the strong

consistency required by manyhigh-value use cases.

The Azul Platform Prime Approach
Azul Platform Prime uses the continuous concurrent

compacting collector (C4). Unlike the other collectors,

C4 is truly pauseless. Application threads run

concurrently (and quite safely) with the object marking

and object relocation necessary for garbage collection.

In addition, Azul Platform Prime replaces the decades-

old C2 JIT compiler with a modern and modular JIT

called Falcon. Based on the open-source LLVM project,

Azul Platform Prime can deliver even more optimized

code that uses the latest processor features like

AVX512 instructions.

Benchmark Results: To benchmark GridGain

running with Azul, a three-node GridGain cluster was

connected to a Java application which performed

reads and writes to the cluster. Three AWS

i3en.6xlarge (3.1 GHz Intel Xeon Scalable Skylake

processors) servers were used which had a total of 72

cores, 576 GB RAM, and 45 TB of disk A number of

scenarios were run to compare the performance of the

standard Java G1 collector to C4 in Azul Platform

Prime. The benchmark results were based on use of

the transactional persistence capability in GridGain.

The following credit card processing performance
requirements are typical for banks:

• Each transaction accesses 20 records
• Distributed Transactional Reads

− Target throughput –1,000 reads/sec
− Target latency –15ms for 99.99th percentile

• Distributed Transactional Updates
− Target throughput –2,000 updates/sec
− Target latency –50ms for 99.99th percentile

− RAM and disk must be updated for primary and backup
copies

Tests were run for two hours each.

JVM latency was measured using jHiccup, a tool

developed by Gil Tene, CTO of Azul Systems. jHiccup

adds an extra thread to the JVM being monitored but

the thread does not need to interact with the

application code and spends most of its time asleep.

The extra thread repeatedly sleeps for 1ms and

records any difference between when it expected to

wake up and when it actually wakes up. The

nanosecond resolution of the system timer allows

highly accurate readings of the observed difference

between expected and actual wake up time. For

transactional reads, G1 consistently provides about

200ms of latency at the 99.99th percentile. Using Azul

Platform Prime and C4, the system provides 6ms

latency at the 99.99th percentile, with a maximum

latency of 15.31ms. For transactional writes, the latency

target is 50ms at the 99.99th percentile in this case. G1

latency was slightly worse than with reads, consistently

around 250ms (5x the goal) but with some spikes up to

479ms. With Azul Platform Prime and C4, the maximum

at the 99.99th percentile was 25.1ms (half the maximum

target) and the maximum latency was 33.87ms, never

exceeding the target latency.

There are several conclusions we can draw from
this data for this use case:

• Azul Platform Prime solves the problem of GC pauses
• Azul Platform Prime combined with GridGain delivers the

performance needed to support typical credit card
processing performance parameters consistently and
predictably

• To meet the goals of this use case with G1 is possible
using GridGain but would require significantly more nodes
in the cluster, increasing infrastructure costs versus using
Azul Platform Prime

Summary For high transaction read/write applications

with low latency requirements, GridGain used with Azul

Platform Prime provides major performance

improvements by eliminating Java garbage collection

pauses. For GridGain users, this can significantly

reduce potential infrastructure costs for high

transaction volume/low latency use cases by reducing

the number of required GridGain nodes to achieve

adequate performance for demanding use cases.

Contact Azul

385 Moffett Park Drive, Suite 115, Sunnyvale, CA 94089 USA

 +1.650.230.6500 www.azul.com

© 2021 Azul Systems, Inc 5-21v1

https://www.azul.com/products/zing/falcon-jit-compiler/
https://llvm.org/
https://en.wikipedia.org/wiki/AVX-512
https://www.azul.com/jhiccup/
http://www.azul.com/
http://www.azul.com/

