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Azul has spent many years developing 

solutions to these challenges   

Using the latest hardware advances and, in this white 

paper, we’ll explain how Azul Platform Prime addresses 

the performance of bytecode interpretation and 

adaptive compilation. 

 

Introduction Java is consistently reported as the most 

popular programming language on the planet.  Many 

other programming languages can be compiled into 

bytecodes and run by the Java Virtual Machine (JVM) 

in exactly the same way as compiled Java code.  One 

of the reasons for Java (and the JVMs) popularity is 

how it abstracts away a number of things that 

developers have always had to deal with in other 

popular languages like C and C++.  Java is famous for 

being, “Write once, run anywhere” by virtue of its use 

of an intermediate representation of application code 

in the form of bytecodes.  In addition, the JVM 

allocates space for objects and automatically reclaims 

this space when the objects are no longer required; 

using what is referred to as garbage collection (GC).   

 

With languages like C and C++, all memory 

management must be handled explicitly by the 

programmer, who must ensure that space no longer 

required is freed.  Otherwise the application will suffer 

from the classic memory leak.  

 

While these are great features for making a 

developer’s life easier and produce more robust and 

reliable code, they are not without impact.  The 

performance character-istics of applications running on 

a traditional JVM can look very different to statically 

compiled applications written in C and C++.  Although 

the overall performance of bytecodes in the JVM can 

be as good as natively compiled code (and in some 

situations can even exceed it), the JVM introduces 

greater non-deterministic effects on the application 

performance (i.e. it is not as easy to predict the level of 

performance at any specific time). 

 

Modern hardware includes numerous ways to improve 

performance by the direct use of machine instructions 

at the silicon level.  Features like vector processing can 

make a CPU appear to have a far higher clock speed 

than it really does by enabling processing of multiple 

data elements in a single instruction cycle.  

 

Azul has spent many years developing solutions to 

these challenges using the latest hardware advances 

and, in this white paper, we’ll explain how Azul 

Platform Prime addresses the performance of 

bytecode interpretation and adaptive compilation.  

This will cover two main areas: 

• How the new Falcon just-in-time (JIT) compiler uses 

features of modern processors to deliver better 

overall performance in many cases. 

• How the ReadyNow! feature of Azul Platform Prime 

can eliminate the effects of traditional Java 

application “warm-up”. 

 

What Do We Mean By “Speed” For An Application? 

When considering application performance, the ideal 

graph looks like the one below. 

        
Here we have a completely constant and predictable 

level of performance that will provide consistent and 

predictable response times for our clients. There are 

really four things to consider when evaluating the 

speed of your application: 

 

1. Are you fast enough?  What this question asks is 

can your application deliver the required results within 

the time your clients have specified.  This is a typical 

non-functional requirement.  For example, “the system 

will respond within 50ms 95% of the time”.   

2. Are you fast when new code is deployed?  With 

most enterprises now using continuous integration and 

continuous deployment, it is important that 
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performance is unaffected when new versions of 

production software are deployed. 

3. Are you fast from the start?  Often applications 

need to do certain things when they start up such as 

loading large sets of data into memory.  The important 

question here is how long it takes from starting an 

application until it is running at full speed. 

4. Are you reliably fast?  Like the first question, this is 

a primary non-functional requirement but viewed from 

a load perspective rather than response time, e.g. “the 

system must be able to process 10,000 transactions 

per second”. 

Unfortunately, no application has a performance graph 

like the one above and when running an application on 

a traditional JVM the graph will look very different. 

Let’s start by looking at what the challenges are for the 

JVM when executing your code.  

 

 
 

Traditional JVM Performance Characteristics 

When Java was first released, over twenty years ago, 

the designers took a different approach to executing 

applications to the way popular languages had used 

up until that point.  Traditionally, source code was 

compiled into a set of native instructions for a specific 

platform (a combination of the processor and 

operating system on which the application would run).  

This is referred to as Ahead of Time (AOT) or static 

compilation.  This fixes the platform that the 

application runs on, which means separate binaries 

must be generated for each platform the application 

will support. 

 

With Java, the source files are compiled into class files 

that contain bytecodes.  Bytecodes are instructions for 

a virtual machine, i.e. not one that uses any real 

processor or operating system.  The class files are 

loaded by the JVM, which converts them to the 

machine instructions used by the underlying hardware 

and system calls for the chosen operating system.  

Some of this work is very simple, with a straightforward 

mapping between virtual and machine instructions.  

For example, the JVM has an opcode, ishl, for a logical 

shift left of an integer; this maps directly in the Intel x86 

instruction set to the SHL opcode.  However, many 

conversions from bytecodes to real instructions are 

much more complex. 

 

When the bytecodes from a class file are read, they will 

be interpreted, as they are needed.  Interpreting 

means that each bytecode is translated into one or 

more native processor instructions, which are passed 

to the CPU for execution.  This delivers sub-optimal 

performance for two main reasons: 

 

1. Each time a bytecode is read it has to be interpreted 

as if it was the first time it is being used.  No attempt 

is made to cache the native instructions. 

 

2. Each bytecode is treated in isolation, so no 

optimizations are made based on sequences of 

instructions (as is performed by static compilation). 

There are many simple (and complex) optimizations 

that the interpreter does not use such as dead-code 

elimination and loop unrolling. 

 

Clearly, this is not the most efficient way to execute 

bytecodes on the JVM and will give much lower 

performance than statically compiled code.  To 

alleviate this problem shortly after Java was released a 

new, improved virtual machine was developed called 

Hotspot. Hotspot profiles the bytecodes of the 

application as they are executed, looking for sections 

of code that are used repeatedly (hot spots in the code 

path, hence the name).  As an example, code running 

in a loop, especially if it is a loop with many iterations, 

is quickly identified as a hotspot.  The JVM can then 

compile the bytecodes of the hotspot section using a 

more traditional (think C and C++) back-end compiler.  

This is adaptive compilation using a just-in-time (JIT) 

compiler. The JIT can perform optimizations as the 

code is compiled. This compiled code can also be 

cached so that subsequent iterations of a loop use the 

stored code rather than interpreting each bytecode or 

recompiling the code of the loop each time. 
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If we look at a typical performance profile for an 

application running on a traditional JVM we will 

see something like this: 

 
 

When the application starts, it is running in interpreted 

mode, so much slower than code that has been 

compiled.  As the application executes sequences of 

bytecodes the JVM profiles and compiles the hotspots, 

which then execute much more quickly.  The curve of  

the graph demonstrates the classic warm-up phase of  

a Java application.  There are also noticeable dips in 

performance both during warm up and even when a 

steady state has been reached.  Many of these are  

due to GC pauses; something else that Azul Platform 

Prime drastically reduces through the use of the C4 GC 

algorithm. 

 

The obvious question many people ask is, “Why can’t 

we use static compilation for Java?  Wouldn’t that solve 

the whole interpreting performance problem?”   

 

To answer that question, we must delve deeper into 

how adaptive compilation works in the JVM. 

 

One of the most common optimizations used by 

compilers is method inlining.  When a method is 

called, a new stack frame needs to be created, 

parameters pushed, and a jump performed to the 

code at the start of the method.  This overhead can be 

avoided by taking the instructions of the method and 

placing them where the method call takes place (there 

is a little more to it than this as the method parameters 

need to be mapped correctly). 

 

Although Java is a statically-typed language (and 

therefore the JVM has been designed for this), classes 

can be loaded dynamically at runtime.  With static 

compilation, the compiler must be very conservative 

about method inlining since it is often unable to 

guarantee that the code for the method it inlines is the 

actual code that will be executed at runtime.  Static 

compilation will typically only inline final methods since 

they cannot be overridden.  A JIT compiler compiles 

the code when the application is running; the JVM 

knows exactly which classes are loaded and so can use 

method-inlining anywhere it is useful.  Similarly, classes 

are not initialized at the same time they are loaded.  

Initialization only happens when a new object of that 

type is instantiated, a static field of the class is 

referenced, or a static method of the class is called.  

Static compilation must assume that all classes are 

uninitialized and place checks into the generated 

machine code.  This leads to a considerable 

degradation in performance over machine code 

produced by a JIT, which knows precisely which 

classes are initialized. 

 

JIT compilers are also able to perform what is called 

speculative optimizations that are not possible with 

static compilation.  Let’s look at an example of this. 

We will use the “path never taken” example, using the 

code below 

 
int computeMagnitude(int value) { 

if (value > 10) 

bias = computeBias(value); 

else 

bias = 1; 

return Math.log10(bias + 99); 

} 

 

In this code, we may have a situation where passing a 

value that is greater than ten is where we have to deal 

with some very unusual condition.  Under normal 

circumstances, the value will always be less than, or 

equal to ten.  With statically compiled code, the 

compiler must compile the code as it is written so the 

Math.log10() method must be called every time.  The 

JVM, however, profiles the code as it is being run in 

interpreted mode so has a clearer picture of what is 

actually happening.  The JIT can identify that, so far, 

the value has never been greater than ten.  The code it 

compiles will actually be as shown below 

 
int computeMagnitude(int value) { 

if (value > 10) 

uncommonTrap(); 

return 2; 

} 
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Clearly, the code generated will be more efficient 

because there is no longer a call to Math.log10().  In 

the event that the value is greater than ten, the 

uncommontrap() method is called, which will cause the 

JVM to abandon the compiled code (because it is now 

incorrect) and revert to interpreting the bytecodes.  

This is referred to as a deoptimization and explains 

some of the dips in performance on the graph on the 

previous page, especially during the warm-up phase. 

 

To improve things further, the JVM uses two JITs, 

sometimes referred to as client and server but more 

often as C1 and C2.  The reason for having two JITs is 

that they have different performance profiles.  The C1 

JIT is designed to generate code at the optimum level 

of performance as quickly as possible, whereas the C2 

JIT will take longer to generate code.  The code 

generated by the C2 JIT will be more heavily optimised 

so give a better, overall, level of application 

performance.  Since Java SE 6 the JVM has had the 

ability to do ‘tiered compilation’.  This uses the C1 JIT 

when the application starts to improve performance 

rapidly and then switches to the C2 JIT to improve the 

speed of the application further. 

 

Modern Processor Design 

The Intel x86 architecture dates all the way back to the 

8086 processor launched in 1978, but the first real x86 

32-bit processor was the 80386 launched in 1985.  In 

the early 2000s, the switch was made to 64-bit 

processors, and the x86 architecture became the x64 

(although the base instruction set remained essentially 

the same).   

 

Over thirty years the x86/x64 architectures have 

become the dominant processor architecture in 

laptops, workstations and most servers.  During this 

time there have been many improvements to the 

design.  Initially, the focus was on increased clock 

speed: execute the same instructions faster.  About 

fifteen years ago clock speeds reached a plateau due 

to the physical problems of dissipating the amount of 

heat generated by the processor (air cooling with fans 

just isn’t efficient enough, and people don’t really want 

water cooled laptops or workstations). 

 

 
 

To take advantage of Moore’s law, which predicts the 

rapidly increasing density of transistors in a given 

amount of space on the processor, chip designers 

turned to increasing the number of processing units on 

a physical chip.  This has led to multi-core processors 

as we see in almost all computers today. 

 

The other area that chip designers have been working 

on to improve overall performance is looking at how to 

do things on the processor (“in silicon”) using a single 

instruction rather than a sequence of instructions. With 

a greater number of transistors to use it has become 

possible to provide a larger number of increasingly 

sophisticated instructions (compare that  

the original 8086 processor, which had less than a 

hundred instructions to the most recent x64  

processors, which have over seven hundred). 

 

It is also possible to increase the size of the registers 

used from 32 or 64 bits (the size of a processor word) 

all the way up to 512 bits in the latest Skylake 

processors.  These exceptionally wide registers are 

used to hold several data words at the same time and 

can be used for vector processing, which uses single 

instruction-multiple data (SIMD) instructions. 

 

However, having a processor that provides all these 

facilities will not improve application performance 

unless the code generated by the JIT compiler is able 

to generate code to use them. 

 

The LLVM Compiler Project 

Azul has always been focused on improving the 

performance of the JVM with the goal of making your 

applications perform better and more reliably.  Initially, 

this took the form of replacing the garbage collector 
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(GC) in the JVM with a different design called the 

Continuous Concurrent Compacting Collector (C4). 

 

Having solved the problems of GC, Azul turned their 

attention to how to improve the performance of JIT 

compilation and eliminating, as far as possible, the 

warm-up time of an application. 

 

The existing C2 compiler was written at the end of the 

1990s.  Attempts to add new optimizations and 

improve existing ones quickly made it clear that the 

design of the C2 JIT was just not adequate to allow 

continuous incremental inclusion of new features.  

What was needed was a more modular approach to 

the construction of the compiler. 

 

To address this need, Azul selected the LLVM project 

as a starting point for our new JIT compiler for Azul 

Platform Prime.  

 

The LLVM compiler infrastructure project (formerly 

Low-Level Virtual Machine) was started in 2000 at the 

University of Illinois at Urbana–Champaign.  It is a 

“collection of modular and reusable compiler and tool 

chain technologies” used to develop compiler front 

ends and back ends.  LLVM is released under an open-

source license and is used and supported by a number 

of high-profile companies such as Apple (used in all its 

Mac OS and iOS development tools), Sony (in the SDK 

for the PS4), Intel and Nvidia, among many others. 

 

Having input from engineers from these companies as 

well as many others made it a natural choice for Azul to 

use to start building a new JIT for the JVM. However, 

taking the code from the LLVM project was just the 

start.  Work was required in terms of adapting it to 

work in a managed runtime environment.  The 

compiler needs to work in conjunction with the 

garbage collector and understand how to deal with 

safe points.  It was also necessary to look at how the 

compiler would address the dynamic nature of code 

replacement in the JVM, which is not something that 

needs to be handled by a static compiler.  Having 

enhanced the code to work in a dynamic, managed 

environment, Azul followed the open source principle 

and pushed the changes back to the LLVM project so 

they would be freely available. 

 

The Falcon JIT Compiler 

The new JIT compiler in Azul Platform Prime, using the 

code from the LLVM project, is called Falcon.  The 

name was selected because the Falcon is the fastest 

animal on the planet; the Peregrine Falcon has been 

recorded diving at a speed of over 200 miles per hour! 

 

Using LLVM, a modular and a well-supported open-

source project, means Azul Platform Prime can quickly 

and easily take advantage of optimizations for modern 

hardware.  Let’s look at an example of how Java code 

can be optimized in different ways. 
 

private int sumArray(int[] data) { 

int sum = 0; 

for (int i = 0; i < data.length; i++) 

sum += data[i]; 

return sum; 

} 

 

The code above is simple and existing JIT compilers 

can easily recognize that vector processing instructions 

(like AVX on Intel) can be used.  By taking advantage of 

SIMD processing, the performance of this method can 

be significantly improved. 

 

However, let’s look at a slightly more complex 

example. 
 

private void addArraysIfEven(int[] a, int[] b) { 

if (a.length != b.length) 

throw new RuntimeException(“Length mismatch”); 

for (int i = 0; i < a.length; i++) 

if ((b[i] & 0x1) == 0) 

a[i] += b[i]; 

} 

 

In this case, the application of vector processing 

instructions is not straightforward and traditional JIT 

compilers will not use those instructions but will use 

more basic techniques such as loop unrolling to 
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perform multiple operations for each iteration of the 

loop. 

 

Because Falcon is based on LLVM, it can immediately 

benefit from optimization improvements made in that 

project.  If we look at the instructions generated by 

Falcon for this code we see the following: 

 

 
 

The sections highlighted in red show the AVX2 

instructions generated by Falcon for the example 

method (here we used a Broadwell E5-2690 v4 

processor).  AVX2 instructions work on 256-bit 

registers, so each instruction group is able to process 

eight elements of the array.  Given the way these 

instructions work, the effect is to make the processor 

(assuming a clock speed of 2.5GHz) appear to be 

running at 9GHz for this method. 

 

The vectorization code is also executed four times 

enabling us to process 32 array values for each 

iteration of the loop.   

 

The Falcon compiler also supports the newer AVX-512 

instructions so, had this been run on an Intel Skylake 

processor the number of array elements processed per 

iteration would have been doubled. 

 

This is only one example of how the Falcon JIT 

compiler can generate better performing code.  As 

further optimizations become available through the 

LLVM project, these will be quickly integrated into 

Falcon, as well as improvements made by Azul’s own 

engineers. 

 

ReadyNow! Eliminating JVM Warm-Up 

Looking back at the traditional JVM performance 

graph earlier, one of the fundamental differences to 

the perfect graph is the need for the JVM to profile the 

application, identify methods to compile and then 

compile them.  This overhead is what leads to the 

warm-up time associated with Java applications 

running on traditional JVMs.   

 

Many people ask why it is not possible to just take a 

snapshot of the compiled code the JVM is using when 

it gets to a steady state and reload it when the 

application is started again.  The specification for the 

JVM imposes strict rules on how classes and methods 

are used, specifically around class loading and 

initialization.  These restrictions, along with the 

possibility of method implementations changing 

between application invocations makes the reuse of 

compiled code impractical.   

 

However, ReadyNow!, which is included in Azul 

Platform Prime, is able to do things that can almost 

eliminate application warm-up time. 

 

We already know that the JVM profiles an application 

as it runs to identify methods to compile.  To avoid the 

delay associated with warm-up, ReadNow! records 

profiling data from a running application into a file, 

specifically: 

 

• A list of classes the JVM currently has loaded. 

• A list of classes the JVM has initialized. 

• Instruction profile data.  This includes things such as 

whether a particular call has raised a 

NullPointerException, whether an array access has gone 

out of bounds and so on. 

• Speculative optimization failure data that highlight 

optimization paths to avoid. 

 

When the application is started again, the file 

containing the ReadyNow! profile can be used as input 

to the JVM.  ReadyNow! reads this information and 

pre-compiles required methods at application start-up.  

ReadyNow! uses the information in the profile log to 

speculatively load all the classes that are required.   
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ReadyNow! will also initialize classes that do not 

require running code to be initialized.  (One of the 

restrictions of the JVM specification is that classes can 

only be initialized via the instantiation of an object of 

that type or access to a static field or method of the 

class). Using this eager-loading and eager initialization 

of classes allows for the proactive compilation of most 

methods before the main() method of the application is 

run.   

 

The overall effect of this is very similar to reloading a 

compiled code snapshot but with a number of 

significant advantages. One of those advantages is that 

ReadyNow! can benefit from far longer sampling 

periods than used by the JIT resulting in far fewer 

deoptimizations (typically as much as 80% less). 

 

Conclusions 

At the start of this paper, we saw what a perfect 

performance graph would look like and how a 

traditional JVM graph differed from that. 

 

The graph below shows how the earlier example can 

be improved by the use of features in Azul Platform 

Prime 

. 

  

 

 

• The Falcon replacement for the C2 JIT helps to improve 

the overall speed of the application by applying 

optimizations not used before, such as the use of 

modern processor instructions and vector processing in 

more complex situations. 

• ReadyNow! almost eliminates the problems of 

application warm-up and deoptimizations through the 

recording and reuse of JIT profiling information from 

previous runs of the application. 

• The C4 GC (not covered in this paper) helps to 

eliminate pauses caused by garbage collection needing 

to suspend application threads while objects are 

relocated. 

 

As you can see from this graph, not only does Azul 

Platform Prime get JVM performance very close to the 

perfect profile, it also raises the level of performance 

available to your application above that of traditional 

JVMs. 

 

For additional information: 

• Azul Platform Prime product overview 

• ReadyNow! Data sheet 

• C4 white paper 

• Azul Platform Prime eval download page 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Contact Azul 

To discover how Azul Platform Prime  

can improve scalability, consistency  

and performance of all your Java  

deployments, contact: 

 

385 Moffett Park Drive, Suite 115 

Sunnyvale, CA 94089 USA 

  +1.650.230.6500  

 
www.azul.com 

info@azul.com 

 

https://azul.com/products/prime/
https://www.azul.com/resources-hub/data-sheets/ds-readynow
https://www.azul.com/resources-hub/whitepapers/azul-white-paper-the-continuously-concurrent-compacting-collector-c4
https://azul.com/products/prime/trial-download/
http://www.azul.com/
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