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Importance of geometry
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e For ropes and shoving, good models for parton level geometry
is crucial.

e |t is, however, mostly ad hoc.

e This talk will concern recent work, some unpublished.



Ropes and shoving, in case you forgot

e Shoving: Pair-wise string interactions with:
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e Ropes: Enhancing string tension according to string overlaps.
e String profile “known” from lattice. Geometry provides the
initial conditions.
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AA is probably easiest

e Assuming that daa < dyipr, Glauber + Gaussian smearing
will suffice.

e See also: TRenTo, IP-Glasma, GLISSANDO + wounded
quarks etc.

e Fluctuations/parton shower may play a larger role, here:
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Light nuclei: hairs in the soup

Does not follow Woods-Saxon, other potentials must be used.
Deuteron: Hulthen form, well known, calculable in QM.
Parameters can be estimated from data.

10-20% effects in basic quantities (d-Au 200 GeV), probably
more for flow.

Charged hadrons d+Au /s = 200 GeV, 0-20% centrality Charged hadrons d+Au y/sxn = 200 GeV, 80-100% centrality
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Oxygen

e Potential and parameters unclear. Preciously little data.

e Possibility: Using multibody QM calculation directly or
indirectly (ab initio initial condittions)

e Harmonic oscillator shell model or simple Gaussian ansatz?
How to be sure?
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Look forward!

e The forward region is most sensitive to small changes in
geometry.

e Could be discriminating factor, in particular with RHIC4+LHC
energies.

e Easy test of a-clustering? (Ba. of Aliaksei Kuzmenka)
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Protons are more difficult

e Currently in PYTHIA: Convolution of two Gaussians, no
b-dependence of eccentricity.

e Naive approach could be useful: Ovelapping Gaussians (Ba. of
Johannes Holst)

e Similar to IP-Glasma? Re: Jarkko.
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More advanced using dipoles

The aim and the means

A reasonable calculation of initial state geometry.
Fluctuating nucleon—nucleon cross sections.
MC implementation of Mueller dipoles.
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e Projectile and target cascades evolved for each event.
e Formalism in impact parameter and rapidity.

e Single-event spatial structure.



A step back, BFKL, B-JIMWLK and all that...

e Start with Mueller dipole branching probability:
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e Evolve any observable O(y) — O(y + dy) in rapidity:

Oly+ay) =y [ & ks O(rs) © O]+ 0(ra) |1~ ay [ s
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A powerful formalism!

e Example: S-matrix (eikonal approximation, b-space):

O(n3) ® O(r23) — S(r13)S(r3)

e Changeto T=1-S:
83<;—>: /d273 k3 [(T13) + (T23) — (T12) — (T3 T23)] -

o B-JIMWLK equation, but could be written with other
observables.
e Example: Average dipole coordinate ((z)):
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Monte Carlo implementation

Drawbacks to analytic approach

Involved observables are hard!
Not obvious how to include sub-leading effects.
Not obvious how to treat exclusive final states.

The MC way is a tradeoff: formal precision vs. pragmatism.
Get for free: Rest of the MC infrastructure.

Practically a parton shower-like implementation.

Step 1: Modify splitting kernel with Sudakov:

dP _ Ncas r122 v 2, Neas I’122
27 = 9.2 2,0 P\~ dydr3 7
d-y d r3 27T r13r23 Ymin

Winner-takes-it-all algorithm generates emission up to
maximal rapidity.

Throws away the non-linear term in the cascade.
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Colliding dipole chains & unitarity

e Have: Evolved dipole chain 4 la BFKL.
e Dipole cross section in large-N. limit (consistency with
evolution):

1!
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Effects beyond leading log

Some details

A dipole has a rapidity y, and a p, related to its size p; h/r.
Thus its lightcone momenta is p+ = p; exp(Ly).

e Energy-momentum conservation from bounded p_ translate
to upper bound on dipole sizes.

e Running as: Easily included per-splitting.
e Non-eikonal effects: recoil distributed on emitters in py,p,,
and thus also y.

e Confinement: Explicit confinement scale (or fictitious gluon
mass) entering evolution and collision.

e Unitarized scattering amplitude resums 1/N2 terms in
interaction, equivalent to multi-pomeron exchanges in
interaction frame.
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Example: confinement — hot-spots

e MC makes it easy to switch physics effects on and off.

e More activity around end-points: Hot-spots!

e Initial triangle by hand. Less important at high energies, but
deserves more thought.
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Example: confinement — hot-spots

e MC makes it easy to switch physics effects on and off.

e More activity around end-points: Hot-spots!

e Initial triangle by hand. Less important at high energies, but
deserves more thought.
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e Dynamically generated!

ii5)



Good—Walker & cross sections

—,

e Cross sections from T(b) with normalizable particle wave
functions:

-,
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e Or with photon wave function:
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Model parameters

e This means that all parameters (4) can be tuned to cross
sections
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e Could constrain better in ep with eg. vector meson production.
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Model parameters Il

e Same parameters should describe pp, adds more data to the

tuning.
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e Not as good as dedicated (Regge-based) models.
e Accuracy not the point, control of physics features is! 18



When does substructure start to matter?

e Differences visible, but p-Pb might be the best!
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e NSC correlated flow coefficients, and scale out the magnitude.

e For p-Pb: Only negative in dipole picture.
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Future: stuff | want to do (instead of a summary)

e We have: A good MPI model (PYTHIA) extendible to AA
(Angantyr) with possibility of adding nuclear geometries.
e We have: The dipole picture giving a motivated calculation of
substructure, parameters connected to cross sections.
e | want:
e Tests of nuclear geometry to be carried out at LHC and RHIC.
Requires ab initio estimates of model parameters at least.
e A combined MPI| model, getting rid of the PYTHIA p, ¢
parameter in place of an event-by-event physical quantity.
e To see how the low-p; behaviour of such a model differs from
scattering of CYM fields.
e To use it for ep and eA collision, with all that entails of vector
meson states.
e As many observables as possible to connect the model to data
— what could ropes and jet physics do? what could HBT do?
does this have effects on the rescattering phase — deuteron
production
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