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Introduction

• Small system collectivity: The most surprising LHC outcome!

• Challenges all around the board:

• How far down in system size can the ”SM of Heavy Ions”
remain?

• Can the standard tools for min bias pp remain standard?

Most important question for QCD phenomenology!

� Does similar signatures across systems share physics origin?

• This talk: a microscopic, plasma free approach.

1. MPIs and collectivity from string interactions.
� flow, strangeness and possible jet modifications.

2. MPIs from pp to AA: The Angantyr model.
� basic quantities, centrality and final state rescatterings.
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MPIs in PYTHIA8 pp Sjöstrand and Skands: arXiv:hep-ph/0402078

• Several partons taken from the
PDF.

• Hard subcollisions with 2→ 2 ME:

Figure T. Sjöstrand
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• Momentum conservation and PDF scaling.
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• Picture blurred by CR, but holds in general. 3



Color reconnection? What’s that?

• Many partonic subcollisions ⇒ Many hadronizing strings.
• But! Nc = 3, not Nc =∞ gives interactions.
• Easy to merge low-p⊥ systems, hard to merge two hard-p⊥.

Pmerge =
(γp⊥0)2

(γp⊥0)2 + p2
⊥

Figure T. Sjöstrand

• Actual merging by minimization of ”potential energy”:

λ =
∑

dipoles

log(1 +
√

2E/m0)
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Colour Reconnection – microscopic collectivity?
(Ortiz et al.: 1303.6326, CB QM18: 1807.05217 & mcplots.cern.ch)

- Mechanism allows cross–talk
over an event.

- Based on physics effect.

- Needed for multiplicity &
〈p⊥〉.

- Produces flow–like effect.

, No direct space–time
dependence.

, Concrete model clearly
ad–hoc.

, Short range in rapidity only.

. Nch
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Microscopic final state collectivity

• Clearly we need more! Where is the geometry?

• Proposal: Model microscopic dynamics with interacting Lund
strings

• Additional input fixed or inspired by lattice, few tunable
parameters.

τ ≈ 0 fm: Strings no transverse extension. No interactions,
partons may propagate.

τ ≈ 0.6 fm: Parton shower ends. Depending on ”diluteness”,
strings may shove each other around.

τ ≈ 1 fm: Strings at full transverse extension. Shoving effect
maximal.

τ ≈ 2 fm: Strings will hadronize. Possibly as a colour rope.

τ > 2 fm: Possibility of hadronic rescatterings.

6



Microscopic final state collectivity

• Clearly we need more! Where is the geometry?

• Proposal: Model microscopic dynamics with interacting Lund
strings

• Additional input fixed or inspired by lattice, few tunable
parameters.

τ ≈ 0 fm: Strings no transverse extension. No interactions,
partons may propagate.

τ ≈ 0.6 fm: Parton shower ends. Depending on ”diluteness”,
strings may shove each other around.

τ ≈ 1 fm: Strings at full transverse extension. Shoving effect
maximal.

τ ≈ 2 fm: Strings will hadronize. Possibly as a colour rope.

τ > 2 fm: Possibility of hadronic rescatterings.

6



String shoving (CB, Gustafson, Lönnblad: 1612.05132, 1710.09725)

• Strings = interacting vortex lines in superconductor.
• For t →∞, profile known from lQCD (Cea et al.: PRD89 (2014) no.9,

094505):

E(r⊥) = C exp
(
−r2
⊥/2R2

)
Eint(d⊥) =

∫
d2r⊥E(~r⊥)E(~r⊥ − ~d⊥)

f (d⊥) =
dEint

dd⊥
=

gκd⊥
R2

exp

(
−d2
⊥(t)

4R2

)
.

• All energy in electric field → g = 1.

• Reality:
Type 1 SC Energy to destroy vacuum.
Type 2 SC Energy in current.
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String shoving (CB, Gustafson, Lönnblad: 1612.05132, 1710.09725)

• Strings = interacting vortex lines in superconductor.
• For t →∞, profile known from lQCD (Cea et al.: PRD89 (2014) no.9,

094505):

E(r⊥) = C exp
(
−r2
⊥/2R2

)
Eint(d⊥) =

∫
d2r⊥E(~r⊥)E(~r⊥ − ~d⊥)

f (d⊥) =
dEint

dd⊥
=

gκd⊥
R2

exp

(
−d2
⊥(t)

4R2

)
.

• All energy in electric field → g = 1.

• Reality:
Type 1 SC Energy to destroy vacuum.
Type 2 SC Energy in current.

7



String shoving (CB, Gustafson, Lönnblad: 1612.05132, 1710.09725)
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Shoving: Prehistoric origins

• 1st law of QCD phenomenology: When you think you have a
good idea...

• ...there is already a Russian paper from the 80’es about it.
• Highly underappreciated paper – O(10) citations.
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Some Results: shoving

• Reproduces the pp ridge with suitable choice of g parameter.
• Improved description of v22|∆eta| > 2.(p⊥) at high

multiplicity.
• Low multiplicity not reproduced well – problems for jet

fragmentation?
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What about jets? (CB: 1901.07447)

• String dynamics ought to be universal.

• Consider now:

1. Events with a Z -boson present.
2. Events with Z+jet.

• Z → l+l− not affected by shoving.

• Provides kinematics handle.

Common statement:

� FS interactions → flow should also affect jets.

� The shoving model provides a framework to study such effects.

� This does not mean that shoving is the full story.
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Step 1: Just a Z -boson

• The presence of a Z should not change the physics.
• It can introduce kinematical biases.
• Recently measured by ATLAS (ATLAS-CONF-2017-068).
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Before introducing a jet...

• Space–time information is important!
• Here: Overlapping 2D Gaussians (p mass distribution).
• Figure string R = 0.1 fm, reality R ∼ 0.5 fm.
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What is the effect of shoving?

• Nothing! Surprised?

• Of course not – the effect is geometrically surpressed.

• Toy geometry: Let jet hadronize ”inside”.

• Mimic the effect in AA collisions.

Pythia 8
Pythia 8 + shoving
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Qualitative similarities (CMS: 1702.01060)

• Need better obsevables.

• Soft modifications on jet edge
(large R).
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Jet cross section

• Integrate leading jet spectrum: σj =
∫∞
p⊥,0

dp⊥,j dσ
dp⊥,j

• Expectation: 〈dp⊥/dη〉 ∝ f (〈d⊥〉)⇒ ∆σj ∝ R2

• Effect probably too small to measure.
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Jet mass

• Calorimetric quantities like jet mass good for experiments.
• Affects the soft jet ”corona” or soft jets.
• Difficult with present data - task for HL-LHC?
• Investigate anti-soft-drop? Soft-keep?
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The Lund String (80’s: Andersson, Bo et al. Z.Phys. C3 (1980) 223, Z.Phys. C20 (1983) 317)

• Non-perturbative phase of final state.
• Confined colour fields ≈ strings with tension κ ≈ 1 GeV/fm.

• Breaking/tunneling with P ∝ exp
(
−πm2

⊥
κ

)
gives hadrons.

Lund symmetric fragmentation function

f (z) ∝ z−1(1− z)a exp

(−bm⊥
z

)
.

a and b related to total multiplicity.

Light flavour determination

ρ =
Pstrange

Pu or d
, ξ =

Pdiquark

Pquark

Related to κ by Schwinger equation.
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Rope Hadronization (JHEP 1503 (2015) 148 – explored heavily in 80’s and 90’s!)

• After shoving, strings (p and q) still overlap.
• Combines into multiplet with effective string tension κ̃.

Effective string tension from the lattice

κ ∝ C2 ⇒
κ̃

κ0
=

C2(multiplet)

C2(singlet)
.

Easily calculable using SU(3) recursion relations

{p, q} ⊗~3 = {p + 1, q} ⊕ {p, q + 1} ⊕ {p, q − 1}
⊗ ⊗ ...⊗︸ ︷︷ ︸
All anti-triplets

⊗ ⊗ ⊗ ...⊗︸ ︷︷ ︸
All triplets

• Transform to κ̃ = 2p+q+2
4 κ0 and

2N = (p + 1)(q + 1)(p + q + 2).
• N serves as a state’s weight in the random walk.

18
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Divide and conquer!

• Consider now the stacking of such pairs.
• SU(3) multiplet structure decided by random walk.

3

6

3̄

10

8

8

1

Three conceptual options

1. Highest multiplet (Rope).
2. Lower multiplet (junction structure).
3. Singlet.
Lower multiplets & singlets → QCD colour reconnection.
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Junction CR (Christiansen and Skands arXiv:1505.01681 [hep-ph])

• Possible structures from QCD-inspired weight.
• Selection relies on λ-measure (potential energy).

Ordinary string
reconnection

(qq: 1/9, gg: 1/8, model: 1/9)

Triple junction
reconnection

(qq: 1/27, gg: 5/256, model: 2/81)

Double junction
reconnection

(qq: 1/3, gg: 10/64, model: 2/9)

Zipping reconnection

(Depends on number of gluons)
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The highest multiplet

• Remaining structure joins in a rope.

• Rope breaks one string at a time, reducing the remaining
tension.

• Junctions carry baryon number.

Strangeness enhanced by:

ρLEP = exp

(
−π(m2

s −m2
u)

κ

)
→ ρ̃ = ρ

κ0/κ
LEP

• QCD + geometry extrapolation from LEP.

• Can never do better than LEP description!
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Forward/central multiplicity folding

• Full, honest comparison requires reproduction of
centrality-measure.
• Recently possible in the Rivet project (rivet.hepforge.org, ask for details)

XIXVIIIVIIVIVIVIIIIII
Forward multiplicity class

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

dN
ch

d
=

0

PYTHIA8.3 Default
PYTHIA with Ropes
ALICE Data

22



Strangeness enhancement

• Fair description, but quantitavely off in places.
• Most interesting for further microscopic development!
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The LEP constraints (An aside, CB in prep.)

• Statement: Pythia describes LEP correctly!

• Truth: ... well, mostly!
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• Even LEP leaves room for model development!

• ...and LHC allows for catching suspicious data!

• Needs: Apples-to-apples comparison to data.
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Summary of pp part

• String interactions to explain collective phenomena in pp.

• String shoving for flow.
• Rope hadronization & junctions for strangeness.

• Can reveal venues for jet modifications in pp.

• Can shed light on old data from LEP.

• Next: Going to heavy ion physics.
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Angantyr – the Pythia heavy ion model (CB, G. Gustafson, L. Lönnblad: JHEP 1610

(2016) 139, += Shah: JHEP 1810 (2018) 134)

• Pythia MPI model extended to heavy ions since v. 8.235.

1. Glauber geometry with Gribov colour fluctuations.
2. Attention to diffractive excitation & forward production.
3. Hadronize with Lund strings.
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Glauber initial state

• Determine which nucleons are ”wounded”.
• Geometric picture only relies on pp cross section.
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Glauber–Gribov colour fluctuations

• Cross section has EbE colour fluctuations.
• Parametrized in Angantyr, fitted to pp (total, elastic,

diffractive).
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Particle production: Wounded nucleons

• Simple model by Bia las and Czyz.
• Wounded nucleons contribute equally to multiplicity in η.
• Originally: Emission function F (η) fitted to data.

• Angantyr: No fitting to HI data, but include model for
emission function.
• Model fitted to reproduce pp case, high

√
s, can be retuned

down to 10 GeV. 29
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The emission function

• A schematic view of a pD collision. Contains 3 wounded
nucleons.
• First two are a normal non-diffractive pp event.
• The second one is modelled as a single diffractive event.
• Generalizes to all pA and AA collisions.
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Secondary absorptive interactions

• Similarity: triple-Pomeron diagrams.

Diagram weight proportial to (1 + ∆ = αP(0))

ds

s(1−2∆)

dM2
D

(M2
D)(1+∆)

diffractive excitation,

ds

s(1−∆)

dM2
A

(M2
A)(1−∆)

secondary absorption.
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Some results - pPb

• Centrality measures are delicate, but well reproduced.
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Some results - pPb

• Multiplicity distributions well reproduced.
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Basic quantities in AA

• Reduces to normal Pythia in pp, in pA in AA:
1. Good reproduction of centrality measure.
2. Particle density at mid–rapidity.
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• Necessary baseline for any full model.

• FS needs hadronization mechanism.

34



So... collectivity in AA?

• Ropes and shoving in AA a work in progress.

• Conceptual difficulty:

1. Strings live about 2 fm before hadronization.
2. A QGP lives ≈ 10 times longer!
3. How can we get the neccesary amount of flow?
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Final state interactions in AA (CB, D. D. Chinellato, A. Vieira, J. Takahashi: in prep.)

• Hadronic final state interactions matters in AA.
• Especially in non-fluid scenario, with short times.
• Pythia/Angantyr + URQMD.
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Results – flow

• Rescattering produces correlations long-range in η (the double
ridge).

• Previously seen, but not at these energies, with general
purpose MC input (Bleicher et al. arXiv:nucl-th/0602009).
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Results – flow

• Understanding model influence: Correlations wrt. event plane
calculated from Pythia Glauber.
• Automatic removal of jet peak.
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Results – flow

• Understanding model influence: Correlations wrt. event plane
calculated from Pythia Glauber.
• Automatic removal of jet peak.
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Results – elliptic flow coefficients

• v2 vs centrality: same dynamics as in ALICE data, but 50%
magnitude; v2 via cumulants similar to v2 with correlations
wrt. event plane
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• Similar conclusion from v2(p⊥)
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Summary of the AA part

• pA and AA collisions
in PYTHIA.

• Focus on soft
productions.

• Key: Cross section
fluctuations &
secondary absorption.

• Early results PYTHIA
+ URQMD promising
aspects.

• Easy to use:
Download and run.

• To come: microscopic
collectivity in AA.

40



Summary

Most important question for QCD phenomenology!

� Does similar signatures across systems share physics origin?

• Answer requires combined effort from:
� pp & HI, low & high energy.
� theory, phenomenology and experiment.

• This talk ”small” → ”large”.
� ”large” → ”small” just as crucial.
� all approaches: apples-to-apples comparisons to data

important.
• Common problem: key future experiments.

� qualitative differences between thermalised and
non-thermalised approaches?

� what can ultra-small systems tell us? (e+e−, UPCs, EIC...)
� many possibilities for collaboration.

• Exciting times for heavy ion physics ahead...
• ... if we know what questions to ask!

Thank you for the invitation!
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Some additional material
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The importance of the initial state

• Space–time information is important: We rely on models! Also
true for hydro.
• Here: Overlapping 2D Gaussians (p mass distribution).
• Figure string R = 0.1 fm, reality R ∼ 0.5 fm.
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Constraining the initial state (CB and C. O. Rasmussen: 1907.12871 [hep-ph])

• Ad hoc models of the initial state not optimal.
• Mueller dipole BFKL as parton shower (from Pythia 8.3X).

Dipole splitting and interaction
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Everything fitted to cross sections

• Avoids fitting to predictions.

• Unitarized dipole-dipole amplitude plus Good-Walker.
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Geometry in pp, pA and AA

• Assuming ε2,3 ∝ v2,3.

• Dipole model: ε2,3 equal for pp and pPb.
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Flow fluctuations: Looking inside

• Flow fluctuations and normalized symmetric cumulants.

• Best discrimination in pPb.

• Dipole evolution → negative NSC (2, 3) in pPb.
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• Important to develop realistic initial states.

• Point stands also for hydro.
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Jet shoving: Hadrochemistry

• Hadrochemistry indirectly affected through basic string
equations.
• Study inclusive quantities: Average hadron mass and total jet

charge: 〈mh〉 = 1
Np

∑Np

i mh,i ,Qj =
∑Np

i qh,i
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