Rivet for Heavy Ions

features and prospects for EIC

Christian Bierlich, bierlich@thep.lu.se University of Copenhagen Lund University November 22 2019, MCEG for EIC, Vienna

Rivet

- Analysis system for Monte Carlo events. (Buckley et. al.: arXiv:1003.0694.)
 - 1. Data preservation.
 - 2. Monte Carlo validation.
- Generator independent, HepMC events.
- C++ library with analyses as "plugins", optimally written by the analyser.

Physics theory Phenomenological model Event generator Analysis and validation Rivet Collider experiment Detector experiment

LHC Coverage

- Main LHC pp and LEP analyses.
- Standard tool @ LHC, fair coverage...

Rivet analysis coverage

Rivet analyses exist for 418/5667 papers = 7%. 176 priority analyses required.

Total number of Inspire papers scanned = 7216, at 2019-11-16

Breakdown by identified experiment (in development):

Key	ALICE	ATLAS	CMS	LHCb	B-factories	HERA	LEP	Other
Rivet wanted (total):	197	258	351	160	1391	445	1393	1054
Rivet REALLY wanted:	35	37	71	9	3	13	7	1
Rivet provided:	23/220 = 10%	156/414 = 38%	80 /431 = 19 %	12/172 = 7%	59/1450 = 4%	9/454 = 2%	60/1453 = 4%	19/1073 = 2%

LHC Coverage

- Main LHC pp and LEP analyses.
- Standard tool @ LHC, fair coverage...
- ...but not for heavy ions! (http://rivet.hepforge.org)

Rivet analysis coverage (heavy ion only)

Rivet analyses exist for 15/570 papers = 3%. 30 priority analyses required.

Total number of Inspire papers scanned = 617, at 2019-11-16

Breakdown by identified experiment (in development):

Key	ALICE	ATLAS	CMS	LHCb	B-factories	HERA	LEP	Other
Rivet wanted (total):	146	41	72	6	0	0	1	289
Rivet REALLY wanted:	19	1	10	0	0	0	0	0
Rivet provided:	10/156 = 6%	2/43 = 5%	0/72 = 0%	0/6 = 0%	0	0	0/1 = 0%	3/292 = 1%

Why no heavy ions?

- Heavy lons have not been prioritized.
 - Lack of common interest (few MCs for HI).
 - \bullet Lack of specialized functionality \to High threshold.

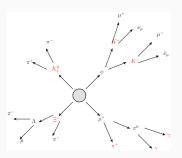
Why no heavy ions?

- Heavy lons have not been prioritized.
 - Lack of common interest (few MCs for HI).
 - ullet Lack of specialized functionality o High threshold.

That has changed!

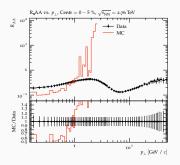
- Joined effort by LHC experimentalists and MC authors.
- ♦ Features from v. 2.7.0, more polished in the 3.X series
- ♦ Dedicated paper, est. ultimo 2019.

Relevance for EIC?


- No data to preserve... yet!
- But!
 - Older datasets and analyses needs implementation for MC tuning.
 - 2. Rivet can work as "communication tool" for MCEGs.
 - 3. Experiments can easily communicate desired predictions.
 - 4. For data preservation, best to get in on the ground floor.
- What we need: A strong message from MCEG community that this is our preferred collaboration tool!

The rest of this talk

- 1. Technical additions:
 - 1.1 Experimental particle definitions.
 - 1.2 Re-entrant finalize.
 - 1.3 Analysis options.
 - 1.4 Event mixing.
- 2. Physics motivated additions:
 - 2.1 Centrality selection.
 - 2.2 Flow observables.
- 3. Open discussion: What is needed for EIC?


Experimental particle definitions

- The projection system includes standard tools.
- ...but correct decay corrections a larger problem for soft QCD/HI analyses.
- Easier to implement with PrimaryParticles projection just provide a list.

• Example: ALICE::PrimaryParticles.

Re-entrant finalize: rivet-merge

- 1. Read in histogram files, and re-generate analysis objects.
- 2. Run void finalize() again.
- 3. Enables statistically correct merging of difficult objects (ratios, scatters, ...).
- 4. Merge different physics runs to a single figure (AA/pp ratios, \sqrt{s} dependance, ...)

Analysis options

- Implant option (number, selection, ...) in analysis code at run-time.
- More flexible analyses, versatile code can be re-used.

Analysis options

- Implant option (number, selection, ...) in analysis code at run-time.
- More flexible analyses, versatile code can be re-used.

Use:

```
rivet events.hempc -a
AnalysisName:foo=1:bar=a:baz=42.
```

Event mixing

- Correlation analyses important for soft/collective physics.
- Experimental corrections for limited pair acceptance involves event mixing.

$$S(\Delta p_1, \Delta p_2, ..., \Delta p_n) = \frac{1}{N_{\text{trig}}} \frac{d^n N}{d\Delta p_1 d\Delta p_2 ... d\Delta p_n}.$$

$$B(\Delta p_1, \Delta p_2, ..., \Delta p_n) = \frac{1}{N_{\text{trig}}} \frac{d^n N^{\text{mixed}}}{d\Delta p_1 d\Delta p_2 ... d\Delta p_n}.$$

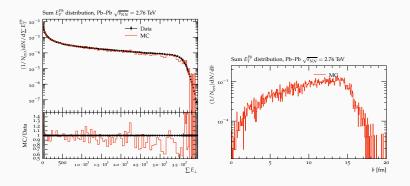
$$C(\Delta p_1, \Delta p_2, ..., \Delta p_n) = B(0, 0, ..., 0) \frac{S(\Delta p_1, \Delta p_2, ..., \Delta p_n)}{B(\Delta p_1, \Delta p_2, ..., \Delta p_n)}.$$

- Dedicated projection for mixed final states. Cache of previously generated events.
- Correct handling of weighted events.

Centrality selection

- Centrality is ubiquitous, but not directly measurable.
- Experiment: Forward particle production/energy flow as proxy.
 Cannot always be unfolded.
- MC: Not always feasible to fold prediction with "forward central" correlation.

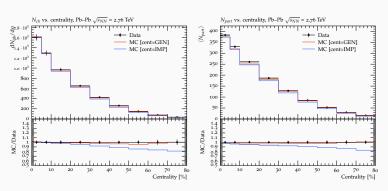
Centrality selection


- Centrality is ubiquitous, but not directly measurable.
- Experiment: Forward particle production/energy flow as proxy.
 Cannot always be unfolded.
- MC: Not always feasible to fold prediction with "forward central" correlation.

Solution: Users' choice between several options

- 1. Experimental measure (if existing).
- 2. Generated version of experimental measure.
- 3. Impact parameter distribution.
- 4. MC supplies centrality number.
 - Three latter requires a "calibration run".

Centrality selection, calibration


- Example calibration: ATLAS_PBPB_CENTRALITY.
- (data points extracted from paper, not unfolded).

Generated histograms are preloaded into Rivet: new preload option.

Centrality and Rivet options

- Run the same analysis, with different options.
- Example: ALICE_2010_I880049

Flow observables

Key heavy ion observables:

$$E\frac{\mathrm{d}^3N}{\mathrm{d}^3p} = \frac{1}{2\pi} \frac{\mathrm{d}^2N}{p_{\perp}\mathrm{d}p_{\perp}\mathrm{d}y} \left(1 + 2\sum_{n=1}^{\infty} v_n \cos([n(\phi - \Psi_n)])\right).$$

Naively, but cumbersome:

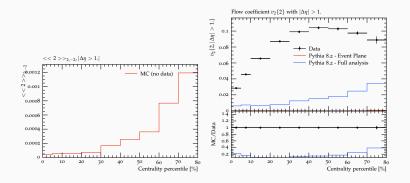
$$\langle v_n^2 \rangle \approx \langle \cos(n(\phi_1 - \phi_2))) \rangle = \langle \exp(in(\phi_1 - \phi_2)) \rangle$$

• Rewrite with $Q_n = \sum_{k=1}^{M} w_k \exp(in\phi_k)$, it turns out that all harmonics to all orders can be rewritten like this, eg.

$$\langle 2 \rangle_n = \frac{|Q_n|^2 - M}{M(M-1)}.$$

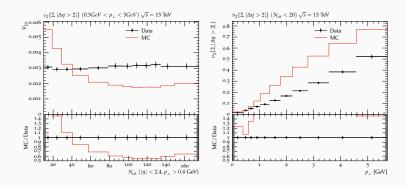
• Non-flow reduced by increasing orders, or requiring event gaps.

Flow observables – generic framework implementation

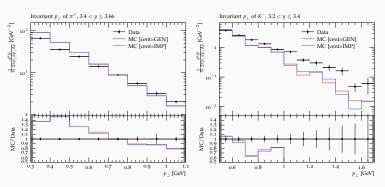

- Generic framework (the flow equivalent of FastJet!) and add-ons implemented. (1010.0233, 1312.4572).
- Functionality, calculate any $\langle\langle M\rangle\rangle_{m,n}$.
- Automatic subtraction of lower orders and error calculation.

Flow observables – generic framework implementation

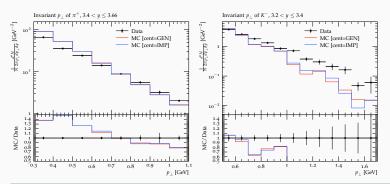
- Generic framework (the flow equivalent of FastJet!) and add-ons implemented. (1010.0233, 1312.4572).
- Functionality, calculate any $\langle\langle M\rangle\rangle_{m,n}$.
- Automatic subtraction of lower orders and error calculation.


Sample results

- Some HI analyses implemented, here: ALICE_2016_I1419244.
- Correlators and cumulants can be plotted, also without data.


HI methods in pp (CMS: Evidence for collectivity in pp collisions at the LHC)

- Heavy ion methods also available for pp analyses.
- Allows for new types pp analyses in Rivet.
- Example: CMS_2017_I1471287.


Data preservation, older experiments

- Older data still exist but not forever!
- Example: BRAHMS_2004_I647076

Data preservation, older experiments

- Older data still exist but not forever!
- Example: BRAHMS_2004_I647076

WANTED: Other collaborations!

Ongoing work with STAR members.

Discussion ongoing with GSI.

Several NA-XX results implemented.

Discussion

- Several technical and physics motivated additions for HI physics.
 - 1) Experimental particle definitions, 2) Re-entrant finalize, 3) Analysis options 4) Event mixing, 5) Centrality selection, 5) Flow observables.
- Way forward for EIC?
 - 1. Wanted feedback: Features missing? wanted?
 - 2. More analyses: LHC, RHIC, HADES, other? how? who?
 - 3. Other venues ν A (CCFR, ν TeV, other?), interest? how? who?
 - 4. Other venues Very forward production, LHCb velo?, Cosmics (Auger? Other?), interest, how? who?
 - 5. More compatible generators? (PHSD, SMASH in contact), >400 analyses strong selling point, others?
 - 6. Other comments?