Hyperfine splitting in strings and rope hadronization for jets

Christian Bierlich, bierlich@thep.lu.se Lund University Based on: arXiv:2201.06316, 2202.12783 March 2nd 2022, ALICE Week

PYTHIA: Monte Carlo for e^+e^- , ep, pp, pA, AA and more

Recent years: Renewed focus on hadronization models \rightarrow small system collectivity.

- The baseline (single string hadronization) is crucial for further model development.
	- New development based quark spin-spin interactions.
	- Historically tuned to LEP, opportunity for ALICE low-mult tuning?
- The baseline (single string hadronization) is crucial for further model development.
	- New development based quark spin–spin interactions.
	- Historically tuned to LEP, opportunity for ALICE low-mult tuning?
- News on ropes (coherent multi-string hadronization) improved and generalized geometry calculation.
	- Necessary ingredient for pA and AA ropes.
	- Now: rope effects in jet fragmentation: opportunities for ALICE measurements?

- Non-perturbative fragmentation, Lund strings, $\kappa \approx 1$ GeV/fm.
- Tuned to LEP data, cleanest environment, poor statistics.

- Non-perturbative fragmentation, Lund strings, $\kappa \approx 1$ GeV/fm.
- Tuned to LEP data, cleanest environment, poor statistics.

Flavour by tunnelling

 \spadesuit $\cal P$ \propto exp $\Big(\left(\frac{\pi m_\perp^2}{\kappa}\right)$, where m is the quark mass \rightarrow parameter.

- Non-perturbative fragmentation, Lund strings, $\kappa \approx 1$ GeV/fm.
- Tuned to LEP data, cleanest environment, poor statistics.

Flavour by tunnelling

 \spadesuit $\cal P$ \propto exp $\Big(\left(\frac{\pi m_\perp^2}{\kappa}\right)$, where m is the quark mass \rightarrow parameter.

- Non-perturbative fragmentation, Lund strings, $\kappa \approx 1$ GeV/fm.
- Tuned to LEP data, cleanest environment, poor statistics.

Flavour by tunnelling

$$
\spadesuit \mathcal{P} \propto \exp\left(-\frac{\pi m_\perp^2}{\kappa}\right), \text{ where } m \text{ is the quark mass } \to \text{ parameter.}
$$

From quarks to hadrons

• eg.
$$
\rho^0 = \frac{1}{\sqrt{2}} \left(|\mathbf{u}\bar{\mathbf{u}}\rangle + |\mathbf{d}\bar{\mathbf{d}}\rangle \right)
$$
 not so clear.

- 1. Spin factors.
- 2. Mass suppression parameters
- 3. **SU(6)** Clebsch–Gordans (fl \times sp).
- \star Not very predictive!
- \star Crucial for event generation.

No easy choice of parameters! (CB, Chakraborty, Gustafson, Lönnblad: 2201.06316)

- Example: Vector/Pseudoscalar meson parameter: $y_{\text{ud}} \times 3$. 1. Two string breaks produce a ud state.
	- 2. $Q = 1$ and $S = 0 \rightarrow \rho^+$ (vector) or π^+ (pseudo–scalar).

3.
$$
\mathcal{P}_{\pi^+} = \frac{1}{1+3y_{ud}}, \mathcal{P}_{\rho^+} = \frac{3y_{ud}}{1+3y_{ud}}, \text{ where } \mathcal{P}_{\pi} + \mathcal{P}_{\rho} = 1.
$$

• Numerically $y_{ud} = 0.5$ and $y_s = 0.55$: "mass splitting" parameters.

Should split even further!

♠ Colour magnetic moments ∝

$$
1/\mu_{ud}^2
$$
, $1/(\mu_{ud}\mu_s)$, $1/\mu_s^2$

♣ Simple ansatz:

$$
y(n_{\rm s})=y_1+n_{\rm s}y_2
$$

• Similar argument for diquarks (implementation slightly more complicated).

Why should I care?

• Low multiplicity is parametrization of LEP!

- Any model must get baseline right.
- Important not to ignore historical data.
- Venues for further exploration?

Results in e^+e^-

- Not too much data on interesting final states.
- Tension and "data rot" (extrapolation to full phase space).

- \star Data will rot. Differential preservation key (Rivet).
- \star Possibilities for re-tuning before model-exclusion.

Results in ep and pp

- DIS = smallest had. system. ZEUS $\rightarrow \phi$ enhancement? No!
- Low multiplicity pp: Notable changes. To the better?

- \star ALICE low multiplicity tunes an option?
- \star Note Ω and p. Both warrants further study!

• Overlapping strings combine into *multiplet* with effective string tension $\tilde{\kappa}$.

Effective string tension from the lattice $\kappa \propto \mathcal{C}_2 \Rightarrow \frac{\tilde{\kappa}}{\kappa_c}$ $\frac{\tilde{\kappa}}{\kappa_0} = \frac{C_2(\text{multiplet})}{C_2(\text{singlet})}.$ • Overlapping strings combine into *multiplet* with effective string tension $\tilde{\kappa}$.

Effective string tension from the lattice

$$
\kappa \propto C_2 \Rightarrow \frac{\tilde{\kappa}}{\kappa_0} = \frac{C_2(\text{multiplet})}{C_2(\text{singlet})}.
$$

Strangeness enhanced by:

$$
\rho_{LEP} = \exp\left(-\frac{\pi(m_s^2 - m_u^2)}{\kappa}\right) \rightarrow \tilde{\rho} = \rho_{LEP}^{\kappa_0/\kappa}
$$

- $QCD +$ geometry extrapolation from LEP.
- Can never do better than LEP initial conditions!

Strangeness enhancement from ropes

- Good description of strangeness enhancement.
- In PYTHIA for years, used in several ALICE publications.

(Black ALICE data, red PYTHIA default, blue PYTHIA with ropes)

- Assumption: all strings parallel to beam axis.
- Hyperfine effects not included, baseline is off!

New developments (CB, Chakraborty, Gustafson, Lönnblad: 2202.12783)

- New calculation of string overlaps \rightarrow arbitrary geometry.
- Stepping stone for pA and AA, crucial for jets!

- Still caveats before universally applicable.
- Special cases can already be tested!

Model behaviour minimum bias pp

- Key model result is effective $\kappa \to \text{enhancement.}$
- Can now be studied differentially!

- $\star \langle dN/d\eta \rangle_{|n|<0.5}$ natural scaling variable.
- \star Maximal effect at $p_{\perp} \approx 1$ GeV. ALICE territory.
- Non-observation of jet-quenching in pp is high priority!
- Difficult as no reference, and multiplicity gives jet bias.
- Generator based predictions a way out?

Z+jet observables

♠ Subtract UE under Z, can work across systems.

♣ Flavour ratios inside and outside jet $(\sqrt{s} = 13 \text{ TeV}, \text{ anti-kT}, R_j = 0.4, \Delta \phi_{jet, Z} > 2\pi/3)$

• Also potential without Z-bosons, subtraction more tricky.

Jet observables, results I

• Larger effects in UE than jet, hints at pp jet modification.

- \star PID–in–jets measurements that no-one else can do (?).
- \star Small effects \rightarrow lots of data (HL-LHC?).

Results II: Inside the jets

- More differential \rightarrow larger effects.
- Expect largest effect at low $z = p_{\perp,\text{particle}}/p_{\perp,\text{jet}}$.
- Cannot technically go near $z = 1$ yet.

• Largest theory caveat is string radius.

- New developments on string and rope hadronization.
	- 1. Updated baseline model including hyperfine splitting effects.
	- 2. Improved geometry handling of rope hadronization, allowing jet effects.
- Opportunities: transition to more quantitative regime!
	- 1. Be aware of baselines and tuning when doing model comparisons.
	- 2. Strangeness in jets a venue for small system jet modifications.
	- 3. Models in continuous development.

Thank you for the invitation!