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1 Introduction

This paper establishes evidence on how financial markets perceive and value the joint risk
of sovereign default and its currency devaluation, known as the Twin Ds. Understanding
how the markets perceive the Twin Ds is important as credit and exchange rate risks may
be reinforcing each other on the way towards economic and financial distress. Furthermore,
devaluation could be used as a tool to mitigate the impact of sovereign default, a point
made in the theoretical literature as early as by Calvo (1988) and more recently by Na,
Schmitt-Grohe, Uribe, and Yue (2018). Typically, such risk arises in the context of emerging
market economies, and to date the measurement was constrained to realized outcomes
during sovereign distress (Na, Schmitt-Grohe, Uribe, and Yue, 2018, Reinhart, 2002). The
advantage of using prices of assets that are sensitive to this risk is that they are informative
about the whole distribution of outcomes, not only the distress itself, and how these risks
are valued in the marketplace.

Local currency (LC) bonds are the ideal source of information about the Twin Ds. This is
because a US dollar (USD) investor is exposed to both credit and exchange rate risks. The
availability of LC debt is a relatively recent phenomenon. Du and Schreger (2016) emphasize
the steady growth of LC debt issued by emerging market economies since the early 2000s
accompanied by a decline in the debt issued in foreign currency. Amongst all the regions,
the Asia-Pacific (AP) boasts the most developed LC debt markets. In part spurred by policy
initiatives in response to the 1997-98 Asian financial crisis, local currency government bond
markets have grown from less than a quarter of a trillion USD in 1995 (or 10% of GDP) to
$10.1 trillion in 2018 (corresponding to 48.5% of GDP). That is in contrast to, for example,
many Latin American countries, where insufficient macroeconomic stability has hampered
the growth of local currency bond markets. As a result, the amount of outstanding Latin
American LC bonds has barely increased over the past decade: there was a total of $917
billion in 2018, compared to $808 billion in 2005.1

The focus on the AP region offers another point of departure from the traditional analysis
of sovereign credit risk. Usually, it is studied in reference to “global” variables, which means
the United States in practice. In Asia, however, China potentially provides another anchor
in addition to the US, given its size and its economic significance for the region. In 2017,
China’s GDP based on PPP valuation exceeded that of the US ($23.1 trillion vs. $19.4
trillion), and its share of global GDP had risen from 2.3% in 1980 to more than 18% in
2017. Moreover, the Chinese government bond market, which was virtually nonexistent in
1980, had grown beyond $7 trillion in outstanding bonds by 2019. Furthermore, as Farhi
and Maggiori (2019) emphasize, China is emerging as a challenger to the dominance of the
US dollar both in the International Monetary System and in the International Price System.
Thus, we investigate the impact of macroeconomic and bond market developments of these
two countries on local currency bond markets in Asia.

1This includes Argentina, Brazil, Chile, Colombia, Mexico, Peru, and Venezuela. Source: BIS, Cbonds
EM.
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We address the questions raised above by studying the behavior of bond yields, both LC
and USD, of four AP economies with active LC markets: Indonesia, Korea, Malaysia, and
Thailand. We find strong evidence of the Twin Ds effect in periods of no distress via
impulse responses: both AP and Chinese credit risk variables affect depreciation rates, and
vice versa. The Twin Ds risk premiums are large even during expansions. They range
between a half and two times the US bond risk premiums, depending on maturity. The
risk-return trade-off from exposure to the Twin Ds risk is attractive, as investing in LC debt
more than doubles the maximum Sharpe ratio compared to investment in global bonds only.

As the initial step of our analysis, we model the joint dynamics of macroeconomic and
financial factors proposed as yield curve determinants in the literature. This approach
serves two purposes. First, we can account for interactions between these factors as they
affect sovereign credit spreads. Second, we can characterize not only the contemporaneous
but also the multi-horizon role of these variables.

This approach is a departure from existing empirical frameworks. Most studies consider
regressions of credit spreads on possible local and global drivers. That limits the analysis
to contemporaneous relationships only. Furthermore, it does not account for interactions
between variables. Last but not least, the choice of potential determinants is not tightly
connected to a bond valuation framework.

Despite their relative macroeconomic stability, the selected countries do vary to some extent
in terms of monetary policy, exchange rate stabilization policy, credit quality and tightness
of capital controls. This is in contrast to the traditional analysis of bond markets in large
advanced economies, which share a lot of similarities across all of these dimensions. Such
cross-country differences among AP countries complicate the analysis of the factors driving
bond yields in these countries. Another complication arises from the relatively short time
span of data on most AP bond markets. This deprives researchers of rich time series
evidence that is enjoyed by those who analyze bond markets in advanced economies, such
as the United States.

We address both complications in one unifying framework by modeling state variables via
a panel vector autoregression (VAR) with country-specific fixed effects. That is, we assume
identical responses of local state variables to themselves or to US/Chinese counterparts.
That same commonality allows us to establish time series, or predictability patterns, while
exploiting cross-sectional information.

As a next step of our analysis, we take advantage of the rich term structure of yields in
our dataset to study risk premiums associated with sovereign credit risk. To that end, we
complement the VAR with a stochastic discount factor (SDF) thereby delivering pricing
implications for bonds. In turn, this allows us to estimate market prices of various types
of risk. One implication of this analysis is that we can infer the maximum Sharpe ratios
associated with trading global bonds only, or trading global and local bonds. The difference
between the two allows us to gauge the economic significance of AP bond markets for global
investors.
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We find that China plays a role similar to the United States quantitatively in terms of the
variance decomposition of AP states and AP bond risk premiums. However, different types
of variables from these two countries affect the dynamics and risk premiums in the AP
region. Given our focus on the Twin Ds effects in AP countries, it is difficult for us to say
more, but our findings suggest studying interactions between the United States, China and
the rest of the world as a fruitful research avenue.

As regards local variables, they play an important quantitative role for the state dynamics.
Variance decompositions show that local shocks explain from 36 to 95% of the variation
in local state variables, depending on the variable and the country. In particular, local
variables explain 88%, 83%, 44%, and 48% of the variation in sovereign credit spreads for
Indonesia, Korea, Malaysia, and Thailand, respectively. Local output, however, has no
significant impact on credit spreads at any horizon. The Twin Ds effect is manifested by
the significant impact of the local credit factor on the depreciation rate of the local currency
and vice versa.

Investment in AP LC bonds primarily offers exposure to regional undiversifiable credit risk.
In contrast to USD bonds, the additional credit exposure is via the Twin Ds effect. This
exposure is richly compensated even outside of default episodes. In particular, maximum
Sharpe ratios, which capture the risk-return trade-off, more than double if one invests in
AP bonds in addition to the global ones. The local variables contribute substantially to the
variation in local bond risk premiums, with contributions ranging between 36% and 86%,
depending on maturity and country. That these risk premiums depend on local variables is
a manifestation of local time-varying risk bearing capacity.

Related literature

We build on the work of Du and Schreger (2016), who propose a methodology to construct
LC credit spreads from foreign currency debt in emerging market economies and apply it
to a single maturity (five years). Our analysis is also closely related to Augustin, Chernov,
and Song (2018), who study the Twin Ds using LC- and USD-denominated sovereign credit
default swaps (CDS) in the euro area. Their analysis is limited to one exchange rate across
the different countries and a short sample starting in 2010.

Hofmann, Shim, and Shin (2017) document that movements in the dollar exchange rate of
emerging market economies affect local currency government bond yields through changes
in the sovereign credit risk. While they emphasize this interaction between currency and
credit risk, they do not formally jointly model bond yields, exchange rates and credit risk
or their drivers. Della-Corte, Sarno, Schmeling, and Wagner (2016) empirically show that
the common component in sovereign credit risk correlates with currency depreciations and
predicts currency risk premia. Buraschi, Sener, and Menguetuerk (2014) suggest that geo-
graphical funding frictions may be responsible for persistent mispricing of emerging market

3



bonds denominated in EUR and USD. Mano (2013) proposes a descriptive segmented mar-
ket model that is consistent with nominal and real exchange rate depreciation upon an
exogenous default trigger.

Most of the literature has so far largely focused on the first D, that is, default or credit
risk. In particular, researchers have investigated the role of global (US) and local variables
(Hilscher and Nosebusch, 2010; Longstaff, Pan, Pedersen, and Singleton, 2011), or their
relative importance (Augustin, 2018), in explaining credit spreads. As Borri and Verdelhan
(2011) point out, much of the work either ignores the risk premiums (e.g., Uribe and Yue,
2006) or explicitly assumes risk-neutral investors. There are also data limitations: most
empirical work uses the JP Morgan Emerging Market Bond Index (EMBI) that aggregates
across different maturities of USD-denominated bonds (Borri and Verdelhan, 2011; Hilscher
and Nosebusch, 2010). Longstaff, Pan, Pedersen, and Singleton (2011) study CDS contracts
for one single maturity (five years). Very little work has been done on LC bonds of individual
non-G7 countries. Augustin (2018) and Doshi, Jacobs, and Zurita (2017) exploit the entire
term structure to identify the relative importance of global and local risks.

The literature on market segmentation implies that bonds could carry a risk premium for
country-specific risk (e.g., Chaieb, Errunza, and Gibson, 2019). We do not address this
possibility explicitly. Two considerations suggest that segmentation is, perhaps, not the
main driver of our results. First, as we detail in the next section, all the AP markets
we consider are essentially open to foreign investors. Second, the literature on market
segmentation focuses on its effect on risk premiums of assets that have limited investors’
access. That effort, in its turn, requires explicit modeling of the time-varying volatility
of returns, but does not characterize the risk-return trade-off. Thus, the implication for
maximal Sharpe ratios that we document is not available.

2 Institutional background on Asia-Pacific government bond
markets

We study the behavior of LC bond yields of four AP economies: Indonesia, Korea, Malaysia,
and Thailand. We view these four markets as in some sense representative of the Asia-Pacific
region. These economies have all enjoyed relative macroeconomic stability, at least in the
two decades following the Asian financial crisis. The bond markets of these four economies
are also sufficiently developed and liquid to allow them to be meaningfully studied. Average
bid-ask spreads are relatively narrow, typically below 5 basis points, although they tend
to be somewhat higher in the Indonesian bond market. Moreover, these economies share
the characteristic that their exchange rate arrangements are at least somewhat flexible2; a
prerequisite for allowing us to examine issues related to the Twin Ds.

2According to the 2020 IMF Annual Report on Exchange Arrangements and Exchange Restrictions, the
exchange rates of the four Asian countries in our sample are classified as de facto ‘floating’.
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As discussed above, the rapid growth in Asian local currency bond markets was spurred by
Asian governments’ desire to promote local currency bond issuance following the experience
of the Asian financial crisis in 1997 (Figure 1). On the demand side, international investors
came to view emerging market local currency bonds as a new investable asset class with
potentially attractive returns and diversification benefits.

While the bond markets we study share a number of characteristics, including rapid growth
rates, they also differ in important ways. One is the size of the markets. Among the
four emerging Asian countries in our sample, Korea dominates in terms of size: its stock
of Korean won-denominated bonds totaled around $668 billion at the end of 2018. The
Indonesian, Malaysian and Thai local currency government bond markets were around a
quarter of the size of Korea, at around $170 billion each in 2018. By contrast, the US and
Chinese government bond markets totalled around $16 trillion and $7 trillion, respectively.

Another important way in which the four government bond markets differ is in terms of
credit risk. At the end of 2018, Korea was rated AA by S&P, Malaysia A-, Thailand BBB+,
and Indonesia BBB-. China had an A+ rating. While all these countries are now rated
investment grade, this has not always been the case for some of the countries: Korea, for
example, attained investment grade status in 1999, and Indonesia was rated speculative
grade until mid-2017.

The countries in our sample also differ in terms of exchange rate regimes and monetary
policy frameworks. With respect to exchange rate arrangements, while Indonesia, Korea
and Thailand have floating exchange rates (with occasional interventions to manage excess
volatility, and a ’managed-float’ in the case of Thailand), Malaysia had a fixed exchange
rate (to the USD) between 1998 and 2005, after which a managed float was introduced. As
of mid-2005, China began implementing a managed exchange rate; first against the dollar,
and since 2015 against a basket of currencies.

Finally, among the AP bond markets we consider there are differences in the degree of
openness and accessibility to foreign investors. In particular, the Chinese bond market
has in the past been highly regulated, although it has gradually opened up to foreign
investors. Foreign investors used to be able to access Chinese capital markets - including
its bond markets - only via the Qualified Foreign Institutional Investor (QFII) scheme (and
its expanded counterpart, the RQFII). The scheme, which was launched in 2002, licensed
major banks and institutional investors to invest in Chinese capital markets, subject to
quotas. The total cap on overseas purchases of such assets reached $300 billion by 2019, and
was entirely scrapped the following year, thereby enabling foreign asset purchases without
prior approval. Even before that, in 2016, authorities in China announced that foreign
institutional investors would be given quota-free access to the Chinese Interbank Bond
Market (CIBM), subject to certain registration requirements, via the CIBM Direct scheme.
Similar access had been granted to some foreign central banks, sovereign wealth funds and
a narrow set of long-term institutional investors as early as 2010. Moreover, in 2017, China
launched Bond Connect, a bond market access scheme that allows foreign investors to trade
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in the Chinese bond markets through Hong Kong. As the Chinese bond market has opened
up and developed, liquidity has improved over time (Bai, Fleming, and Horan, 2013).

As for the other AP bond markets we consider, they are essentially fully open to foreign
investors, in some cases subject to reporting requirements.3 In the case of the Korean
market, foreign investors that do not have an office in Korea need to register with the Korean
Financial Supervisory Service in order to invest in Korean securities. Foreign investors
in the Indonesian bond market are, like domestic investors, subject to a requirement to
obtain a so-called Single Investor Identification (which serves as a reporting device and
investor identification) from the Indonesia Central Securities Depository (KSEI) in order to
invest. Subject to this requirement, there are no limitations on foreign investors investing in
Indonesian debt securities. Similarly, foreign investors may invest in Thai government bonds
without any restrictions. Moreover, they do not face any market exit requirements, as long
as they comply with certain limits on end-of-day balances of non-resident baht accounts.
Finally, there are no entry or exit requirements for foreign investors in the Malaysian bond
market.

3 Data and key variables

This section introduces the data we use in our analysis and basic relationships between the
different types of bonds.

3.1 Data

For the purpose of our analysis, we need data on bond yields and macroeconomic factors
for the Asian countries we study, as well as for the United States. We also require exchange
rates between the currencies of the Asian countries in our sample and the dollar. Our sample
ends in December 2019. The starting points are different depending on the variables and
countries, as detailed below.

We use two types of macroeconomic data: inflation and a measure of economic activity.
Inflation is measured as the monthly log-difference of the consumer price index for each
country. For economic activity, we rely on the monthly growth rate of seasonally adjusted
industrial production (IP). Figure 2 illustrates the macroeconomic data (in year-on-year
growth terms). The source of this data is Bloomberg, except for Chinese industrial produc-
tion data which comes from China’s National Bureau of Statistics.4

3This is according to various editions of the ASEAN+3 Bond Market Guide by the Asian Development
Bank.

4For China, authorities only release year-on-year IP growth rates only for the months March through
December (and occasionally for February). This is due to the possibility that data for the first one or two
months of the year can be affected significantly by the annual Spring Festival. Using the published y-o-y
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The exchange rate data consists of end-of-month quotes of the Chinese yuan, the Indonesian
rupiah, the Korean won, the Malaysian ringgit and the Thai baht, against the US dollar.
All data is obtained from Bloomberg. Figure 3 displays the series (expressed as the number
of US dollars per local currency).

For the renminbi and the ringgit, in particular, the management of the local currency against
the US dollar up until 2015 and 2005, respectively, is quite evident in the figure. Ideally, one
would want to incorporate these features into a model. Modeling currency management is a
separate complicated task, so we choose to apply the same statistical model to all exchange
rates.

We work with zero-coupon government bond yields. For the United States we rely on the
standard dataset from the Federal Reserve, as constructed by Gürkaynak, Sack, and Wright
(2007). For the five Asian economies we study (China, Indonesia, Korea, Malaysia and
Thailand), data on local-currency zero-coupon yields is not readily available from official
sources. We therefore rely on Bloomberg zero-coupon yields, which are estimated using a
spline approach on available prices of individual bonds in domestic markets.5

In order to allow us to separately identify default and currency risks, we need USD-
denominated bond yields for the Asian countries in our sample. In the case of Korea,
we again rely on Bloomberg zero-coupon yields which are available for dollar-denominated
bonds. For the remaining countries in our sample, the issuance of USD-denominated debt
has in the past been infrequent and typically concentrated in very few maturities. This, in
turn, has prevented the estimation of zero-coupon dollar curves for these countries.

To overcome this problem, we use CDS premiums across several maturities.6 Specifically, we
construct synthetic dollar yields by adding Chinese, Indonesian, Malaysian or Thai sovereign
CDS premiums to US Treasury par yields across six different maturities. Using these six par
dollar yields, we then construct zero-coupon dollar yields using the methodology of Nelson
and Siegel (1987). We evaluate the accuracy of the procedure using the available Korean
USD-bonds and CDS contracts. It recovers yields from CDS accurately.

In summary, we obtain 8 LC bonds per country: 1, 6, 12, 24, 36, 48, 60, and 120 months
to maturity, and 6 foreign USD denominated bonds with maturities between 12 and 120
months. As a result, we have 14 bond yields for each AP country, and 8 for the United

growth rates, we back out a monthly Chinese IP level series for March-December each year. We then fill in
the values for each January and February by assuming that monthly IP growth from December to March is
constant. Finally, we seasonally adjust the resulting IP index series using the X13 method and proceed to
calculate month-on-month growth rates.

5Indonesia and Malaysia issue Islamic bonds as well, but they are dropped from the Bloomberg data.
6With the exception of China, the reference obligation for the CDS contract is a USD-denominated issue

of a sovereign. While Chinese CDS trading enjoys large net notional amounts, no information is available
about the reference obligation. According to Longstaff et al. (2011), “ ... the contract ... explicitly references
Chinese government international debt, and the only current Chinese international bond issues for the five-
year horizon are US dollar-denominated issues.” The issuance of USD debt at various maturity points has
picked up in China since 2017.
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States. In subsequent estimation we use yields of these maturities and one month prior to
construct bond returns as described in Section 5.

The zero-coupon yield series available for our AP countries are relatively short compared to
US data. Specifically, yield data is available as of September 2003 for China, from February
2003 for Indonesia, from September 1999 for Korea and Malaysia, and as of January 1998
for Thailand; see Figure 4.

Table 1 reports summary statistics for our data. Yields famously exhibit a high degree of
persistence. This is also the case for the Asian countries we study, as evident from Figure
4. Interestingly, the slopes of the respective yield curves (defined as the difference between
the 10-year and 1-month yields) show that only the US slope has turned negative over the
sample period.

The volatility of yields varies between the countries, with the highest (Indonesia) being
about four to five times higher than the lowest (Malaysia and China). Table 1 also shows
that the volatility of the Chinese currency is substantially lower than for the other Asian
currencies, and that the Indonesian currency is the most volatile one, largely due to very
high volatility in the first few years of the sample (see Figure 3).

Based on the dollar yields described above, we construct a credit factor for each AP country,
which we define as the spread between the 1-year USD-denominated yield for each country,
minus the 1-year US Treasury yield. This credit factor is used in the estimation of our term
structure model, as described below.

Figure 5 displays the credit factor. We note the coincident spike during the Global Financial
Crisis. The different levels of credit risk are evident as well. Indonesia and Korea appear
to be more risky than Malaysia and Thailand, with the latter two being similar to China.
The summary statistics are reported in Table 1.

As a prima-facie evidence of bond risk premiums, we also report log excess returns computed
from LC bonds. We see that overall Indonesia exhibits higher and more volatile returns
than the rest of the countries. China’s term structure of risk premiums is flat as compared
to the United States. In contrast, the other AP countries exhibit steeper term structures.

3.2 Notation and basic relations

Suppose Mt,t+i is a USD-denominated i-period nominal SDF. The prices of zero-coupon US
bonds with maturity n are given by the standard pricing condition:

Qnt = Et
(
Mt,t+1 ·Qn−1

t+1

)
(1)

with corresponding yields ynt = −n−1 logQnt ≡ −n−1qnt . The one-period return on an n-
period bond is rn,n−1

t+1 = qn−1
t+1 − qnt .
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Denote all the available information at time t, with the exception of credit events, by Ft.
The random time τ indicates an incidence of a credit event. We use the indicator variable
zt to denote the event, zt+1 = 1 if τ = t+ 1, and zero otherwise. The process

Ht ≡ Prob (τ = t+ 1 | τ > t,Ft)

denotes the conditional default probability of a given reference entity at day t, i.e., the
hazard rate. Models of Poisson default arrival often associate the hazard rate with default
intensity ht via:

Ht = 1− e−ht .

This is because the Poisson probability of no defaults is e−ht .

We assume that an AP bond may default with a fractional recovery of market value (RMV)
equal to 1− L. The USD-denominated bond price is:

Q̃nt = Et

(
Mt,t+1 · Q̃n−1

t+1 [(1− zt+1) + (1− L)zt+1]
)
. (2)

The corresponding yields are ỹnt = −n−1q̃nt . The one-period return on an n-period bond
is r̃n,n−1

t+1 = q̃n−1
t+1 − q̃nt . The credit factor is the difference in yields between a one-year AP

USD-denominated bond and a one-year US government bond, c̃nt = ỹnt − ynt .

Suppose St represents the value of one unit of local currency in terms of USD. The depreci-
ation rate is ∆st+1 = logSt+1/St. An increase in the depreciation rate indicates a decrease
in the value of USD. The LC bond price is:

Q̂nt = Et

(
Mt,t+1 · St+1/St · Q̂n−1

t+1 [(1− zt+1) + (1− L)zt+1]
)

(3)

with corresponding yields ŷnt = −n−1q̂nt . The bond return, in local currency, is r̂n,n−1
t+1 =

q̂n−1
t+1 − q̂nt , and, in USD, is qrn,n−1

t+1 = q̂n−1
t+1 − q̂nt + ∆st+1.

By using the same hazard rate to value both USD and LC bonds, we are implicitly assuming
no selective default. We do so because we cannot identify different hazard rates in our
empirical work due to the lack of any defaults in our sample. We therefore have to be
careful with the interpretation of our results.

At first blush, our focus on the Twin Ds would suggest studying the joint behavior of the
depreciation rate ∆st+1 and the credit factor c̃t. The expressions above highlight that risk
premiums associated with the two variables are determined by the properties of the SDF
Mt,t+1. Indeed, consider the relative difference between the LC and USD AP bond prices

Q̂nt

Q̃nt
=

Et

(
Mt,t+τ ·

∏τ
j=1(1− Lzt+j) · St+τ/St

)
Et

(
Mt,t+τ ·

∏τ
j=1(1− Lzt+j)

)
= Et(St+τ/St) + (Q̃nt )−1covt

Mt,t+τ

τ∏
j=1

(1− Lzt+j), St+τ/St

 . (4)
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The first term in the second row reflects the expected currency depreciation. The second
term reflects the pricing of the Twin Ds risk. Kremens and Martin (2019) refer to the
covariance term as the quanto-implied FX risk premium.

In order to connect this expression to the Twin Ds premiums, consider the ratio of the USD
excess returns on LC and USD AP bonds

qRt+1

R̃t+1

=
Q̂n−1
t+1

Q̃n−1
t+1

·

(
Q̂nt

Q̃nt

)−1

· St+1

St

This difference should be reflecting exposure to the Twin Ds. Substituting in Equation (4),
taking conditional expectations, and using log-linearization, we get a measure of the Twin
Ds risk premium:

logEt

(
qRt+1

R̃t+1

)
≈ Et

[
covt+1

(
Mt+1,t+τ

∏τ
j=2(1− Lzt+j)
Q̃n−1
t+1

,
St+τ/St

Et(St+τ/St)

)]

− covt

(
Mt,t+τ

∏τ
j=1(1− Lzt+j)
Q̃nt

,
St+τ/St

Et(St+τ/St)

)
. (5)

The expressions inside of the covariance terms are innovations. The first term is the in-
novation in the “default-adjusted” SDF, Mt,t+τ

∏τ
j=1(1 − Lzt+j), which reflects pricing of

credit risk. The second term reflects the innovation in the depreciation rate. The Twin Ds
premium reflects the expected change in the covariance of these two innovations.

Thus, we should study the SDF dynamics to understand the pricing of the Twin Ds. This
conclusion leads us to look to bond prices as the relevant source of information about
factors driving the SDF. As a result, we complement the two variables of primary interest
(credit, exchange rate) with variables that are traditionally used in bond valuation models.
Specifically, we consider principal components of bond returns and major macroeconomic
variables.

3.3 State variables

Our dataset features bond prices of seven different maturities for each country. Thus, we
would like to reduce the dimension of the bond data by selecting a lower-dimensional state
vector. To this end, Table 2 reports a principal component (PC) analysis of yields. First,
it shows that 72% of the joint variation in the 68 yield series from 6 different countries can
be explained by the first PC. This degree of commonality is striking. A similar observation
was made by Longstaff, Pan, Pedersen, and Singleton (2011) in the context of CDS of single
maturity but a larger cross-section of countries.

Second, we see that the first 12 PCs explain 99.6% of the variation in returns. However, in
contrast to the traditional single-country PCs, these components are difficult to interpret.
Therefore, we construct a different set of 12 bond-return factors based on levels and slopes.
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The US or local level, `t, or ̂̀it, respectively, is selected to be equal to a yield on a single-
horizon bond y1

t , or ŷ1
t . The slope τt, or τ̂it is the difference between yields on long- and

short-horizon bonds: τt = y120
t −y1

t and τ̂t = ŷ120
t −ŷ1

t (with superscripts denoting maturities
measured in months). Further, because there is a lot of commonality between the US
variables and their local counterparts, our final set of state variables uses the differences
∆c
̂̀
it ≡ `t − ̂̀it, and ∆cτ̂it ≡ τt − τ̂it. Credit risk is captured by the credit spread c̃it ≡ c̃12

it ,
where the horizon is the shortest available with quality data.

We demonstrate the ability of these state variables to span the original PCs by regressing
each of the 12 PCs on these variables and on the depreciation rates. We report the R2 and
adjusted R2 from these regressions in Table 2. We see that each of the first seven PCs that
jointly explain 95% of the variation in all returns are replicated by the state variables with a
high degree of accuracy. The fit deteriorates afterwards with particular weakness in the last
two PCs. Still, most of the variation in yields can be captured by our proposed variables.
Also, we view clarity of interpretation of the factors as worthy of some deterioration in
fit. Ultimately, what matters is how a model with the chosen state variables matches the
observables.

As a result, we have the following set of state variables:

vt =


xt
x̂1t
...

x̂Nt

 =



πUt
gUt
`Ut
τUt

∆sCt
πCt
gCt

∆c`Ct
∆cτCt
cCt

∆s1t

π̂1t

ĝ1t

∆c
̂̀
1t

∆cτ̂1t

c̃1t
...

∆sNt
π̂Nt
ĝNt

∆c
̂̀
Nt

∆cτ̂Nt
c̃Nt



=



US inflation
US industrial production

US level
US slope

Chinese nominal depreciation rate
Chinese inflation

Chinese industrial production
US minus Chinese level
US minus Chinese slope

Chinese credit factor
nominal depreciation rate 1

local inflation 1
local industrial production 1

US minus local level 1
US minus local slope 1

local credit factor 1
...

nominal depreciation rate N
local inflation N

local industrial production N
US minus local level N
US minus local slope N

local credit factor N



. (6)
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4 No-arbitrage term structure model

A no-arbitrage term structure model has two major ingredients. First, we specify the
dynamics of the state variables, vt, via a VAR. As a particular case of a seemingly unrelated
regression, the VAR delivers a relationship between credit spreads and other variables in
the state vector in the style similar to the existing literature. The specifics of the VAR
allows to study in-depth the dynamic interrelations of these variables.

Second, we specify the SDF that captures the behavior of prices of risk associated with vt.
That allows us to risk-adjust expectations implied by the VAR of the state. Subsequently,
we can study asset-pricing implications using this framework.

4.1 VAR of the state

We model the joint dynamics via a first-order vector autoregression, VAR(1). We introduce
a vector εt of N (0, I) innovations. This vector can be subdivided into global (US and

Chinese) and AP innovations: εt =
(
ε>t , ε

>
1t, . . . , ε

>
Nt

)>
. We specify the dynamics of vt as

vt+1 = µv + Φvvt + Σvεt+1. (7)

There is well-established evidence in the literature that bond prices co-move internationally
(Driessen, Melenberg, and Nijman, 2003; Dahlquist and Hasseltoft, 2013; Jotikasthira, Le,
and Lundblad, 2015), so our use of level and slope factors in deviation from their US coun-
terparts provides us with a way of accommodating the local yield drivers while accounting
for such international co-movement.

In the case of the four AP countries (N = 4) together with the US and China, the dimension
of the state vector is 34. That implies 34 + 342 + 34× 35/2 = 1, 785 identified parameters
that need to be estimated in a VAR(1). This is a daunting challenge in any situation. Our
setting is complicated by relatively short samples and by the aforementioned cross-sectional
variation in the countries’ characteristics.

To estimate the parameters of such a dynamic model, we pool data from different countries
(Ang and Chen, 2010; Bansal and Dahlquist, 2000 are early examples of this approach). This
approach imposes the constraint that the underlying structure is the same for each country.
Specifically, we assume that local macroeconomic and yield factors respond in the same way
to local and global factors across all four AP markets. The US and Chinese variables are
an exception. These variables respond to themselves and to each other only (they proxy
for autonomous global variables), and their responses are different from responses of local
variables to local variables of the same type. For example, US inflation is allowed to respond
to US industrial production differently than Indonesian inflation responds to Indonesian
industrial production. The cross-sectional differences between the countries are reflected in
country-specific fixed effects, that is, country-specific means of the state variables.
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To express this in algebraic terms,

Et (xt+1) = µx + Φxxt, (8)

Et (x̂i,t+1) = µi + Φx̂xt + Ψx̂x̂it, i = 1, . . . , N. (9)

where the matrices Φx, Ψx̂, and Φx̂ combine into Φv. The second equation is a simple version
of a panel VAR with fixed effects. Here we treat the size of the cross-section N as fixed,
and the time span as growing.

Lastly, a country’s currency may devalue in the case of default – the aforementioned Twin
Ds effect. We do not have such an event in our sample, so we account for this possibility in
a largely symbolic fashion. First, we assume the currency jumps down in the case of default
with a known jump size k. Second, because depreciation rates are part of our state we have
to complement conditionally normal innovations with innovations of the form −kzit in each
equation that correspond to a depreciation rate. Given that there are no default events
in the sample, zit = 0 for every country i and time t. This potential presence of jumps in
currencies has two effects: it introduces a bias in the conditional mean of the depreciation
rate, and it is reflected in the valuation of LC bonds, as per equation (3). We can identify
k, but not the jump intensity, from the latter as we explain below.

We use the LDL representation for the covariance matrix of the state vector:

ΣvΣ
>
v = LvDvL

>
v .

where Dv is a diagonal matrix with positive elements and Lv is a lower-triangular matrix
with ones on the diagonal. We impose a block structure on Lv to reduce the number of
parameters. For US and Chinese shocks, the corresponding rows of Lv consist of a 10× 10
lower-triangular matrix Lx. For shocks from each country i the corresponding rows of Lv
consist of two non-zero blocks: a 6 × 6 lower-triangular matrix Px̂ corresponding to AP
shocks from country i and a 6× 10 matrix Lx̂ corresponding to US and Chinese shocks:

Lv =


Lx 0 0 0 0
Lx̂ Px̂ 0 0 0
Lx̂ 0 Px̂ 0 0
Lx̂ 0 0 Px̂ 0
Lx̂ 0 0 0 Px̂

 ,

and diag(Lv) is a vector of ones. Given the wide range of possible standard deviations for
the diverse set of state variables, we do not constrain elements of the diagonal matrix Dv

to be the same across AP countries.

The conditional covariance matrix allows us to implement a variance decomposition analysis.
A variance decomposition measures the percentage contribution of a shock to variable j to
the variation in variable i. Thus, the VAR enables us to move beyond inspection of the
significance of regression coefficients, a standard tool in the extant literature, and to fully
account for the state dynamics.
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As is usually the case, the variance decomposition could be sensitive to the order of state
variables. Therefore, instead of focusing on the impact of individual variables, we distinguish
between the US, Chinese, and local variables only. We stack the odds against the local
variables by ordering them last.

4.2 Stochastic discount factor

There is an important conceptual value to estimating the SDF. First, as emphasized by
Duffee (2010), a no-arbitrage model can be used to determine Sharpe ratios for any dynamic
trading strategy in fixed income, including all strategies that attain the maximum Sharpe
ratio (MSR). Second, following Harvey (1995), we can use the model to characterize whether
AP markets enhance an investor’s opportunity set by increasing the MSR. Lastly, we can
investigate the drivers behind the changing opportunity set.

We model the dynamics of the (log) SDF following a long tradition of affine models:

mt,t+1 = −δy,0 − δ>y,vvt −
1

2
λ>t λt − λ>t εt+1

−
N∑
i=1

[
γitzit+1 + hit(e

−γit − 1)
]
, (10)

with market prices of factor risk

λt = Σ−1
v (λ0 + λvvt) ,

and market prices of non-US sovereign default risk, γit, which could have a flexible functional
form. The variables zit are the Poisson default arrival processes with intensity hit.

Given that we have imposed a fixed-effects structure on the risk premium regressions, we
do the same with λt. The elements of the vector λ0 are country-specific. We assume that
λv has a block structure. For US and Chinese factors the corresponding rows of λv consist
of a 10× 10 matrix λx that multiplies the US and Chinese factors xt. For factors from each
country i the corresponding rows of λv consist of two non-zero blocks: a 6 × 6 matrix χx̂
that multiplies AP factors from country i and a 6 × 10 matrix λx̂ that multiplies the US
and Chinese factors xt.

λv =


λx 0 0 0 0
λx̂ χx̂ 0 0 0
λx̂ 0 χx̂ 0 0
λx̂ 0 0 χx̂ 0
λx̂ 0 0 0 χx̂

 .

The market price of default risk is γit = − log(h∗it/hit), where h∗it is a risk-adjusted default
intensity. Without observing actual default events, it is impossible to identify the true
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default intensity hit. Therefore, one cannot identify γit either. Thus, we focus on modeling
h∗it. We assume

h∗it = δih,0 + δ>h,x̂x̂it + δ>h,xxt ≡ δh,0 + δ>h,vvt.

The results of Duffie and Singleton (1999) applied to the credit-risky bond valuation in
Equation (2) imply that c̃1

it = Lh∗it. Thus, if the one-month credit spread was part of the
state vector vt, we would have δh,0 = 0, δh,v = L−1 · ec. Here ec is a unit vector with zeros
in all entries except for the one corresponding to the location of the ith credit spread in the
overall vector vt.

The one-month credit spread data are sporadic and of low quality. That is why c̃12
it is our

choice to be an element of vt. To streamline estimation and analytics, we impose the same
restrictions on factor loadings appearing in h∗it. Thus, in our model, the values of these
loadings is an assumption rather than a result. The cost of any extra assumptions is a
potentially less flexible model, which should not be an issue here given the large number of
free parameters.

Because we cannot identify the default hazard premium, we consider the MSR that corre-
sponds to normal innovations, Volt(mt,t+1) = (λ>t λt)

1/2 (for log-returns). As the US-China
block is autonomous in our model, we can compute the MSR implied by these two coun-
tries alone, and then, to gauge the improvement in the investment opportunity set, we can
compute the MSR for the full model.

5 Estimation

Affine term structure models lend themselves naturally to some form of state-space formula-
tion, where the state follows a VAR such as (7) and asset prices form a vector of observables.
Traditionally, term structure models use bond yields as such observables. As we explain
below, we follow Adrian, Crump, and Moench (2013) and use bond returns as observables.
This leads to computational advantages in high-dimensional settings like ours. This section
explains how our approach extends their framework.

5.1 Observable variables

Bond pricing equations (1) - (3) combined with the assumptions about the state vt, (log)
SDF mt,t+1, and depreciation rate ∆st+1 imply bond valuation equations. The affine struc-
ture of the state variables and the SDF implies that log bond prices are linear functions of
the state

qnt = ān + b̄>n vt,

q̃nt = ãn + b̃>n vt,

q̂nt = ân + b̂>n vt,
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where the intercepts and slopes are non-linear functions of the parameters in the dynamics
of mt,t+1, which control risk premiums.

The non-linearity of the parameters poses a significant challenge in estimation (e.g., Hamil-
ton and Wu, 2012, Kim, 2008). Consequently, we use bond returns rather than yields as an
observational input during estimation. To see why the change in the type of observations
helps, consider returns on US bonds:

rn,n−1
t+1 = qn−1

t+1 − q
n
t

= ān−1 + b̄>n−1 (µv + Φvvt + Σvεt+1)− ān − b̄>n vt
= ān−1 + b̄>n−1µv − ān +

(
b̄>n−1Φv − b̄>n

)
vt + b̄>n−1Σvεt+1

= c̄n−1 +
(
δ>y,v + b̄>n−1λv

)
vt + b̄>n−1Σvεt+1,

with c̄n−1 = δy,0 + b̄>n−1λ0 − b̄>n−1ΣvΣ
>
v b̄n−1/2. The last equality follows from applying the

explicit expressions for ān and b̄n. See Appendix A.1.

The advantage of this expression is that the risk premium parameters λ0 and λv appear
linearly in the intercept and slope. Thus, these parameters can be estimated using a cross-
sectional (in maturity) regression of returns on the state. As a result, one does not need to
get under the hood of b̄n to estimate λv.

In the case of AP bonds, returns are affected not only by changes in bond prices, but by
default as well. One can show that

r̃n,n−1
t+1 = q̃n−1

t+1 + log[(1− zt+1) + (1− L)zt+1]− q̃nt
= c̃n−1 +

(
δ>y,v + Lδ>h,v + b̃>n−1λv

)
vt + b̃>n−1Σvεt+1 − lzt+1,

r̂n,n−1
t+1 = q̂n−1

t+1 + log[(1− zt+1) + (1− L)zt+1]− q̂nt
= ĉn−1 +

(
δ>y,v + K̂δ>h,v − δ>s,v(Φv − λv) + b̂>n−1λv

)
vt

+ b̂>n−1Σvεt+1 − lzt+1,

with K̂ = 1 − (1 − K)(1 − L), K = 1 − e−k, and L = 1 − e−l. We use the notation
∆st = δs,0 + δ>s,vvt to emphasize the role of the depreciation rate in r̂n,n−1

t+1 . Given that ∆st
is an element of vt, δs,0 = 0 and δs,v = es. Here es is a unit vector with zeros in all entries
except for the one corresponding to the location of the i-th depreciation rate in the overall
vector vt. See Appendix A for a derivation. These expressions extend Adrian, Crump, and
Moench (2013) to defaultable and foreign LC bonds.

Adrian, Crump, and Moench (2013) advocate a two-stage estimation strategy on the basis
of the equations above. In the first stage the state dynamics (7) are estimated via a time-
series regression. In the second stage, the risk premium parameters are estimated via a
cross-sectional regression. We instead use Bayesian MCMC to estimate everything jointly.
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Here “jointly” pertains not to the time-series and cross-section only. We also estimate
multiple countries jointly – a key ingredient for studying spillovers and imposing constraints
associated with fixed effects. See Appendix B for estimation details.

There are two potential drawbacks to the methodology. First, there is no way to impose
internal consistency on yield-based factors if the same bonds are used as factors and as
observables. That is in contrast to the yield-based estimation (e.g., Joslin, Singleton, and
Zhu, 2011). We mitigate this issue by excluding returns on 1- and 120-month bonds from
the set of observables.

Note that the one-month depreciation rate satisfies the no-arbitrage condition
logEt(Mt,t+1St+1/St) = y1

t − ŷ1
t , a.k.a. Covered Interest Parity (CIP). Because one-month

returns are omitted from the observation equation, CIP does not hold automatically. Thus,
one has to take extra care by imposing restrictions associated with CIP on risk premium
parameters.

Second, this approach treats the loadings bn as (nuisance) free parameters thereby ignoring
the structure imposed by no-arbitrage. That does not appear to be a concern in practice.
Indeed, results in Duffee (2011) and Joslin, Le, and Singleton (2013) indicate that if the
factor structure of an affine model is correct, then estimation recovers correct values of bn
even without imposing the no-arbitrage restrictions.

Another problem common to all estimation methods when using data with rare or no
defaults is that zt = 0 almost all the time. Thus, one cannot identify loss given default L.
This parameter appears as a product with the default intensity loadings in bond returns.
Thus, bonds are not informative about L either. Consequently, we calibrate L = 0.4. This
is based on evidence provided by Cruces and Trebesch (2013), who report that the average
loss across 180 sovereign defaults between 1970 and 2010 was between 0.37 and 0.40 (with
a cross-sectional standard deviation of 0.28), depending on the formula applied to estimate
the loss.

We do not have currency devaluation events in our sample either. Given our simple assump-
tion about devaluation and assumed value of L, we can identify K from the combination
of USD/LC bond returns. The estimated value of k = log(1 +K) is 0.02 (with a standard
deviation of 0.01).

5.2 Unspanned macro variables

Unspanned variables (Duffee, 2011) occupy a special place in the bond risk premium lit-
erature. Conceptually, these are variables that do not appear in bond pricing expressions,
but forecast bond excess returns nonetheless. This is possible if risk premiums for these
variables line up in a particular way with the persistence matrix of the state. Nobody views
this concept literally, but there are a lot of candidates proposed in the literature that are
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approximately unspanned. Whether the proposed variables are unspanned and whether
they help in forecasting bond excess returns is a subject of current lively debate in the
literature.

We are interested in unspanned variables for a different reason. When macro variables
are unspanned, like in Joslin, Priebsch, and Singleton (2014), certain parameters in the
matrix of risk premiums, λv, are not identified. Therefore, we can restrict them. That leads
to a more parsimonious model, an important feature in a multi-country setting, and to a
tremendous simplification in model estimation. We follow Joslin, Priebsch, and Singleton
(2014) by assuming that inflation and industrial production are unspanned. We follow
Chernov and Creal (2018) by assuming that depreciation rates are unspanned.

Because of these assumptions we can restrict the corresponding columns of bn, b̃n, and b̂n
to be equal to zero. Further, given that columns of bn, b̃n, and b̂n are zero, the coefficients
in the corresponding rows in the risk-premium matrix λv are not identified. Thus, we set
them equal to zero as well. The depreciation rate is an exception because the corresponding
risk premiums are identified from the combination of USD and LC bonds.

6 Results

Our joint estimation of the multi-country term structure model recovers both the dynamics
of the state variables and the pricing of risk associated with those dynamics. As mentioned
above, we impose the constraint that the underlying structure is identical across all smaller
AP countries, but we allow it to be different for the United States and China. All the re-
ported results are obtained by imposing zeros on all parameters whose probabilistic distance
from 0 was less than 90% in an initial unrestricted estimation, and then re-estimating the
model.

6.1 State dynamics

Estimated VAR

Table 3 reports unconditional means of elements of the state vector vt. Tables 4 and 5
report various blocks of the state’s persistence matrix Φv. Table 6 reports estimates of the
covariance matrix ΣvΣ

>
v .

The results in Table 4 indicate that the global variables in our system depend on own-
country variables, i.e. US variables depend on US lags, and similarly for Chinese variables.
An exception is inflation: both US and Chinese inflation exhibit cross-country dynamics.
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The last rows of Φx̂ and Ψx̂ in Table 5 correspond to a regression of the AP credit spread c̃it+1

on the entire state vt. In spirit, this is closest to how the previous studies in the literature
approach the impact of global versus local variables on sovereign credit risk. There is one
global (Chinese IP growth) and one local variable (depreciation rate) that is significant,
excluding the credit spread itself. Note that neither local nor US IP growth rates have any
impact on credit spreads.

Of course, a discussion of one equation separately does not account for interactions between
the variables controlled by matrices the Φv and Σv. Furthermore, the relative importance
of the variables for the credit spread may change with the horizon. A strength of our
framework is that we can move beyond inspection of the significance of regression coefficients
(estimates of Φv) and to fully account for the state dynamics via impulse responses and
variance decompositions.

Impulse responses

Figures 6 - 8 display statistically significant impulse responses organized around two themes.
First is the traditional question in the literature, that is, the impact of global versus local
variables on credit spreads (Figures 6 and 7). Second is the Twin Ds effect (Figures 7 and
8).

To identify structural shocks, the local variables are ordered by their “speed” rather than
country. We start with “slow” macro variables and finish with the “fast” financial variables
in this order: git, πit, ∆c`it, ∆cτit, c̃it, and ∆sit. Within each variable, we sort countries
by their credit rating, starting with the highest: Korea, Malaysia, Thailand, Indonesia. We
apply the recursive identification scheme to this order of variables. We display responses
for Korea only as responses of other countries are the same, up to scale.

Starting with the responses of c̃it to shocks in financial variables, Figure 6 shows that
the local term structure has significant effects. The relatively lower local level leads to a
near-term decline in the credit spread consistent with an easing in borrowing conditions.
The subsequent increase over longer horizons may be due to concerns about the risk of
overheating from such easing down the line. The local slope also matters, with a relative
flattening of the local yield curve - a form of long-term easing in borrowing conditions -
leading to a decline in the credit spread that gradually reverts to zero.

Global yield factors play a role in local AP credit spreads as well. A higher US interest rate
implies a tightening of global financial conditions, which leads to a persistent rise in the
credit spread after an initial small dip. Likewise, a higher interest rate level in the United
States relative to China is associated with an increase in the credit spread. An increase in
the US slope, meanwhile, signals expectations of higher growth, and therefore leads to a
gradual decline in the credit spread. This effect is economically large too, with the credit
spread falling by as much as 12 basis points following a one standard deviation shock to the
US slope.
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With regard to responses to macro shocks, the response of c̃it to a shock in local output is
missing from Figure 6 because the effect is insignificant. That is in contradiction to theories
of strategic sovereign default. The only macro variable that affects the local credit spread is
Chinese industrial production. An increase in Chinese output leads, counterintuitively, to
an initial increase in the credit spread followed by a subsequent gradual decline. However,
this effect is tiny: at its peak the credit spread rises by less than one basis point.

Figure 7 continues with shocks to the variables from the Twin Ds paradigm and their impact
on the credit spread. An appreciation of the local currency or of the renminbi leads to a
decline in the credit spread, which is intuitive. The effect of the local currency is particularly
pronounced, with a one standard deviation appreciation resulting in a spread decline of
around 7 basis points. From the perspective of the Twin Ds paradigm, we therefore see
evidence of a strong impact of the exchange rate on the credit spread. Moreover, an increase
in the Chinese credit spread leads to a very large increase in the AP spread, as it jumps by
around 15 basis points immediately following a typical shock.

Figure 8 shows the other side of the Twin Ds by measuring the impact of credit and
depreciation rates on the AP depreciation rate. The documented response to all shocks is
transient. Exchange rates tend to be close to random walks. Thus, it is not a surprise that
the depreciation rate is close to a serially uncorrelated variable.

A widening of the Chinese credit spread leads to an immediate sharp depreciation of the AP
currency. A widening of the local spread leads to a depreciation as well. That is consistent
with the response of cit to ∆sit in Figure 7 and with the overall Twin Ds paradigm. Finally,
an appreciation of the renminbi leads to a short-lived appreciation of the AP currency.

Variance decomposition

Variance decompositions measure the percentage contribution of a shock to variable j to the
variation in variable i. As is usually the case, the variance decomposition could be sensitive
to the order of state variables. Therefore, instead of focusing on the impact of individual
variables, we distinguish between the US, Chinese and local variables only. We stack the
odds in favor of the US variables by ordering them first. Chinese variables are ordered after
US ones, but before local AP variables. The first part of Table 7, labeled “Factors” displays
the results.

The headline result is that local variables are an important ingredient in the overall variation
in AP factors. In particular, the contribution of local shocks to the variation in the local
credit spread is 44% (Malaysia), 48% (Thailand), 83% (Korea), and 88% (Indonesia). Korea,
Malaysia, and Thailand were studied by Longstaff, Pan, Pedersen, and Singleton (2011) as
well. Although variables and methods differ, their metric termed “local ratio”, a ratio of
regression R2 with and without global variables, is the closest to the variance decomposition.
The local ratios for the overlapping countries are similar to ours.
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The contributions of local shocks to the variation in depreciation rates feature similar mag-
nitudes: 62% (Malyasia) to 92% (Indonesia). The flipside of these numbers is that global
variables have a relatively small effect. In the case of the US only 4 to 17% contribute
to the credit spread, and, similarly, 4 to 19% contribute to the depreciation rate. Thus,
the Chinese variables occupy a middle ground between the US and local ones. The cross-
country differences are driven by the variation in conditional volatilities of credit spreads
or depreciation rates in Table 6B, which is the only margin of cross-country differences in
our model.

6.2 Prices of risk

Estimated model of the SDF

Tables 8 and 9 report estimates of λv. We don’t report estimates of λ0 because its non-
zero elements are insignificant. The overall matrix is sparse, but still leaves room for rich
differences in how the different factors affect risk premiums. To aid the interpretation,
recall that the risk premium for factor vjt is −covt(mt,t+1, e

>
j vt+1) = (λ0 + λvvt)

> ej , where
ej is a vector with a one in location j and zeros in all other entries. As discussed earlier,
prices of risks corresponding to macro variables, which are modeled as unspanned factors,
are restricted to zero for identification purposes.

The US level’s price of risk depends on all US variables but the level itself. The US slope’s
price depends on US IP growth only. This evidence is consistent with earlier studies on US
data (Duffee, 2013; Haddad, Kozak, and Santosh, 2017).

For China, premiums for level, slope, and currency are significant. Premiums for Chinese
yield variables depend on US output growth. The premium for the Chinese level depends on
its own slope as well, which is consistent with evidence for advanced economies (Dahlquist
and Hasseltoft, 2013). The currency premium depends on currency itself, the interest rate
differential and Chinese credit spread.

Moving onto local AP variables, we have a situation similar to China’s in that level, slope,
currency, and credit risks have significant prices of risk. US output continues driving the
yield risk premiums. In contrast to China, the local currency is significant for the credit
risk variable (the Twin Ds effect).

Risk premiums

As highlighted, the estimated λt could be difficult to interpret. Thus, we study bond risk
premiums corresponding to different horizons n. To highlight the risk premiums earned
in excess of those for US bonds, we consider a USD-based investor who is engaging in
long-short strategies. We compute risk premiums outside of the default episodes.
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We introduce a new information set, Dt = {Ft, zt = 0, zt+1 = 0}. It reflects a situation where
the relevant sovereign defaults neither today nor tomorrow. That is the only conditional
expectation we can compute because of lack of defaults in our sample. See also the discussion
of this issue in Bansal and Dahlquist (2002).

Thus, expected excess (log) returns are:

|rx− rx ≡ E(r̂n,n−1
t+1 + ∆st+1 − rn,n−1

t+1 | Dt), (long LC AP/ short US)

r̃x− rx ≡ E(r̃n,n−1
t+1 − rn,n−1

t+1 | Dt), (long USD AP / short US)

|rx− r̃x ≡ E(r̂n,n−1
t+1 + ∆st+1 − r̃n,n−1

t+1 | Dt). (long LC AP/ short USD AP)

We refer to the first premium as the LC bond risk premium. One can think of the last two
risk premiums as its decomposition. Long USD AP, short US reflect the impact of the credit
risk premium. As Equation (5) indicates, the last risk premium is related to the Twin Ds
premium.

Table 10 reports information about LC risk premiums and their components for horizons
n = 24 and 60 months. One immediate observation is that premiums in excess of those
in the US are quite sizeable. They are also volatile, indicating that the usual risk-return
trade-off is at play. We will revisit this trade-off in a subsequent section. Finally, the term
structure effects are modest.

The LC bond risk premium ranges between 2% and 9% with time-series volatility reaching
25% (annualized). Its decomposition into r̃x− rx and |rx− r̃x indicates that between 30%
and 60%, depending on a country and horizon, is coming from the latter. Time-series
variation in the credit risk premium, r̃x− rx, is relatively small. Malaysia is an exception
in that most of its LC risk premium is coming from credit risk. The average Twin Ds
premium is slightly negative.

Figure 9 displays time-series of the same risk premiums combined with local recessions
marked by gray bars. The credit risk premium does not dip below zero (statistically and
economically), which is intuitive. Moreover, it tends to rise during recessions, in particular
severe ones. The Twin Ds premium occasionally goes below zero. Equation (5) helps to
interpret this effect as it implies that occasionally the covariance between the “default-
adjusted” SDF and the depreciation rate is expected to decline. The link between the two
should be weak during expansions, which is consistent with the Figure. Further, in the
case of Malaysia, the extended period of negative Twin Ds premium coincides with the peg
to the dollar, which obviously weakens the covariance. That contributes to the negative
average premium.

All these different risk premiums correspond to trading strategies. It would be interesting to
think about optimal bond portfolios given that risk premiums are quite high. Constructing
such portfolios in a dynamic setting is not an easy task. We can shortcut it and take
advantage of our no-arbitrage setting to quantify the maximal benefits of investing in AP
bonds.
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Investment opportunities afforded by Asian bonds

We characterize the impact of adding AP bonds to the investment opportunity set. If they
are redundant then the MSR corresponding to the global bonds would only be the same as
the one obtained from a joint estimation using all bonds. The autonomous structure of the
global variables xt allows us to disentangle the global and local effects.

Figure 10 compares the global MSR, [(λ0 + λxxt)
>(λ0 + λxxt)]

1/2 (top left panel) to the
total MSR, [(λ0 + λvvt)

>(λ0 + λvvt)]
1/2 (top right panel). The spike on the global MSR

corresponds to the global financial crisis (GFC). One of the two spikes in the total MSR
corresponds to GFC as well. Another one is the Asian financial crisis of 1998.

We see that the total MSR is always higher than the global one, averaging a monthly value
of 1.89 vs 0.72 for the global MSR. The bottom left panel establishes significance of the
difference by plotting the 5% upper confidence band for the global MSR and the 5% lower
confidence band for the total MSR. This evidence shows that there is a statistically and
economically significant gain to investing in AP bonds compared to limiting investments to
US and Chinese bonds.

Finally, we exploit additivity of the squared MSR to characterize factors driving the im-
provement in the investment opportunity set. Specifically, note that λ>t λt =

∑N
j=1(λ>t ej)

2,
that is each element in the sum represents (squared) risk premium for risk j. We subtract
the squared global MSR from the squared total MSR, and compute the percentage contri-
bution of each of the local factors to that difference. The lower right panel of Figure 10
shows that a large component of the difference comes from compensation for credit and
currency risks. The joint (credit/currency) contribution is 48% (19%/29%), on average,
and varies between 25% and 80% (3% and 61% / 3% and 74%).

Variance decomposition

We quantify the percentage contribution of a shock to the state variables to the various risk
premiums discussed above. The parts of Table 7, labeled with various premiums display
the results for horizons n = 24 and 60. Local variables account for 9 to 51% of these for
LC premiums. The ranges are 36 − 86% for credit and the Twin Ds premiums. China’s
contribution flip: 22−41% for the LC premium, and 5−22% for the credit and the Twin Ds
premiums. These contributions are smaller than those of the US variables but in a similar
ballpark. Thus, local variables play an important role in risk premium variation as well as
for the state dynamics.

Discussion

We have two main sets of results regarding the risk premiums. First, there are non-zero
local risk premiums. Second, these premiums depend on local variables. These conclusions
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are surprising if one takes a view that “local” means “diversifiable”.

To understand this evidence better we drill down to the shock structure of the variables
that is reported in Table 6. As discussed earlier, four local variables, ∆c

̂̀
it, ∆cτ̂it, ∆sit, and

c̃it command risk premiums. Out of these, besides their own shocks, c̃it and ∆sit are the
two variables that have significant exposure to global shocks. Exposures to local variables
primarily arise via exposure to local currency risk.

The interesting question is whether the local shocks affecting the credit and currency factors
are priced. The answer would be affirmative if the elements of λt corresponding to the re-
spective local shocks are non-zero. Our analysis of the MSR offers an answer. The difference
in the squared MSRs reflects compensation for exposure to local shocks, by construction.
As noted earlier, it is the compensation for local shocks to the credit and currency factors
that drives a large part of the difference.

This evidence is suggestive of undiversifiable local credit and currency risk. To investigate
this further, we perform PC analysis of the local credit and currency factors. The first
PC of AP credit spreads explains 92% of their variation, while that of depreciation rates
explains only 67%. Thus, indeed it appears that one cannot diversify the credit risk within
the region. This conclusion is consistent with the evidence in Longstaff, Pan, Pedersen, and
Singleton (2011) who find that the regional credit spread, an average of the CDS premium
in a region, is significant in contemporaneous regressions of local credit spreads. The same
is true albeit to a weaker extent for currency risk.

As regards the functional dependence of risk premiums on local factors, it is difficult to
provide a definitive answer in the context of our no-arbitrage model. We could speculate
that local variables could be proxying for local willingness to bear risk.

7 Conclusion

We contribute to the literature on determinants of sovereign credit spreads. We focus on
the interaction between credit and currency risks, the Twin Ds, reflected in local currency
(LC) bonds issued by sovereigns in Asia-Pacific (AP). LC bonds enable us to contribute to
the existing literature by measuring this risk outside of default episodes and to examine how
the risk is priced. We find strong interaction between credit and currency risks. The risk
premium for this interaction is economically comparable to interest rate and credit risks.
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Figure 1
Local currency government bond markets
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Figure 2
Macroeconomic variables
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Figure 3
Exchange rates
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Figure 4
Local currency bond yields: Level and slope
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Figure 5
Sovereign credit factor
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Figure 6
Impulse responses: global and local shocks to credit spread
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Figure 7
Impulse responses: credit spread responds to credit and currency shocks
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Figure 8
Impulse responses: local currency depreciation rate responds to credit
and currency shocks
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Figure 9
Bond risk premiums
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Figure 10
Maximal Sharpe ratios
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√
λ>t λt, for US and Chinese assets only (blue line)

and for all assets combined (red line) in the top right panel. The top left panel provides more detail

on US and China combination. The bottom left panel quantifies significance of the difference between
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The bottom right panel illustrates the contribution of the different types of risk premiums, in per

cent, to the difference between the squares of the two MSRs (squared MSRs are additive in the

squared risk premiums). These values are cummulated in order from the bottom to top as: Credit,
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Table 1: Summary statistics

Country
Variable Statistic US China Indonesia Korea Malaysia Thailand

Macro
Depr. rate mean – 0.008 -0.013 0.013 0.002 0.026

st.dev. – 0.090 0.658 0.397 0.256 0.296
serial corr. – 0.304 0.149 -0.039 0.032 0.147

Inflation mean 0.021 0.020 0.086 0.024 0.023 0.019
st.dev. 0.043 0.079 0.164 0.049 0.049 0.059

serial corr. 0.482 0.165 0.631 0.279 0.291 0.357
IP growth mean 0.011 0.107 0.026 0.049 0.034 0.040

st.dev. 0.079 0.078 0.756 0.274 0.321 0.425
serial corr. 0.203 0.239 -0.459 -0.027 -0.388 -0.126

Yields
1y mean 0.022 0.026 0.077 0.037 0.031 0.025

st.dev. 0.020 0.007 0.024 0.017 0.004 0.010
serial corr. 0.990 0.952 0.934 0.978 0.900 0.971

3y mean 0.026 0.030 0.085 0.041 0.035 0.031
st.dev. 0.018 0.006 0.025 0.019 0.004 0.011

serial corr. 0.985 0.945 0.951 0.974 0.898 0.957
10y mean 0.038 0.037 0.098 0.046 0.044 0.043

st.dev. 0.014 0.006 0.025 0.020 0.007 0.014
serial corr. 0.976 0.939 0.959 0.973 0.927 0.953

Credit mean – 0.002 0.002 0.003 0.002 0.002
st.dev. – 0.001 0.001 0.002 0.001 0.001

serial corr. – 0.981 0.970 0.969 0.989 0.990
Excess returns
1y mean 0.006 0.005 0.015 0.009 0.005 0.007

st.dev. 0.021 0.026 0.090 0.026 0.019 0.023
3y mean 0.018 0.012 0.035 0.023 0.015 0.019

st.dev. 0.088 0.073 0.268 0.094 0.058 0.100
10y mean 0.047 0.017 0.067 0.056 0.040 0.050

st.dev. 0.310 0.249 0.846 0.344 0.239 0.483

Sample statistics of macroeconomic factors, selected yields, and one-month bond returns. ‘Depr. rate’ refers
to the deprecation rate of the local currency relative to the US dollar. The depreciation rate, inflation and
industrial production growth are measured as monthly log-differences and scaled by 12. The yields and the
credit factor are zero-coupon based and expressed in annual continuously compounded terms. Excess returns
are in logs, monthly, scaled by 12, in relation to one-month LC bond return. All series end Dec. 2018; all
FX and macro series start in January 1998. Yield series for the US and Thailand start Jan. 1998, for
China Sep. 2003, for Indonesia Feb. 2003, and for Korea and Malaysia Sep. 1999.
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Table 2: Principal components

PCs R2 R2
adj

1 71.50 99.36 99.27
2 81.80 98.26 98.02
3 89.57 98.87 98.71
4 93.82 97.34 96.98
5 95.99 98.90 98.75
6 97.48 99.12 98.99
7 98.21 96.03 95.49
8 98.85 88.80 87.29
9 99.09 91.70 90.58
10 99.32 86.67 84.87
11 99.47 80.07 77.39
12 99.60 78.69 75.81

In the first column, we report per cent of variation in international yields explained by first 12 principal
components constructed from the US, Chinese, and AP yields. The second and third column displays
how much variation in a given principal component can be explained by depreciation rates and the
bond-yield-related elements of the state vector vt : `Ut and τUt for the US; ∆c`Ct and ∆cτit∆c

̂̀
Ct for China,

and ∆cτ̂it for AP.

Table 3: VAR estimation, µ̄x

xt US China Indonesia Korea Malaysia Thailand

∆st — 4.24e-05 0.002 -0.012 -6.84e-04 -8.16e-04
(—) (0.001) (0.008) (0.008) (0.007) (0.007)

πt 0.002 0.002 0.005 0.002 0.002 0.002
(3.50e-04) (5.31e-04) (5.40e-04) (3.79e-04) (4.00e-04) (4.17e-04)

gt 9.23e-04 0.009 0.007 0.007 0.010 0.010
(4.86e-04) (0.002) (0.006) (0.005) (0.005) (0.005)

gt -0.003 2.40e-04 -0.006 2.94e-04 -0.001 -4.90e-04
(0.008) (0.005) (0.001) (0.001) (0.001) (0.001)

`t 0.001 -3.65e-04 -3.25e-04 2.17e-04 5.59e-04 -1.55e-05
(6.02e-04) (5.72e-04) (0.002) (0.001) (0.001) (0.001)

τt — 1.23e-04 3.64e-04 4.82e-04 1.19e-04 1.34e-04
(—) (7.88e-05) (2.55e-04) (2.71e-04) (1.93e-04) (1.95e-04)

Posterior mean and standard deviation of the unconditional mean µ̄x. Depreciation rate ∆st, Slope
τt = y120

t − y1
t . Level is `t = y1

t . Foreign credit factor ct. Inflation: πt. Industrial production gt
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Table 4: VAR estimation, Φx

x πUt gUt `Ut τUt ∆sCt πCt gCt ∆c`Ct ∆cτCt cCt

πUt+1 0.342 0 0 0 0 0.071 0 0 -0.190 0
(0.045) (—) (—) (—) (—) (0.025) (—) (—) (0.097) (—)

gUt+1 0.331 0.151 0 0 0 0 0 0 0 0
(0.109) (0.051) (—) (—) (—) (—) (—) (—) (—) (—)

`Ut+1 0 0 0.998 0 0 0 0 0 0 0
(—) (—) (0.002) (—) (—) (—) (—) (—) (—) (—)

τUt+1 0 0 0 0.973 0 0 0 0 0 0
(—) (—) (—) (0.017) (—) (—) (—) (—) (—) (—)

∆sCt+1 0 0 0 0 0.318 0 0 -0.138 0 3.866
(—) (—) (—) (—) (0.058) (—) (—) (0.085) (—) (1.564)

πCt+1 -0.397 0 0 0 0 0.165 0.135 0 0 0
(0.111) (—) (—) (—) (—) (0.059) (0.053) (—) (—) (—)

gCt+1 0 0 0 0 0 0 0.219 0.152 0 0
(—) (—) (—) (—) (—) (—) (0.062) (0.161) (—) (—)

∆c`Ct+1 0 0 0 0 0 0 0 0.995 0 0.113
(—) (—) (—) (—) (—) (—) (—) (0.003) (—) (0.016)

∆cτCt+1 0 0 0 0 0 0 0 0 0.961 0
(—) (—) (—) (—) (—) (—) (—) (—) (0.011) (—)

cCt+1 0 0 0 0 0 0 6.98e-04 0 0 0.896
(—) (—) (—) (—) (—) (—) (4.41e-04) (—) (—) (0.023)

Posterior mean and standard deviation of elements of the persistence matrix for the US and Chinese
variables. Depreciation rate ∆st, Slope τt = y120

t − y1
t . Level is `t = y1

t . Foreign credit factor ct. Inflation:
πt. Industrial production gt. Cross-country difference ∆c.

40



Table 5: Persistence of AP countries

Panel A. VAR estimation, Φx̂

x̂i / x πUt gUt `Ut τUt ∆sCt πCt gCt ∆c`Ct ∆cτCt cCt

∆sit+1 0 0.013 0 0 0 0 0 0 0 23.332
(—) (0.029) (—) (—) (—) (—) (—) (—) (—) (3.436)

π̂it+1 0 0 0 0 0.033 0 0.051 0 0 0
(—) (—) (—) (—) (0.017) (—) (0.020) (—) (—) (—)

ĝit+1 0.776 0 0 12.845 0 0 0.014 -0.090 -7.669 -54.640
(0.265) (—) (—) (1.588) (—) (—) (0.027) (0.099) (1.348) (1.915)

∆c
̂̀
it+1 0 0 0 0 0 0 0 0 0 0

(—) (—) (—) (—) (—) (—) (—) (—) (—) (—)
∆cτ̂it+1 0 0 0 0 0 0 0 0 0 0

(—) (—) (—) (—) (—) (—) (—) (—) (—) (—)
c̃it+1 0 0 0 0 0 0 9.08e-04 0 0 0

(—) (—) (—) (—) (—) (—) (3.83e-04) (—) (—) (—)

Panel B. VAR estimation, Ψx̂

x̂i ∆sit π̂it ĝit ∆c
̂̀
it ∆cτ̂it c̃it

∆sit+1 0.314 0 0 -4.630 0 0
(0.097) (—) (—) (0.535) (—) (—)

π̂it+1 -0.015 0.283 0 0 0 0
(0.004) (0.030) (—) (—) (—) (—)

ĝit+1 0 0 -0.150 0 0 9.619
(—) (—) (0.022) (—) (—) (1.349)

∆c
̂̀
it+1 0 0 0 0.991 0 0

(—) (—) (—) (0.003) (—) (—)
∆cτ̂it+1 7.94e-04 0 0 0 0.977 0

(2.09e-04) (—) (—) (—) (0.008) (—)
c̃it+1 -0.001 0 0 0 0 0.931

(2.41e-04) (—) (—) (—) (—) (0.012)

Posterior mean and standard deviation of the AP countries. Depreciation rate ∆st, Slope τt = y120
t − y1

t .
Level is `t = y1

t . Foreign credit factor ct. Inflation: πt. Industrial production gt. Cross-country difference
∆c.
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Table 6: VAR estimate, Σv

Panel A. Lv

πUt gUt `Ut τUt ∆sCt π̂Ct ĝCt ∆c
̂̀
Ct ∆cτ̂Ct c̃Ct ∆sit π̂it ĝit ∆c

̂̀
it ∆cτ̂it c̃it

πUt 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—)

gUt 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—)

`Ut 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
(—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—)

τUt 0 0 -0.207 1 0 0 0 0 0 0 0 0 0 0 0 0
(—) (—) (0.073) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—)

∆sCt 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
(—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—)

π̂Ct 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
(—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—)

ĝCt 0.260 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
(0.211) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—)

∆c
̂̀
Ct 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

(—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—)
∆cτ̂Ct 0 0 0 0.641 0 0 0 -0.633 1 0 0 0 0 0 0 0

(—) (—) (—) (0.149) (—) (—) (—) (0.151) (—) (—) (—) (—) (—) (—) (—) (—)
c̃Ct 0 0 0 0 0 0 0 0 -0.011 1 0 0 0 0 0 0

(—) (—) (—) (—) (—) (—) (—) (—) (0.034) (—) (—) (—) (—) (—) (—) (—)
∆sit 0 0 12.026 0 0.821 0 0 0 0 -54.533 1 0 0 0 0 0

(—) (—) (3.300) (—) (0.214) (—) (—) (—) (—) (2.752) (—) (—) (—) (—) (—) (—)
π̂it 0.351 0 0 0 0 0.050 0 0 0 0 0 1 0 0 0 0

(0.073) (—) (—) (—) (—) (0.037) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—)
ĝit 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

(—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—)

∆c
̂̀
it 0 0 0.366 -0.332 0 0 0 0.133 0 0 0 0 0 1 0 0

(—) (—) (0.116) (0.070) (—) (—) (—) (0.041) (—) (—) (—) (—) (—) (—) (—) (—)
∆cτ̂it 0 0 -0.294 0.811 0 0 0 0 0 0 0 0 0 -0.542 1 0

(—) (—) (0.100) (0.067) (—) (—) (—) (—) (—) (—) (—) (—) (—) (0.051) (—) (—)
c̃it 0 0 0 0 0 0 0 0 0 0.953 -0.001 0 0 -0.112 -0.081 1

(—) (—) (—) (—) (—) (—) (—) (—) (—) (0.067) (3.57e-04) (—) (—) (0.031) (0.035) (—)

Panel B. Dv

xt US China Indonesia Korea Malaysia Thailand

∆st — 0.007 0.054 0.033 0.021 0.023
(—) (5.38e-04) (0.004) (0.003) (0.002) (0.002)

π̂it(πt) 0.003 0.006 0.006 0.003 0.004 0.004
(2.44e-04) (4.48e-04) (4.32e-04) (2.46e-04) (2.83e-04) (3.03e-04)

ĝit (gt) 0.006 0.006 0.059 0.023 0.026 0.034
(4.56e-04) (5.04e-04) (0.005) (0.002) (0.002) (0.003)

∆c
̂̀
it (`t) 5.61e-04 5.86e-04 7.02e-04 2.29e-04 2.03e-04 1.97e-04

(2.20e-04) (1.43e-04) (5.75e-05) (1.93e-05) (1.71e-05) (2.16e-05)
∆cτ̂it (τt) 2.80e-04 2.65e-04 4.55e-04 2.06e-04 1.72e-04 3.04e-04

(2.56e-05) (4.99e-05) (3.75e-05) (1.71e-05) (1.51e-05) (2.76e-05)
c̃it — 1.26e-04 2.43e-04 2.89e-04 7.60e-05 8.64e-05

(—) (1.29e-05) (2.26e-05) (2.43e-05) (6.96e-06) (7.78e-06)

Estimates of dynamics of vt. ΣvΣ>v = LvDvL
>
v .
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Table 7: Variance decomposition

Indonesia Korea Malaysia Thailand
US CHN local US CHN local US CHN local US CHN local

Factors
∆sit 0.04 0.04 0.92 0.11 0.11 0.78 0.19 0.19 0.62 0.18 0.18 0.64
π̂it 0.04 0.01 0.95 0.11 0.03 0.86 0.08 0.02 0.89 0.08 0.02 0.90
ĝit 0.04 0.07 0.89 0.15 0.27 0.59 0.13 0.24 0.63 0.10 0.17 0.73

∆c
̂̀
it 0.09 0.01 0.89 0.44 0.06 0.50 0.48 0.07 0.45 0.50 0.07 0.43

∆cτ̂it 0.17 0.00 0.83 0.56 0.01 0.43 0.63 0.01 0.36 0.46 0.01 0.53
c̃it 0.04 0.08 0.88 0.06 0.11 0.83 0.17 0.38 0.44 0.16 0.36 0.48

LC credit premium, r̂x− rx
24 0.31 0.19 0.50 0.30 0.19 0.51 0.47 0.41 0.12 0.46 0.39 0.15
60 0.37 0.22 0.42 0.36 0.21 0.42 0.50 0.41 0.09 0.49 0.39 0.11

Credit premium, r̃x− rx
24 0.08 0.05 0.87 0.29 0.19 0.52 0.36 0.23 0.41 0.35 0.23 0.42
60 0.11 0.05 0.84 0.34 0.18 0.48 0.40 0.22 0.38 0.35 0.18 0.46

Twin Ds premium, r̂x− r̃x
24 0.09 0.05 0.86 0.31 0.18 0.52 0.38 0.22 0.39 0.38 0.22 0.40
60 0.14 0.07 0.79 0.35 0.19 0.46 0.44 0.25 0.30 0.41 0.23 0.37

We report contribution, in per cent, of shocks to the state variables vt to the unconditional variance of the
states themselves or to the currency and credit components of bond risk premiums. Our factor order is such
that US variables are given a first chance to explain the relevant variation with a residual attributed to the
local factors. We report cumulative contribution of US vs local variables and do not distinguish between the
shocks to individual elements of vt. Because many elements of vt are persistent we exclude the impact of its
own shock on a variable in the first part of the table. That is why the US and local columns do not add up
to 100%.
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Table 8: SDF estimation, λx

x πUt gUt `Ut τUt ∆sCt πCt gCt ∆c`Ct ∆cτCt cCt

πUt 0 0 0 0 0 0 0 0 0 0
(—) (—) (—) (—) (—) (—) (—) (—) (—) (—)

gUt 0 0 0 0 0 0 0 0 0 0
(—) (—) (—) (—) (—) (—) (—) (—) (—) (—)

`Ut 0.003 0.013 0 -0.043 0 0 0 0 0 0
(5.20e-04) (0.004) (—) (0.017) (—) (—) (—) (—) (—) (—)

τUt 0 -0.010 0 0 0 0 0 0 0 0
(—) (0.004) (—) (—) (—) (—) (—) (—) (—) (—)

∆sCt 0 0 0 0 0.318 0 0 -1.138 0 3.866
(—) (—) (—) (—) (0.058) (—) (—) (0.085) (—) (1.564)

πCt 0 0 0 0 0 0 0 0 0 0
(—) (—) (—) (—) (—) (—) (—) (—) (—) (—)

gCt 0 0 0 0 0 0 0 0 0 0
(—) (—) (—) (—) (—) (—) (—) (—) (—) (—)

∆c`Ct 0 0.015 0 0 0 0 0 0 -0.041 0
(—) (0.004) (—) (—) (—) (—) (—) (—) (0.011) (—)

∆cτCt 0 -0.014 0 0 0 0 0 0 0 0
(—) (0.004) (—) (—) (—) (—) (—) (—) (—) (—)

cCt 0 0 0 0 0 0 0 0 0 -0.021
(—) (—) (—) (—) (—) (—) (—) (—) (—) (0.026)

Posterior mean and standard deviation of the risk premium matrix λx (US and China). Depreciation rate
∆st, Slope τt = y120

t − y1
t . Level is `t = y1

t . Foreign credit factor ct. Inflation: πt. Industrial production gt.
Cross-country difference ∆c.
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Table 9: Risk premiums of AP countries

Panel A. SDF estimation, λx̂

x̂i / x πUt gUt `Ut τUt ∆sCt πCt gCt ∆c`Ct ∆cτCt cCt

∆sit 0 0.013 0 0 0 0 0 0 0 23.332
(—) (0.029) (—) (—) (—) (—) (—) (—) (—) (3.436)

π̂it 0 0 0 0 0 0 0 0 0 0
(—) (—) (—) (—) (—) (—) (—) (—) (—) (—)

ĝit 0 0 0 0 0 0 0 0 0 0
(—) (—) (—) (—) (—) (—) (—) (—) (—) (—)

∆c
̂̀
it 0 0.014 0 0 0 0 0 0 -0.026 0

(—) (0.004) (—) (—) (—) (—) (—) (—) (0.007) (—)
∆cτ̂it 0 -0.013 0 0 0 0 0 0 0 0

(—) (0.004) (—) (—) (—) (—) (—) (—) (—) (—)
c̃it 0 0 0 0 0 0 0 0 0 0

(—) (—) (—) (—) (—) (—) (—) (—) (—) (—)

Panel B. SDF estimation, χx̂

x̂i ∆sit π̂it ĝit ∆c
̂̀
it ∆cτ̂it c̃it

∆sit 0.314 0 0 -5.630 0 0
(0.097) (—) (—) (0.535) (—) (—)

π̂it 0 0 0 0 0 0
(—) (—) (—) (—) (—) (—)

ĝit 0 0 0 0 0 0
(—) (—) (—) (—) (—) (—)

∆c
̂̀
it 0 0 0 0 0 -0.140

(—) (—) (—) (—) (—) (0.022)
∆cτ̂it 0 0 0 0 0 0.180

(—) (—) (—) (—) (—) (0.031)
c̃it -0.001 0 0 0 0 -0.081

(2.66e-04) (—) (—) (—) (—) (0.013)

Posterior mean and standard deviation of the AP countries. Depreciation rate ∆st, Slope τt = y120
t − y1

t .
Level is `t = y1

t . Foreign credit factor ct. Inflation: πt. Industrial production gt. Cross-country difference
∆c.
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Table 10: Bond risk premiums

Panel A. 24 months

US Indonesia Korea Malaysia Thailand

rx 0.0059 — — — —
(0.0048) (—) (—) (—) (—)

r̂x− rx — 0.0553 0.0672 0.0166 0.0390
(—) (0.2499) (0.1666) (0.1356) (0.1433)

r̃x− rx — 0.0336 0.0409 0.0167 0.0160
(—) (0.0383) (0.0424) (0.0169) (0.0157)

r̂x− r̃x — 0.0216 0.0263 -0.0001 0.0229
(—) (0.2245) (0.1384) (0.1268) (0.1325)

Panel B. 60 months

US Indonesia Korea Malaysia Thailand

rx 0.0213 — — — —
(0.0152) (—) (—) (—) (—)

r̂x− rx — 0.0780 0.0911 0.0240 0.0469
(—) (0.2596) (0.1854) (0.1322) (0.1433)

r̃x− rx — 0.0637 0.0751 0.0345 0.0335
(—) (0.0773) (0.0812) (0.0373) (0.0364)

r̂x− r̃x — 0.0143 0.0160 -0.0104 0.0134
(—) (0.2020) (0.1254) (0.1106) (0.1196)

The table offers summary statistics – mean (volatility) – of bond risk premiums with maturities n = 24 and
60 months earned over a single month. As a reference, we report the expected bond excess returns in the US,
rx. The LC bond premium is r̂x− rx; the credit premium is r̃x− rx; the Twin Ds premium is r̂x− r̃x. The
definitions are in the main text. The last two premiums add up to the second. All numbers are annualized.
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Appendix A Bond prices

Appendix A.1 US bonds

The US short rate is

y1
t = δy,0 + δ>y,vvt

We conjecture that the price of a US bond is Qnt = exp
(
ān + b̄>n vt

)
. The price of a 1 period bond is

Q1
t = Et (Mt,t+1)

= Et

[
exp

(
−δy,0 − δ>y,vvt −

1

2
λ>t λt − λ>t εt+1 −

N∑
i=1

[
γi,tzi,t+1 + hi,t

(
e−γi,t − 1

)])]

= exp

(
−δy,0 − δ>y,vvt −

1

2
λ>t λt

)
Et

[
exp

(
−λ>t εt+1 −

N∑
i=1

[
γi,tzi,t+1 + hi,t

(
e−γi,t − 1

)])]

= exp

(
−δy,0 − δ>y,vvt −

N∑
i=1

hi,t
(
e−γi,t − 1

))
Et

[
exp

(
−

N∑
i=1

γi,tzi,t+1

)]
= exp

(
−δy,0 − δ>y,vvt

)
This implies the initial conditions ā1 = −δy,0 and b̄1 = −δy,v.

The price of an n-period US bond is

Qnt = Et
[
exp (mt,t+1)Qn−1

t+1

]
= Et

[
exp

(
−δy,0 − δ>y,vvt −

1

2
λ>t λt − λ>t εt+1 −

N∑
i=1

[
γi,tzi,t+1 + hi,t

(
e−γi,t − 1

)]
+ ān−1 + b̄>n−1vt+1

)]

= exp

(
−δy,0 − δ>y,vvt −

1

2
λ>t λt + ān−1 + b̄>n−1 [µv + Φvvt]

)
Et

[
exp

(
−

N∑
i=1

[
γi,tzi,t+1 + hi,t

(
e−γi,t − 1

)]
+
[
b̄>n−1Σv − λ>t

]
εt+1

)]

= exp

(
ān−1 − δy,0 − δ>y,vvt + b̄>n−1 [µv + Φvvt]− λ>t Σ>v b̄n−1 +

1

2
b̄>n−1ΣvΣ>v b̄n−1

)
Et

[
exp

(
−

N∑
i=1

[
γi,tzi,t+1 + hi,t

(
e−γi,t − 1

)])]

= exp

(
ān−1 − δy,0 − δ>y,vvt + b̄>n−1 [µv + Φvvt]− λ>t Σ>v b̄n−1 +

1

2
b̄>n−1ΣvΣ>v b̄n−1

)
where the loadings are

ān = ān−1 − δy,0 + b̄>n−1 (µv − λ0) +
1

2
b̄>n−1ΣvΣ>v b̄n−1 (A.1)

b̄n = (Φv − λv)> b̄n−1 − δy,v (A.2)

US yields are yt = an + b>n vt with an = −n−1ān and bn = −n−1b̄n.
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Appendix A.2 USD foreign bonds subject to default risk

We conjecture that the price of a foreign bond denominated in US dollars can be written as Q̃nt =

exp
(
ãn + b̃>n vt

)
for unknown coefficients ãn and b̃n. An n = 1 period foreign bond is

Q̃1
jt = Et [Mt,t+1 [(1− zj,t+1) + (1− L) zj,t+1]]

Q̃1
jt = exp

(
−δy,0 − δ>y,vvt −

1

2
λ>t λt

)
Et

[
exp

(
−λ>t εt+1 −

N∑
i=1

[
γi,tzi,t+1 + hi,t

(
e−γi,t − 1

)])
[1− Lzj,t+1]

]

Q̃1
jt = exp

(
−δy,0 − δ>y,vvt −

1

2
λ>t λt

)
Et
[
exp

(
−λ>t εt+1

)]
[

1− L exp

(
−

N∑
i=1

hi,t
(
e−γi,t − 1

))
Et

[
zj,t+1 exp

(
−

N∑
i=1

γi,tzi,t+1

)]]

Q̃1
jt = exp

(
−δy,0 − δ>y,vvt −

1

2
λ>t λt

)
[1− Lhjt exp (−γjt)] E

[
exp

(
−λ>t εt+1

)]
Q̃1
jt = exp

(
−δy,0 − δ>y,vvt

)
exp

(
log
[
1− Lh∗jt

])
Q̃1
jt ≈ exp

(
−δy,0 − δ>y,vvt

)
exp

(
−Lh∗jt

)
where the last line follows from a Taylor series approximation log (1 + x) ≈ x for small x. The initial loadings
are

ã1 = −δy,0 − Lδh,0 − Lδ>h,v
b̃1 = −Lδh,v − δy,v

Assuming the pricing equation holds for an n− 1 period bond, the price of an n-period bond is

Q̃njt = Et
[
Mt,t+1Q̃

n−1
j,t+1 [(1− zj,t+1) + (1− L) zj,t+1]

]
Q̃nt = Et

[
Mt,t+1 exp

(
ãn−1 + b̃>n−1vt+1

)
[1− Lzj,t+1]

]
Q̃njt = exp

(
ãn−1 − δy,0 − δ>y,vvt −

1

2
λ>t λt

)
Et

[
exp

(
b̃>n−1vt+1 − λ>t εt+1 −

N∑
i=1

[
γi,tzi,t+1 + hi,t

(
e−γi,t − 1

)])
[1− Lzj,t+1]

]

Q̃njt = exp

(
ãn−1 − δy,0 − δ>y,vvt −

1

2
λ>t λt + b̃>n−1µv + b̃>n−1Φvvt

)
Et

[
exp

(
−
(
λt − Σ>v b̃n−1

)>
εt+1 −

N∑
i=1

[
γi,tzi,t+1 + hi,t

(
e−γi,t − 1

)])
[1− Lzj,t+1]

]

Q̃njt = exp

(
ãn−1 − δy,0 − δ>y,vvt −

1

2
λ>t λt + b̃>n−1µv + b̃>n−1Φvvt

)
Et

[
exp

(
−
(
λt − Σ>v b̃n−1

)>
εt+1 −

N∑
i=1

[
γi,tzi,t+1 + hi,t

(
e−γi,t − 1

)])
[1− Lzj,t+1]

]

Q̃njt = exp

(
ãn−1 − δy,0 − δ>y,vvt −

1

2
λ>t λt + b̃>n,xµv + b̃>n−1Φvvt

)
Et

[
exp

(
−
(
λt − Σ>v b̃n,x

)>
εt+1 + log

[
1− Lh∗j,t

])]

48



Next, we take a first-order Taylor series expansion of the log-function log
(
−Lh∗j,t

)
≈ 1 − Lh∗j,t. We get an

approximation

Q̃nt ≈ exp

(
ãn−1 − δy,0 − δ>y,vvt −

1

2
λ>t λt + b̃>n,xµv + b̃>n−1Φvvt

)
Et

[
exp

(
−
(
λt − Σ>v b̃n,x

)>
εt+1 − Lh∗j,t

)]
= exp

(
ãn−1 − δy,0 − Lh∗j,t − δ>y,vvt −

1

2
λ>t λt + b̃>n−1µv + b̃>n−1Φvvt

)
Et

[
exp

(
−
(
λt − Σ>v b̃n,x

)>
εt+1

)]
= exp

(
ãn−1 − δy,0 − Lh∗j,t − δ>y,vvt −

1

2
λ>t λt + b̃>n−1µv + b̃>n−1Φvvt

)
exp

(
1

2

(
λt − Σ>v b̃n,x

)> (
λt − Σ>v b̃n,x

))
= exp

(
ãn−1 − δy,0 − Lh∗j,t − δ>y,vvt + b̃>n−1µv + b̃>n−1Φvvt − λ>t Σ>v b̃n−1 +

1

2
b̃>n−1ΣvΣ>v b̃n−1

)
This implies the bond loadings are

ãn = ãn−1 − δy,0 − Lδh,0 + b̃>n−1 (µv − λ0) +
1

2
b̃>n−1ΣvΣ>v b̃n−1

b̃n = (Φv − λv)> b̃n−1 − δy,v − Lδh,v
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Appendix A.3 LC foreign bonds subject to default

We conjecture that the price of a foreign bond denominated in US dollars can be written as Q̂nt =

exp
(
ân + b̂>n vt

)
for unknown coefficients ân and b̂n. For an n = 1 period bond, we find

Q̂1
jt = Et

[
Mt,t+1

St+1

St
[(1− zt+1) + (1− L) zj,t+1]

]
Q̂1
jt = Et [Mt,t+1 exp (∆st+1) [1− Lzt+1]]

Q̂1
jt = exp

(
δs,0 − δy,0 − δ>y,vvt −

1

2
λ>t λt

)
Et

[
exp

(
δ>s,vvt+1 − kzj,t+1 − λ>t εt+1 −

N∑
i=1

[
γi,tzi,t+1 + hi,t

(
e−γi,t − 1

)])
[1− Lzj,t+1]

]

Q̂1
jt = exp

(
δs,0 + δ>s,vµv + δ>s,vΦvvt − δy,0 − δ>y,vvt −

1

2
λ>t λt

)
Et

[
exp

(
−
(
λt − Σ>v δs,v

)>
εt+1 − kzj,t+1 −

N∑
i=1

[
γi,tzi,t+1 + hi,t

(
e−γi,t − 1

)])
[1− Lzj,t+1]

]

Q̂1
jt = exp

(
δs,0 + δ>s,vµv + δ>s,vΦvvt − δy,0 − δ>y,vvt −

1

2
λ>t λt

)
Et

[
exp

(
−
(
λt − Σ>v δs,v

)>
εt+1

)
exp

(
−kzj,t+1 −

N∑
i=1

[
γi,tzi,t+1 + hi,t

(
e−γi,t − 1

)])
[1− Lzj,t+1]

]

Q̂1
jt = exp

(
δs,0 + δ>s,vµv + δ>s,vΦvvt − δy,0 − δ>y,vvt −

1

2
λ>t λt

)
Et

[
exp

(
−
(
λt − Σ>v δs,v

)>
εt+1

)]
Et

[
exp

(
−kzj,t+1 −

N∑
i=1

[
γi,tzi,t+1 + hi,t

(
e−γi,t − 1

)])
[1− Lzj,t+1]

]
Next, we integrate out zi,t+1 to get

Q̂1
jt = exp

(
δs,0 + δ>s,vµv + δ>s,vΦvvt − δy,0 − δ>y,vvt −

1

2
λ>t λt

)
exp

(
−h∗j,tK

) [
1− Lh∗jt exp (−k)

]
exp

(
1

2

(
λt − Σ>v δs,v

)> (
λt − Σ>v δs,v

))
Then, we take a Taylor series expansion

Q̂1
jt ≈ exp

(
δs,0 + δ>s,vµv + δ>s,vΦvvt − δy,0 − δ>y,vvt −

1

2
λ>t λt

)
exp

(
− [K + L− LK]h∗j,t

)
exp

(
1

2

(
λt − Σ>v δs,v

)> (
λt − Σ>v δs,v

))
where we define K =

(
1− e−k

)
and K̂ = K + L− LK. This gives

Q̂1
jt = exp

(
δs,0 + δ>s,vµv + δ>s,vΦvvt − δy,0 − δ>y,vvt −

1

2
λ>t λt − K̂h∗j,t

)
exp

(
1

2
λ>t λt − λ>t Σ>v δs,v +

1

2
δ>s,vΣvΣ>v δs,v

)
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The bond loadings at n = 1 are

â1 = δs,0 + δ>s,v (µv − λ0)− δy,0 − K̂δh,0 +
1

2
δ>s,vΣvΣ>v δs,v

b̂1 = (Φv − λv)> δs,v − δy,v − K̂δh,v

For a general n period bond, we find

Q̂njt = Et

[
Mt,t+1Q̂

n−1
t+1

St+1

St
[(1− zj,t+1) + (1− L) zj,t+1]

]
Q̂njt = Et

[
Mt,t+1Q̂

n−1
t+1 exp (∆st+1) [1− Lzj,t+1]

]
Q̂njt = exp

(
ân−1 + δs,0 − δy,0 − δ>y,vvt −

1

2
λ>t λt

)
Et

[
exp

((
b̄n−1 + δs,v

)>
vt+1 − λ>t εt+1 − kzj,t+1 −

N∑
i=1

[
γi,tzi,t+1 + hi,t

(
e−γi,t − 1

)])
[1− Lzj,t+1]

]

Q̂njt = exp

(
ân−1 + δs,0 +

(
δs,v + b̂n−1

)>
µv +

(
δs,v + b̂n−1

)>
Φvvt − δy,0 − δ>y,vvt −

1

2
λ>t λt

)
Et

[
exp

(
−
(
λt − Σ>v

(
b̂n−1 + δs,v

))>
εt+1 − kzj,t+1 −

N∑
i=1

[
γi,tzi,t+1 + hi,t

(
e−γi,t − 1

)])
[1− Lzj,t+1]

]

Q̂njt = exp

(
ân−1 + δs,0 +

(
δs,v + b̂n−1

)>
µv +

(
δs,v + b̂n−1

)>
Φvvt − δy,0 − δ>y,vvt −

1

2
λ>t λt

)
Et

[
exp

(
−
(
λt − Σ>v

(
b̂n−1 + δs,v

))>
εt+1

)
exp

(
−kzj,t+1 −

N∑
i=1

[
γi,tzi,t+1 + hi,t

(
e−γi,t − 1

)])
[1− Lzj,t+1]

]

Q̂njt = exp

(
ân−1 + δs,0 +

(
δs,v + b̂n−1

)>
µv +

(
δs,v + b̂n−1

)>
Φvvt − δy,0 − δ>y,vvt −

1

2
λ>t λt

)
Et

[
exp

(
−
(
λt − Σ>v

(
b̂n−1 + δs,v

))>
εt+1

)]
Et

[
exp

(
−kzj,t+1 −

N∑
i=1

[
γi,tzi,t+1 + hi,t

(
e−γi,t − 1

)])
[1− Lzj,t+1]

]

Calculate the integral

Q̂njt = exp

(
ân−1 + δs,0 +

(
δs,v + b̂n−1

)>
µv +

(
δs,v + b̂n−1

)>
Φvvt − δy,0 − δ>y,vvt −

1

2
λ>t λt

)
exp

(
1

2

(
λt − Σ>v

(
b̂n−1 + δs,v

))> (
λt − Σ>v

(
b̂n−1 + δs,v

)))
exp

(
−h∗j,tK

) [
1− Lh∗jt exp (−k)

]
Next, we use a Taylor series expansion

Q̂njt ≈ exp

(
ân−1 + δs,0 +

(
δs,v + b̂n−1

)>
µv +

(
δs,v + b̂n−1

)>
Φvvt − δy,0 − δ>y,vvt −

1

2
λ>t λt

)
exp

(
1

2

(
λt − Σ>v

(
b̂n−1 + δs,v

))> (
λt − Σ>v

(
b̂n−1 + δs,v

)))
exp

(
−h∗j,t [K + L− LK]

)
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This implies that

ân = ân−1 + δs,0 − δy,0 − K̂δh,0 +
(
b̂n−1 + δs,v

)>
(µv − λ0)

+
1

2

(
b̂n−1 + δs,v

)>
ΣvΣ>v

(
b̂n−1 + δs,v

)
b̂n = (Φv − λv)>

(
b̂n−1 + δs,v

)
− δy,v − K̂δh,v

where K̂ = K + L− LK.

Appendix B Estimation

Appendix B.1 Observables

We observe a vector of exchange rates ∆st, macro economic variables, and yield factors. We place these in
the state vector vt as in (6). In addition to the state variables, we observe one-period returns on US zero
coupon bonds rn−1,n

t for monthly maturities n = (6, 12, 24, 36, 48, 60). We also observe returns on foreign
bonds denominated in foreign currency r̂n−1,n

t for maturities n = (6, 12, 24, 36, 48, 60). Finally, we also
observe returns on foreign bonds denominated in US dollars r̃n−1,n

t for maturities n = (24, 36, 48, 60, 120).
We stack all these returns in a vector rt. We write these returns as

rn,n−1
t+1 = c̄n−1 + ψ̄>n−1vt + b̄>n−1vt+1 (B.3)

r̃n,n−1
t+1 = c̃n−1 + ψ̃>n−1vt + b̃>n−1vt+1 (B.4)

r̂n,n−1
t+1 = ĉn−1 + ψ̂>n−1vt + b̂>n−1vt+1 (B.5)

where the loadings are taken from the expressions for bond prices

c̄n−1 = δy,0 − b̄>n−1 (µv − λ0)− 1

2
b̄>n−1ΣvΣ>v b̄n−1 (B.6)

c̃n−1 = δy,0 + Lδ∗h,0 − b̃>n−1 (µv − λ0)− 1

2
b̃>n−1ΣvΣ>v b̃n−1 (B.7)

ĉn−1 = δy,0 + K̂δ∗h,0 − δs,0 −
(
b̂n−1 + δs,v

)>
(µv − λ0) (B.8)

−1

2

(
b̂n−1 + δs,v

)>
ΣvΣ>v

(
b̂n−1 + δs,v

)
(B.9)

ψ̄>n−1 = −b̄>n−1 (Φv − λv)> + δ>y,v (B.10)

ψ̃>n−1 = −b̃>n−1 (Φv − λv) + δ>y,v + Lδ∗,>h,v (B.11)

ψ̂>n−1 = −
(
b̂n−1 + δs,v

)>
(Φv − λv) + δ>y,v + K̂δ∗,>h,v (B.12)

Collecting all countries together, the vector of returns rt has dimension nr × 1 with nr = 61.

We write the model as

vt = µv + Φvvt−1 + Σvεt εt ∼ N (0, I) (B.13)

rt = C + Ψvt−1 +Bvt + ηt ηt ∼ N (0,Ω) (B.14)

where ηt are a vector of i.i.d. measurement errors. We assume the matrix Ω is diagonal with asset specific
variances ω2

i,i for i = 1, . . . , nr. The vector C and matrices Ψ and B contain the bond loadings (B.6)-(B.12)
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stacked in order of ascending maturities. We note that the parameters λ0 and µ̄v enter the vector C while
Ψ is a function of the matrices Φv and λv. For future reference below, we can write these as

C = Cc + Cµ̄µ̄x + Cλλ0 (B.15)

Ψ · vt−1 = Ψc + Ψφ,t−1vec (Φv) + Ψλ,t−1vec (λv) (B.16)

where Ψφ,t−1 and Ψλ,t−1 are functions of vt−1.

In practice, both the state vector vt and the observation vector rt contain missing values. During the MCMC
algorithm, we impute the missing values in the state vector vt using the Kalman filter. We do not impute
the missing values in returns rt.

Appendix B.2 Identification and restrictions

We model the macroeconomic factors for inflation and industrial production as unspanned. This implies that
the columns of the factor loadings B associated with inflation or industrial production are a-priori equal to
zero. Under this assumption, we cannot identify the rows of λ0 and λv associated with these factors because
they always enter the model multiplicatively as Bλ0 and Bλv. We set these rows of λ0 and λv equal to zero.

We also impose the restrictions on λ0 and λv associated with covered interest parity (CIP). This restriction
would be automatically imposed in a no-arbitrage model. The CIP restriction implies that rows of the risk
neutral drift µ∗v and rows of the risk neutral autocovariance matrix Φ∗v associated with any depreciation
rates must satisfy the conditions

e>s,iµ
∗
v = −1

2
e>s,iΣvΣ>v es,i

e>s,iΦ
∗
v = e>∆c`,i

We use es,i to denote a unit vector that selects out the depreciation rate of the i-th country. Similarly, we
use e∆c`,i to denote a unit vector that selects out of the state vector the interest rate differential of the i-th
country.

Since we parameterize the model in terms of λ0 and λv, the CIP restrictions imply that

e>s,iλ0 = e>s,iµv +
1

2
e>s,iΣvΣ>v es,i

e>s,iλv = e>s,iΦv − e>∆c`,i

These state that rows of λ0 and λv associated with the depreciation rate must be restricted.

Appendix B.3 Prior distributions

Given the large number of parameters in the model, we use informative priors for all the parameters of the
model.

• Let Ω be a diagonal matrix with dimension nr × nr. Note that rt has dimension nr × 1. We assume
that each element ω2

ii has prior distribution ω2
ii ∼ IG

(
νr,i, wr,i

)
. We calculate the unconditional

sample variance of each return v̄r,i = V (ri,t). For each return i, we calculate the shape and scale
parameters of the prior distribution as wr,i = 2 + v̄2

r,i/(0.95 · v̄r,i) and νr,i =
(
wr,i − 1

)
v̄r,i.
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• We place a prior distribution on the individual elements of the matrix ΣvΣ>v = LvDvL
>
v . For the

diagonal elements of Dv, we place inverse Gamma priors dv,i ∼ IG
(
νx,i, wx,i

)
on each of the diagonal

elements. We calculate the unconditional sample variance of each of the state variables v̄x,i = V (xi,t)
and set E (dv,i) = v̄x,i. For each state variable i, we calculate the shape and scale parameters of the
prior distribution as wx,i = 2 + v̄2

x,i/(0.5 · v̄x,i) and νx,i =
(
wx,i − 1

)
v̄x,i. The matrix Lv is lower

triangular with individual values `v,ij . We place an independent prior `v,ij ∼ N (0, 1) on these values.

• We place a prior on the unconditional mean of the state vector µ̄v ∼ N
(
µ
v
, V µ

)
. First, we calculate

the unconditional sample mean of the factors x̄ and set µ
v

= x̄. We set V µ to be a diagonal matrix
and we choose the variances to be large enough to cover the support of the data.

• We place a joint prior on the matrix Φx by considering the individual elements φx,ij . We place a
normal prior on the diagonal elements φx,ii ∼ N (0.8, 0.025). For the off-diagonal elements, we use
a normal prior with a larger variance φx,ij ∼ N (0, 1). The “joint” prior comes from truncating the
distribution over Φx to only accept draws in the stationarity region.

• The vector λ0 needs restricted for identification as discussed in Appendix B.2. Let λr0 denote the
vector of unrestricted parameters. These values can be written as

λ0 = Sc + Sµµv + Sλλ
r
0

where Sc, Sµ, and Sλ are selection matrices that impose the identifying and CIP restrictions. The

vector λr0 has prior λr0 ∼ N
(
µ
λ
, V λ

)
. We set µ

λ
= 0. The covariance matrix V λ is diagonal with

variances chosen so that the unconditional annual Sharpe Ratio’s has a high probability of being less
than 1.

• The matrix λv needs restricted for identification as discussed in Appendix B.2. The matrix λv has
individual elements λv,ij . We use a normal prior distribution on each element λv,ij ∼ N (0, 0.001).
Again, the variance of this distribution is chosen so that the conditional annual Sharpe Ratio’s has a
high probability of being less than 1.

• The matrix of factor loadings B in equation B.3 has many free parameters. For returns of different
maturities but of the same kind of bond (e.g. holding period returns on US bonds), we note that
the bond loadings of different maturities b̄n and b̄n−1 should be related through the recursion (A.2).
This implies that the columns of the matrix B in (B.14) should be smooth functions of maturity. To
impose this structure, we assign a conditional prior to the entries bi,j of the matrix B. As long as
the return belongs to the same type of asset class (e.g. holding period returns on US bonds), we set
bi,j ∼ N (0.9bi−1,j , 0.01). This implies that bond loadings for each factor j on returns of the same asset
class are correlated. The bond loadings are independent across different factors j. Furthermore, the
loadings bi,j on returns across asset classes are uncorrelated, e.g. loadings for US bonds are unrelated
to Chinese bonds.

In practice, some data points are missing which implies that some of the state variables vt are missing.
We use (vo1:T , r

o
1:T ) to denote the observed data and vm1:T to denote the missing data, respectively. The

log-likelihood function is

L = log p (vo1 , . . . , v
o
T , r

o
1, . . . , r

o
T |θ) =

T∑
t=1

log p (vot |vot−1, θ) +

T∑
t=1

log p (rot |vot ; θ)

where v0 are equal to the unconditional mean. We note that the dimensions of vt and rt change through
time. The likelihood with missing observations can still be computed using the Kalman filter.

Appendix B.4 Estimation

Let θ denote all the parameters of the model and define v1:T = (v1, . . . , vT ) and r1:T = (r1, . . . , rT ). The
joint posterior distribution over the parameters and missing data is given by

p (θ, vm1:T |vo1:T , r
o
1:T ) ∝ p (vo1:T , r

o
1:T |θ) p (θ) ,
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where p (vo1:T , r
o
1:T |θ) is the likelihood of the observed data and p (θ) is the prior distribution. We use

Markov-chain Monte Carlo to draw from the posterior.

Appendix B.4.1 MCMC algorithm

We provide a brief description of the MCMC algorithm. We use a Gibbs sampler that iterates between
drawing from each of the full conditional distributions.

• Place the model in linear, Gaussian state space form as described in Appendix B.4.2. Draw the
state variables and unconditional means (vo1:T , µ̄v, λ

r
0) from their full conditional distribution using

the Kalman filter and simulation smoothing algorithm.

• Draw the factor loadings in the matrix B of the returns

rt = C + Ψvt−1 +Bvt + ηt

We draw the free parameters in each row of B, row-by-row. These are the vectors b̄n−1, b̃n−1 and
b̂n−1 in the bond loadings (B.3)-(B.5). For the current discussion, we denote each row of B as bi. The
vector bi also enters each row of the vector Γ and the matrix Ψ in the expressions (B.6)-(B.12). With
a Gaussian prior on the parameters in each row, the full conditional posterior is unknown because bi
enters each row of Γ as a quadratic form, e.g. the Jensen’s inequality term b>i ΣvΣ>v bi. Consequently,
the full conditional distribution is unknown and we use a Metropolis-Hastings algorithm. We note
that if this term were linear in the loadings bi, then the full-conditional would be a standard draw
from a linear regression model. Therefore, our proposal distribution approximates the quadratic term
by setting the quadratic term to a constant b>i ΣvΣ>v bi where bi is fixed from previous runs of the
algorithm. We then use the linear regression model as our proposal inside the Metropolis-Hastings
algorithm. The acceptance rates for each row of B are roughly 70%.

• Draw the free elements of ΣvΣ>v = LvDvL
>
v from their full conditional using a random-walk Metropo-

lis algorithm. We tuned the covariance matrix of the random-walk based on previous estimates from
the algorithm with a targeted acceptance rate of roughly 25-30%. In practice, we propose the diag-
onal elements of the matrix Dv using a logarithmic transformation log (dv,i) to guarantee that the
proposal for dv,i is positive. In this step, we avoid conditioning on the missing values vm1:T by using
the Kalman filter to calculate the log-likelihood within the Metropolis-Hastings acceptance ratio.

• Let v̄t = vt− µ̄v denote the demeaned factors. We draw the free elements of Φv and λv from their full
conditional distribution using standard results for Bayesian multiple regression. We write the model
as a regression model

Yt = Xtβ + εt

where Yt =
(
v̄>t d>t

)>
and β =

(
vec (Φx)> vec (λv)>

)>
. The regressors Xt contain lagged and

contemporaneous values of v̄t−1, vt−1 and vt. The left-hand side variables dit for i = 1, . . . , nr are
equal to the returns minus any known constants. For example, for a return on US bonds we write

dit = rit − ci − ψi,c − b>i vt

where ci and ψi,c are the coefficients in the representation (B.15)-(B.16). The missing returns rit are
omitted in the vector Yt by selecting out only those equations that are observed at each relevant date.
Otherwise, draws from this model are standard for Bayesian multiple regression.

• Let Ti denote the number of observed values for the i-th return rit. The full conditional posterior
distribution of the diagonal elements of Ω are ω2

ii ∼ Inv-Gamma (ν̄r,i, κ̄r,i) where ν̄r,i = wr,i + Tr,i

and κ̄r,i = wr,i + 1
2

∑Ti
t=1 (rit − ci − ψ′ivt−1 − b′ivt)

2
where ci, ψi, and bi denote the relevant entries

of return i in C,Ψ and B of equation (B.14).
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Appendix B.4.2 State space form

We place this model in the following linear, Gaussian state space form

Yt = Zαt + d+ ut ut ∼ N (0, H) , (B.17)

αt+1 = Tαt + c+Rvt vt ∼ N (0, Q) . (B.18)

where the initial condition is α1 ∼ N
(
a1|0, P1|0

)
.

We draw the vectors µ̄x and λr0 jointly with the missing state variables by including them in the state vector.
We define the system matrices from (B.17)-(B.18) as

d =

(
0

Cc + CλSc

)
Z =

(
I 0 0 0
B Ψ Cµ̄x + CλSµ CλSλ

)
H =

(
0 0
0 Ω

)
Q = I

αt =


vt
vt−1

µ̄v
λr0

 T =


Φv 0 (I− Φv) 0
I 0 0 0
0 0 I 0
0 0 0 I

 c =


0
0
0
0

 R =


Σv
0
0
0



a1|0 =


µ
v

µ
v

µ
v

λr

 P1|0 =


ΣvΣ>v + V µ V µ V µ 0

V µ V µ V µ 0

V µ V µ V µ 0

0 0 0 V λ


We use the Kalman filter and simulation smoothing algorithm to draw the missing values and the uncondi-
tional means jointly.
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