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Abstract

Recent works have shown that deep neural networks can achieve super-human per-
formance in a wide range of image classification tasks in the medical imaging domain.
However, these works have primarily focused on classification accuracy, ignoring the im-
portant role of uncertainty quantification. Empirically, neural networks are often miscal-
ibrated and overconfident in their predictions. This miscalibration could be problematic
in any automatic decision-making system, but we focus on the medical field in which
neural network miscalibration has the potential to lead to significant treatment errors.
We propose a novel calibration approach that maintains the overall classification accu-
racy while significantly improving model calibration. The proposed approach is based on
expected calibration error, which is a common metric for quantifying miscalibration. Our
approach can be easily integrated into any classification task as an auxiliary loss term,
thus not requiring an explicit training round for calibration. We show that our approach
reduces calibration error significantly across various architectures and datasets.

1 Introduction

Recent advances in deep learning research have dramatically impacted the research field of
medical imaging analysis [18, 28, 31]. Many high-performance deep learning models have
been developed in the field [2, 21, 37, 40]. Researchers are actively pushing convolutional
neural networks (CNNs) to have higher and higher accuracy, while uncertainty quantifica-
tion is often ignored when evaluating these models [19, 25, 26, 35]. However, uncertainty
quantification of neural networks is important, especially in automatic decision-making set-
tings in the medical field. An automated method that achieves high accuracy, but captures
uncertainty inaccurately, such as providing inaccurate confidence or probability of a specific
prediction, could lead to significant treatment errors [11].
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Figure 1: Left: The train loss/accuracy and test loss/accuracy of the uncalibrated model. The
model is overfitted after the 7th epoch, where the train loss keeps decreasing but the test loss
keeps increasing. Right: The train loss/accuracy and test loss/accuracy of our method. The
DCA term penalizes the model when the loss reduces but the accuracy is plateaued. Both
the train and test losses maintain at the same level after the 7th epoch.

Unfortunately, deep neural networks are poorly calibrated [16, 24], which are overconfi-
dent in their predictions [4, 16, 24]. One reason for miscalibration of classification models is
that the models can overfit the cross-entropy loss easily without overfitting the 0/1 loss (i.e.,
accuracy) [4, 38]. We propose to add the difference between predicted confidence and accu-
racy (DCA) as an auxiliary loss for classification model calibration. The DCA term applies
a penalty when the cross-entropy loss reduces but the accuracy is plateaued (Figure 1).

We evaluate the proposed method across four public medical datasets and four widely
used CNN architectures. The results show that our approach reduces calibration error sig-
nificantly by an average of 65.72% compared to uncalibrated methods (from 0.1006 ECE to
0.0345 ECE), while maintaining the overall accuracy across all the experiments—83.08%
and 83.58% for the uncalibrated method and our method, respectively.

2 Background

The problem we are addressing is the miscalibration issue of deep neural networks for clas-
sification tasks. The confidence associated with a prediction (i.e., probability of being one
specific class) should reflect the true correctness likelihood of a model [4]. However, deep
neural networks tend to be overconfident in their predictions [16, 24].

2.1 Problem Definition

Mathematically, the problem can be defined in the following way. The input X 2 x and
label Y 2 y = {1, ...,k} are random variables that follow a joint distribution p(X ,Y ) =
p(Y |X)p(X). Let h be a deep neural network with h(X) = (Ŷ , P̂), where Ŷ is the predicted
class label and P̂ is the associated confidence. We would like the confidence estimate P̂ to be
calibrated, which intuitively means that P̂ represents a true probability. For instance, given
100 predictions with the average confidence of 0.95, we expect that 95 predictions should be
correct. In reality, the average confidence of a deep neural network is often higher than its
accuracy [4, 16, 24]. The perfect calibration can be defined as:

P
�
Ŷ = Y |P̂ = p

�
= p,8p 2 [0,1]. (1)
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Difference in expectation between confidence and accuracy (i.e., the calibration error) can
be defined as:

E p̂

⇥���Ŷ = Y |P̂ = p
�
� p

��⇤ . (2)

2.2 Measurements

Expected Calibration Error (ECE) is a commonly used criterion for measuring neural net-
work calibration error. ECE [23] approximates Equation (2) by partitioning predictions into
M bins and taking a weighted average of the accuracy/confidence difference for each bin. All
the samples need to be grouped into M interval bins according to the predicted probability.
Let Bm be the set of indices of samples whose predicted confidence falls into the interval
Im = (m�1

M
, m

M
], m 2 M. The accuracy of Bm is

acc(Bm) =
1

|Bm| Â
i2Bm

1(ŷi = yi), (3)

where ŷi and yi are the predicted and ground-truth label for sample i. The average predicted
confidence of bin Bm can be defined as

conf(Bm) =
1

|Bm| Â
i2Bm

p̂i, (4)

where p̂i is the confidence of sample i. ECE can be defined with acc(Bm) and conf(Bm)

ECE =
M

Â
m=1

|Bm|
n

|acc(Bm)� conf(Bm)| , (5)

where n is the number of samples.
Maximum Calibration Error (MCE) [23] is another common criterion for measuring neu-

ral network calibration error that partitions predictions into M equally-spaced bins and esti-
mates the worst-case scenario. MCE can be computed as:

MCE = max
m2{1,...,m}

|acc(Bm)� conf(Bm)|. (6)

3 Existing Calibration Methods

In this section, we introduce some existing calibration methods, including temperature scal-
ing [4, 7], entropy regularization [24], MMCE regularization [16], label smoothing [22, 32],
and Mixup training [33, 39]. Temperature scaling is a widely used calibration method, which
treats model calibration as a post-processing task. All the other methods fix neural network
calibration during the classification training stage.

3.1 Temperature Scaling

Temperature scaling [4, 7] is a widely-used approach for deep learning model calibration. It
fixes the miscalibration issue by dividing the logits by a temperature parameter of T (T > 0).
The method involves two steps, in general. The first step is to train a classification model.
Once the model is trained, the temperature parameter is added to the model and needs to
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be trained on the validation set while all the other parameters are frozen [4]. After that,
the temperature parameter will be used for calibration at the testing time. The calibrated
confidence, q̂i, using temperature scaling is

q̂i = max
k

qSM(
zi

T
)(k), (7)

where k is the class label (k = 1, ...,K), qSM(zi) is the predicted confidence. As T ! •, the
confidence q̂i approaches the minimum, which indicates maximum uncertainty.

Temperature scaling is easy to use and performs well. The optimization process of the
temperature parameter is not expensive and only needs to be done once. However, as a post-
processing approach, temperature scaling does not help with feature learning. In addition, a
neural network model should be able to calibrate itself without any post-processing [34].

3.2 Trainable Calibration Methods

Trainable calibration methods are proposed to integrate model calibration into classification
training. No explicit training round for calibration is needed in such a fashion. One of
the earliest trainable approaches is the entropy regularization [24]. The method proposes
to use entropy as a regularization term in loss functions for model calibration. The final
classification loss can be written as:

Loss = CrossEntropy+bEntropy, (8)

where b is a weight scalar. One disadvantage of entropy regularization is that the method
is very sensitive to the value of b [16]. Kumar et al. propose to use MMCE replacing
entropy for model calibration [16]. MMCE is computed in a reproducing kernel Hilbert
space (RKHS) [3]. The completely loss function can be written as:

Loss = CrossEntropy+b (MMCE2
m
(D))

1
2 , (9)

where D denotes a dataset. The performance of MMCE may be limited by imbalance pre-
dictions of a neural network. For instance, the number of correct predictions is usually larger
than the number of incorrect predictions. Thus, the MMCE term needs to be re-weighted as:

MMCE2
w
= Â

ci=c j=0

pi, p j,k(pi, p j)

(m�n)2 +

Â
ci=c j=1

(1� pi)(1� p j)k(pi, p j)

n2 �

2 Â
ci=1,c j=0

(1� pi)p jk(pi, p j)

(m�n)n
,

(10)

where c is the predicted label, m is the number of correct predictions, n is the batch size, and
k is a universal kernel [29].

Label smoothing [32] was proposed to improve classification performance of the Incep-
tion architecture. Müller et al. demonstrate that label smoothing improves classification
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performance by calibrating models implicitly [22]. Instead of targeting a hard probability,
1.0, for the correct class, label smoothing tries to predict a softer version of it:

y
LS

k
= yk(1�a)+

a
K
, (11)

where yk is original targeting probability (yk = 1.0 for the correct class and yk = 0.0 for the
rest), K is the number of class labels, a is a hyperparameter that determines the amount of
smoothing. Mixup [39] is another method that aims to predict a softer target by randomly
mixing training samples. During the training, two samples from different classes are ran-
domly mixed together. Instead of predicting one target label, the network needs to predict
the two corresponding labels’ probability. The target probabilities equal to the portion of the
pixels from each image. Thulasidasan et al. [33] demonstrate that Mixup is also useful for
neural network calibration.

4 Proposed Method

We propose to add the difference between confidence and accuracy (DCA) as an auxiliary
loss term to the cross-entropy loss for classification tasks. DCA is based on expected cal-
ibration error by minimizing the difference between the predicted confidence and accuracy
directly. Therefore, the proposed method can calibrate neural networks effectively. The
proposed method is easy to implement and suitable for any classification tasks. In general,
classification loss can be written as follows:

Loss =� 1
N

N

Â
i=1

yi · log(p(yi))+bDCA, (12)

where yi is the true label and p(yi) is the predicted confidence (i.e., probability) of the true
label. The DCA term can be computed for each mini-batch using the following equation:

DCA =

�����
1
N

N

Â
i=1

ci �
1
N

N

Â
i=1

p(ŷi)

����� , (13)

where ŷi is the predicted label; ci = 1, if ŷi = yi; otherwise, ci = 0. The final loss function
can be written as:

Loss =� 1
N

N

Â
i=1

yi · log(p(yi))+b

�����
1
N

N

Â
i=1

ci �
1
N

N

Â
i=1

p(ŷi)

����� . (14)

The DCA auxiliary loss fixes the miscalibration issue by penalizing deep learning models
when the cross-entropy loss can be reduced, but the accuracy does not change (i.e., when
the model is overfitting). The term forces the average predicted confidence to match the
accuracy over all training examples without strict constraint on each example, which pushes
the network closer to the ideal situation, in which the accuracy reflects the true correctness
likelihood of a model. The averaging mechanism of DCA also smooths the predictions that
have extremely high or low confidence.

DCA is differentiable in the predicted confidence term but not strictly in the prediction
accuracy term due to the argmax step for computing the predicted label. During the training
phase, gradients can be backpropagated through the confidence terms but not through the
accuracy.
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5 Experiments

We compare the proposed method with temperature scaling and uncalibrated models (trained
with cross-entropy loss without applying any calibration methods) on four medical imaging
datasets across four popular CNN networks. The trainable methods are not compared in this
work because the literature shows that they have a worse or similar calibration performance
with temperature scaling [16, 22, 33]. Thus, it may not be necessary to be compared in this
paper explicitly.

The evaluation results show that the proposed method significantly improves model cal-
ibration while maintaining the overall classification accuracy. The proposed method reduces
calibration error by an average of 65.72% compared to uncalibrated methods (from 0.1006
ECE to 0.0345 ECE) and performs about 20% better than temperature scaling on average.

5.1 Experiment Setup

Four medical imaging datasets (RSNA [27], DDSM [6], Mendeley V2 [13], and Kather
5000 [12]) were used in this study for both binary and multi-class classification tasks. See
Table S1 and Section S1 for more details. Four CNN models that trained with transfer
learning mechanism were evaluated. More specifically, we use ImageNet [1] pre-trained
AlexNet [15], ResNet-50 [5], DenseNet-121 [8], and SqueezeNet 1-1 [9] as fixed feature
extractors, a 1⇥ 1 convolutional layer and two fully connected layers were added on top to
each feature extractor. See Section S2 for more details.

5.2 Calibration Results

Table 1 shows the expected calibration error (ECE) and the accuracy of the uncalibrated
models (Unca.), temperature scaling (Temp.), and the proposed method (DCA). Each model
was trained for two times. The average value is shown in the table.

The table shows that our method is consistently better than the uncalibrated method on
model calibration, which reduces the ECE by 65.71% on average (from 0.1006 to 0.0345).
Temperature scaling has the second smallest average ECE (0.0427). However, it is still
23.77% worse than the proposed method. On average, the uncalibrated method and temper-
ature scaling have an 83.08% accuracy, while the proposed method has an 83.51% accuracy.
The proposed method increases the accuracy of 11 out of 16 tests.

It is worth noting that temperature scaling increases calibration error of 3 out of 4 models
on the Kather 5000 dataset, while the proposed method is still able to reduce the calibration
error of most cases on the same dataset. The Kather 5000 dataset is a relatively simple
and large dataset for its task. The dataset is considered as the MNIST of histology images.
It is speculated to have a sufficient amount of training data to train a model end-to-end,
with a smaller overfitting effect (i.e., miscalibration). In such a case, since the temperature
parameter (T ) of temperature scaling is learned on only the validation set, it may actually
hurt the calibration. However, the proposed method jointly optimizes the accuracy and modal
calibration simultaneously, and it can still reduce the calibration error.

Table 2 shows the maximum calibration error (MCE) of the compared models trained
using the RSNA, DDSM, and Mendeley datasets. Though there is no clear winner on MCE,
the proposed model decreases the average MCE by about 3%, while temperature scaling
increases the MCE slightly. Table 3 shows the MCE results on the Kather 5000 dataset.
Both temperature scaling and the proposed method increase the MCE quite well. According
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Table 1: Expected Calibration Error (ECE) for Each Model

Dataset Model

ECE Accuracy
1

(smaller is better) (larger is better)
Unca. Temp. DCA Unca. DCA

RSNA

AlexNet 0.0113 0.0239 0.0120 0.8376 0.8488

ResNet 0.0276 0.0231 0.0122 0.8569 0.8762

DenseNet 0.0102 0.0814 0.0077 0.8502 0.8543

SqueezeNet 0.0253 0.0317 0.0097 0.8671 0.8841

DDSM

AlexNet 0.2164 0.0658 0.0591 0.6766 0.6291
ResNet 0.1844 0.0307 0.0798 0.7195 0.6987

DenseNet 0.1798 0.0337 0.0754 0.7076 0.7106

SqueezeNet 0.2173 0.0458 0.0805 0.6853 0.6771

Mendeley

AlexNet 0.1693 0.0396 0.0273 0.8585 0.8785

ResNet 0.1475 0.0475 0.0291 0.8520 0.8767

DenseNet 0.1136 0.0746 0.0285 0.8331 0.8796

SqueezeNet 0.1871 0.0468 0.0252 0.8742 0.8750

Kather

AlexNet 0.0279 0.0344 0.0243 0.9062 0.9052
ResNet 0.0248 0.0318 0.0304 0.9355 0.9229

DenseNet 0.0302 0.0286 0.0237 0.9385 0.9410

SqueezeNet 0.0372 0.0439 0.0269 0.8932 0.9038

Average 0.1006 0.0427 0.0345 0.8308 0.8351

1The temperature scaling method has the same accuracy as the uncalibrated models.

Table 2: Maximum Calibration Error (MCE) for Binary Classification Tasks

Dataset Model

MCE

(smaller is better)
Unca. Temp. DCA

RSNA

AlexNet 0.0291 0.0366 0.0230

ResNet 0.0484 0.0325 0.0399
DenseNet 0.0335 0.2233 0.0142

SqueezeNet 0.0430 0.0663 0.0270

DDSM

AlexNet 0.2527 0.1545 0.1800
ResNet 0.2897 0.1171 0.1078

DenseNet 0.2403 0.0941 0.0959
SqueezeNet 0.332 0.1631 0.1586

Mendeley

AlexNet 0.2454 0.4305 0.1225

ResNet 0.2321 0.1769 0.297
DenseNet 0.2653 0.2477 0.4898

SqueezeNet 0.2521 0.2451 0.2507
Average 0.2812 0.2817 0.2737

to Guo et al., MCE is very sensitive to the number of bins since it measures the worst cases
across all bins, making it an improper metric for small test sets [4]. On average, temperature
scaling has an MCE of 0.3401 across all the evaluated models, the proposed method has an
MCE of 0.3398, and the uncalibrated method has an MCE of 0.2766.
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Table 3: Maximum Calibration Error for Multi-Class Classification Tasks

Dataset Model

MCE

(smaller is better)
Unca. Temp. DCA

Kather 5000

AlexNet 0.2570 0.2974 0.7371
ResNet 0.3072 0.6379 0.2513

DenseNet 0.2577 0.8015 0.4268
SqueezeNet 0.2566 0.3237 0.7371

Average 0.2696 0.5151 0.5381

Figure 2: The t-SNE plots of the representations learned using temperature scaling and the
proposed method on the Mendeley V2 (left) and Kather 5000 (right) datasets. The samples
of temperature scaling are spreading in the feature space (left in each subplot). The samples
of the proposed method are densely packed for the same class (right in each subplot).

5.3 Model Representation Learning

As a post-processing method, temperature scaling fixes model miscalibration at the output-
level, which does not change the learned representation. However, the proposed method
integrates calibration into the network training phase, which may help models learn a better
representation. In this section, we firstly use t-SNE [20] plot to visualize features extracted
by temperature scaling and DCA on two datasets. Then, we compare the recovered proba-
bility distribution of the two methods on a toy dataset.

Figure 2 shows the t-SNE plots of features extracted by temperature scaling and the pro-
posed method on the Mendeley V2 and Kather 5000 datasets. Each dot represents one data
sample in a 2D feature space. To generate these plots, We first extract the high-dimensional
feature maps using an AlexNet model trained with either temperature scaling or DCA. We
then feed the feature maps to t-SNE that projects the high-dimensional feature maps to 2D
feature space. Ideally, the samples from the same class should be close to each other; the
samples from different classes should be far from each other.

The plots reveal that the samples of temperature scaling (left in each subplot) are spread-
ing in the feature space regardless of class labels, while the samples of the same class are
densely packed in our method (right in each subplot). Especially for the Kather 5000 dataset,
DCA (the rightmost figure) successfully separated the samples of TE (blue) and GB (gray)
classes from the rest. But, the same classes of temperature scaling are mixed with others.

Figure 3 shows the probability distribution recovered by the uncalibrated method (left),
temperature scaling (middle), and the proposed method (right) on a toy dataset. For this ex-
periment, we train three simple networks using the uncalibrated method, temperature scaling,
and the proposed method, separately. The networks share the same two-layer architecture
that takes a one-dimensional input for a binary classification task. We randomly sample a
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Figure 3: The figure shows the probability distribution that was recovered by the uncal-
ibrated method (left), temperature scaling (middle), and the proposed method (right). The
recovered distribution of the uncalibrated model (left) is far from the ground-truth with many
overconfident predictions. Temperature scaling (middle) reduces the predicted confidence of
the uncalibrated model, but the recovered distribution is still far from the ground-truth. Our
method (right) can better recover the true probability.

Figure 4: Train/Test accuracy and loss of Mendeley V2 dataset using AlexNet architecture
with four different b values.

dataset between �2 and 2, and randomly label each sample with either 0 or 1. The curved
line in each figure shows the recovered probability distribution, while the light blue line in
each figure shows the ground-truth distribution.

The figures reveal that the uncalibrated model (left) has many high-probability predic-
tions. For instance, when �2 < x < �1, the model made many negative predictions with
high-probability; when 1 < x < 2, the model made many positive predictions with high-
probability. The majority of these predicted probabilities are far from the true probabilities,
which indicates the model is overconfident in its predictions and does not capture the true
probability distribution well. The temperature scaling method (middle) can relax those ex-
treme predictions by pushing the predicted probabilities close to 0.5. However, the recovered
probability distribution still quite far from the diagonal line. The proposed method (right)
can recover the trend of the ground-truth distribution, and most of the predictions are close
to the diagonal line. This experiment shows the models trained with DCA may have a strong
ability to recover the true probability distribution more accurately.

5.4 Hyperparameter Effects

One drawback of the proposed method is that the weight scalar b needs to be selected for
each model. In this section, we show the testing result of the proposed method with different
weights (b = [1,5,10,15,20,25]). Figure 4 shows the train/test accuracy and loss on the
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Figure 5: Expected calibration error (ECE) of each dataset with different b values.

Mendeley V2 dataset using AlexNet architecture with four different b values. From the
results, we can see that a smaller value such as 1 or 5 usually will not be a good choice since
they put a smaller penalty to the model when the cross-entropy loss is overfitted. Among our
experiments, most of the best results appeared using a weight between 10 and 25. Figure 5
shows the ECE results of all of the evaluated models with different b values. The figure
reveals that the ECE result is not very sensitive to the b value when b � 10, except for the
Kather 5000 dataset. In our experiences, we use b values between 10 and 15 for most of the
tasks.

6 Conclusion

We proposed a novel approach to neural network calibration that maintains classification
accuracy while significantly reducing model calibration error. We evaluated our approach
across various architectures and datasets. Our approach reduces calibration error signifi-
cantly and comes closer to recovering the true probability than other approaches. The pro-
posed method can be easily integrated into any classification tasks as an auxiliary loss term,
thus not requiring an explicit training round for calibration. We believe this simple, fast, and
straightforward method can serve as a strong baseline for future researchers.
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[25] Dezső Ribli, Anna Horváth, Zsuzsa Unger, Péter Pollner, and István Csabai. Detecting
and classifying lesions in mammograms with deep learning. Scientific reports, 8(1):
4165, 2018.

[26] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In MICCAI, pages 234–241. Springer, 2015.

[27] RSNA. RSNA intracranial hemorrhage detection, 2019. URL www.kaggle.com/
c/rsna-intracranial-hemorrhage-detection/overview.

[28] Berkman Sahiner et al. Deep learning in medical imaging and radiation therapy. Med-

ical physics, 46(1):e1–e36, 2019.

[29] Le Song. Learning via hilbert space embedding of distributions. 2008.

[30] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
The Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[31] Kenji Suzuki. Overview of deep learning in medical imaging. Radiological physics

and technology, 10(3):257–273, 2017.

[32] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna.
Rethinking the inception architecture for computer vision. In Proc. CVPR, June 2016.

[33] Sunil Thulasidasan, Gopinath Chennupati, Jeff A Bilmes, Tanmoy Bhattacharya, and
Sarah Michalak. On mixup training: Improved calibration and predictive uncertainty
for deep neural networks. In Proc. NeurIPS, pages 13888–13899, 2019.

[34] David Widmann, Fredrik Lindsten, and Dave Zachariah. Calibration tests in multi-class
classification: A unifying framework. In Proc. NeurIPS, pages 12236–12246, 2019.

[35] Xin Xing et al. Dynamic image for 3d mri image alzheimer’s disease classification. In
Proc. ECCV Workshops, 2020.

[36] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified
activations in convolutional network. arXiv:1505.00853, 2015.

[37] Qingsong Yang et al. Low-dose ct image denoising using a generative adversarial
network with wasserstein distance and perceptual loss. IEEE tran. on medical imaging,
37(6):1348–1357, 2018.

[38] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Un-
derstanding deep learning requires rethinking generalization. arXiv:1611.03530, 2016.

[39] Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. mixup:
Beyond empirical risk minimization. In Proc. ICLR, 2018.

[40] Yu Zhang, Xiaoqin Wang, Hunter Blanton, Gongbo Liang, Xin Xing, and Nathan Ja-
cobs. 2d convolutional neural networks for 3d digital breast tomosynthesis classifica-
tion. In Proc. IEEE BIBM, pages 1013–1017, 2019.

www.kaggle.com/c/rsna-intracranial-hemorrhage-detection/overview
www.kaggle.com/c/rsna-intracranial-hemorrhage-detection/overview

