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Abstract

Recent studies show that the end-to-end learning paradigm based on well-designed
lifting networks merely using 2D joint locations as the input can achieve impressive per-
formance in handling 3D human pose estimation problem. However, in the viewpoint
of optimization design, existing methods of this category have two drawbacks: (1) The
inherent feature relation between the 2D pose input and the corresponding 3D pose esti-
mate is not sufficiently explored. (2) The regression procedure is usually performed in a
one-step manner. To address these two issues, this paper proposes an efficient yet accu-
rate method called Explicit Residual Descent (ERD). Given an arbitrary lifting network
which takes 2D joint locations in a single image as the input and generates an initial 3D
pose estimate, our ERD learns a sequence of descent directions encoded with a shared
lightweight differentiable structure, progressively refining the previous 3D pose estimate
via adding in a 3D increment obtained from projecting the reconstructed 2D pose fea-
tures onto each learnt descent direction. Extensive experiments on public benchmarks
including Human3.6M dataset validate the superior performance of the proposed method
against state-of-the-art methods. Code will be made publicly available.

1 Introduction

Estimating accurate 3D human pose from a single monocular image or video is essential for
numerous applications such as action recognition, human robot interaction, augmented real-
ity, animation and gaming. As a fundamental ill-posed inverse problem in computer vision,
it is challenging especially when images or videos are taken with large variations in body
appearance, lighting, occlusion, view-point and background clutter. To ease the problem,
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many existing 3D pose estimation systems [5, 6, 20, 25, 41] adopt a two-stage pipeline:
detecting 2D joints from input images, and estimating 3D pose given 2D joint locations.
Moreover, they universally use powerful deep neural networks as their main building blocks,
demonstrating significantly improved performance on standard benchmarks compared with
the conventional methods based on hand-crafted features.

With the availability of large-scale pose datasets having rich high-quality 2D skeleton
annotations, well-trained deep models for 2D pose estimation are accurate enough for real
deployment. Recently, Martinez et al. [20] introduced a pioneering optimization scheme in
which a fully connected network directly lifts the vectorial input of 2D joint locations to 3D
pose space without using any additional cues such as source image/video data, multi-view
cameras and pose-conditioned priors, showing surprisingly better accuracy than previous
top-performing counterparts. Since then, a lot of methods have been proposed to improve
this 2D-to-3D pose estimation scheme mainly in three technical directions: designing more
powerful 2D-to-3D lifting networks [6, 19, 25, 40, 41], learning more effective 2D/3D pose
representations [2, 7, 8, 29, 36], and extending it to address weakly-supervised/unsupervised
learning usage scenarios [3, 13, 27, 35]. Despite substantial improvements in estimation
accuracy, these methods usually follow the one-step regression strategy presented in [20],
and rarely explore the improvement of inherent feature relation between the 2D pose input
and its corresponding 3D pose estimate.

We notice though the prevalent one-step regression strategy builds a forward feature re-
lation from the 2D pose input to its corresponding 3D pose estimate via a lifting network, it
is straightforward and suboptimal. This is because smaller network parameter errors are not
necessarily equivalent to smaller correspondence errors. Furthermore, there may exist a few
3D body skeletons corresponding to the same 2D pose input due to geometric projection am-
biguity. Recent approaches [13, 27, 35] use either random or deterministic projection along
with generative adversarial learning to enhance geometric consistency of synthetic/unlabeled
pose data instead of real/labeled data, and thus they are tailored to weakly-supervised and
unsupervised learning usage scenarios. In this paper, we investigate 2D-to-3D pose estima-
tion from two aspects particulary driven by making the proposed method be applicable to
boost a variety of existing lifting networks [6, 19, 20, 25, 40, 41] in the context of supervised
learning. Given an arbitrary 2D-to-3D lifting network, we first propose a residual feedback
scheme which projects the current 3D pose estimate back to 2D space, and computes the
residual difference between the initial 2D pose input and the back-projected 2D pose esti-
mate. We conjecture such a 2D pose residual may serve as a strong feature constraint to
reduce 3D pose regression error via mapping it to be a 3D pose increment. Motivated by
this, we then propose a new optimization formulation which minimizes an error function
measuring the feature relation from 2D pose residuals to the corresponding 3D pose incre-
ments. During training, we learn a sequence of descent directions encoded with a shared
lightweight differentiable structure over training data iteratively. In testing, given an unseen
2D pose sample, a 3D pose increment is generated by projecting the current sample-specific
2D pose residual onto each learnt descent direction progressively, refining 3D pose estimate
from coarse to fine, in a very efficient manner. We call our method Explicit Residual Descent
(ERD), which is illustrated in Figure 1 and elaborated in Section 3.

We evaluate the effectiveness and generalization of our method on two public 3D pose
estimation datasets Human3.6M [10] and HumanEva [28]. Taking [20] as the base 2D-to-
3D lifting network to generate initial 3D pose estimates, on the Human3.6M dataset, our
ERD shows 33.9 mm Mean Per-Joint Position Error (MPJPE) using 2D ground truth poses
as inputs and 49.3 mm MPIJPE for 2D joint detections, which surpass all existing results.
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Figure 1: Schematic illustration of ERD. Given a 2D-to-3D lifting network and 2D pose
input, ERD projects the previous 3D pose estimate back to 2D image space, reconstructs 2D
joint features and refines the 3D pose estimate by the pose increments learnt by the residual
regressors progressively in an additive manner.

Meanwhile our ablative studies show that ERD brings consistent accuracy improvements to
three state-of-the-art lifting networks [6, 20, 41] when using ground truth 2D joint locations
or detections as inputs. Furthermore, our model has only about 0.6 million of parameters,
allowing for flexible use in real-time application scenarios.

2 Related Work

This section briefly summarizes recent advances in using deep learning techniques to address
3D pose estimation problem.

End-to-end pose estimation. This category of approaches leverages Convolutional Neu-
ral Networks (CNNs) to directly estimate 3D human pose from the input images. Some
works [21, 22, 31] integrate the volumetric representation built upon 2D feature maps with
different supervision strategies or regression schemes for single-view 3D pose estimation.
Iskakov et al. [11] extend the volumetric representation to handle multi-view cases. Bogo et
al. [1] present the first end-to-end CNN framework to estimate a 3D full body mesh from a
single unconstrained image via fitting a statistical body shape model called SMPL [18] to 2D
joint heatmaps. Several improved variants of this framework have been proposed in [14, 24].
As feature representation plays a critical role in an end-to-end framework, a couple of work-
s [9, 23, 33, 37, 38] focus on engineering more powerful CNN models dedicated to 3D pose
estimation. Despite their great success, training high-performance end-to-end models is hun-
gry for 3D annotated pose data due to the large amount of learnable parameters. However,
capturing pose data with 3D annotations is challenging and expensive. Consequently, there
exist many learning based methods to address the problem of limited 3D annotated data, such
as using generative models [12, 16] and adversarial models [26, 39] to augment the training
given available labeled and unlabeled datasets.

Two-stage pose estimation. This category of approaches builds 3D pose estimators on
top of 2D joint detectors whose outputs in image space are then lifted to 3D pose space.
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Martinez et al. [20] introduce the first lifting network to directly regress 3D pose taking 2D
joint locations as the input. Since 2D joint detection is relatively mature, many approaches
attempt to improve the 2D-to-3D pose lifting framework. Instead of using Fully Connected
Network (FCN) presented in [20], some recent works focus on designing more effective and
efficient lifting networks, such as the semantic Graph Convolution Network (GCN) [41],
the Locally Connected Network (LCN) [6], the temporal convolutional network [25] and
the chirality nets [40]. There also exist a lot of works [2, 7, 8, 36] trying to learn more
effective pose representations via utilizing kinematics and deformation knowledge regarding
human body configuration. Recently, many weakly-supervised and unsupervised two-stage
methods [3, 13, 27, 35] have been proposed to address the lack of sufficient 3D annotated
data, especially in multi-view scenarios.

Our method falls under the two-stage category, and we focus on the latter stage in the
context of supervised learning. To the best of our knowledge, this paper is the first work
exploring the way to build a novel residual feedback optimization scheme for progressively
reducing the estimation error of any existing 2D-to-3D pose lifting network, merely using
reconstructed 2D joint features.

3 Method

In this section, we describe our ERD method to the supervised 2D-to-3D human pose esti-
mation problem.

3.1 Overall Design

The goal of ERD is to estimate a more accurate 3D pose given its initial estimate by a 2D-
to-3D lifting network taking 2D joint locations as the input. We do not add any architectural
constraint to the lifting network, intending to make ERD be readily applicable to different
types of existing lifting networks [6, 19, 25, 40, 41].

Given a dataset including N human pose samples, let Xy = {x6 }iV:l be the gallery of 2D

joints, and let ¥ = {y' }fvzl be the gallery of ground truth joints in a predefined 3D space,
where xf) € R¥,y' € R¥, and J is the number of joints for a body skeleton. In our exper-
iments, x; can be either ground truth 2D joint locations or outputs of a 2D joint detector.
By using a lifting network F to Xy, we can obtain a gallery of initial 3D pose estimates
denoted as Yy = {yf)}ivzl We notice that the one-step regression strategy popularly adopted
by existing 2D-to-3D lifting networks lacks a feedback mechanism in the optimization to
compensate for potentially weak estimation results. To fill this gap, our ERD presents an
effective yet efficient design from a perspective of learning a set of K residual regressors to
progressively update 3D pose estimate. Briefly, ERD projects the previous 3D pose estimate
Yx—1 back to 2D space, regresses a 3D pose increment AY;, from the reconstructed features in
2D space, and computes the current 3D pose estimate Y; in an additive manner:

Yo=Y 1+AY;, k=1,--- K. (1)
The 3D pose increment AYj, is computed as

AYy = Ri(H (X0, T (Yi-1))), 2)
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where Ry is the residual regressor updates the previous 3D pose estimate Y;_; to the new
estimate Y, T is a known projection model maps Y;_; back to 2D space, and H represents
the reconstructed features conditioned on the initial 2D joints Xy and the back-projected
2D joints corresponding to Y;_;. Note that the residual regressor R; depends on both the
projection model 7 and the reconstructed features H, which will be elucidated later. During
training, ERD learns each residual regressor R; by minimizing the following error function

arnginHY— (Yi—1 +Ri(H (X0, T (Yi—1)))]| - 3)
k

3.2 Residual Regressors

In the presence of large 2D pose variations and complex 2D-to-3D pose correspondences,
one single residual regressor might be not optimal for reducing the estimation error. This is
why ERD introduces a set of K residual regressors to progressively update 3D pose estimate.
Intuitively, the early residual regressors compensate for large 3D pose error fluctuations,
while the latter residual regressors perform minor adjustments, guaranteeing generalization
and accuracy on large-scale datasets. In our experiments, ERD converges with no more
than 4 residual regressors. To learn good residual regressors, how to reconstruct informative
features in 2D pose space and how to construct the structure of residual regressors are critical.

Reconstructed 2D pose features. We use the residual difference between the initial 2D
joints Xg and the back-projected 2D joints from the previous 3D pose estimate Y;_; as the
input features to learn each residual regressor R;. Formally, we have

H(Xo,T(V—1)) = Xo— T (Yi1)- “4)

We find such kind of features is compact and discriminative as it explicitly encodes the
discrepancy between the initial input and the back-projected estimate in 2D pose space, and
transferring them into a 3D pose increment builds up a bidirectional feature relation in both
2D and 3D pose spaces. It shows much better results compared with other kinds of features,
as validated by our ablative studies. Alternatively, we empirically find that simply applying
conventional compression techniques like Principle Component Analysis (PCA) to transform
both the 2D pose input and the reconstructed 2D pose residual features into a slightly more
compact representation will bring additional accuracy gain (ranging from 1.1 mm to 2.4 mm
on the Human3.6M dataset) to both the lifting network and our method. Similar experimental
observations on 3D pose features are also reported in [36].

Structure of residual regressors. In ERD, each residual regressor actually learns a de-
scent direction. By projecting reconstructed 2D pose features on the learnt descent direction
of a residual regresor, the sample-specific 3D pose increment can be generated to refine the
previous 3D pose estimate. We use a simple neural network as the shared structure for all
residual regressors. The network only includes two Fully Connected (FC) layers (one in-
creasing the dimensionality of the input to 256, and the other predicating a 3D pose vector)
and a tiny residual block having two hidden layers (each one has 256 hidden nodes and is
followed by dropout with a ratio of 0.25). The first FC layer is followed by the operations
of batch normalization, Rectified Linear Unit (ReLU), and dropout with a ratio of 0.25. This
network is very lightweight as it only has about 0.15 million of parameters. In the experi-
ments, we did not pay extra attention to tune this structure owing to its satisfied accuracy and
high efficiency.
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3.3 Projection Model

Recall that to reconstruct sample-specific 2D residual features, ERD projects the previous
3D pose estimate back to 2D space by a projection model. For easy implementation, we use
popular perspective projection as our projection model. Given a 3D pose estimate having J
joints, let (py, py, p;) be a joint location with respect to the root joint in camera coordinates,
and let (gy, gy) be the corresponding joint location in image coordinates. With the perspective
projection, we have
_h (px+rooty)
< - 7 + CX
—+ root; 5)

f} (;y + rooty) n

p; +root;

qx

y A

where focal length (fy, f,) and optical center (i.e., principal point) (cy,c,) are camera in-
trinsic parameters, and (rooty, rooty,root;) is the global position of the body root joint (the
pelvis joint is commonly used as the root joint in the literature) relative to the camera. For
prevailing commercial cameras even including low-end devices, the camera intrinsic param-
eters can be easily obtained from the EXIF metadata of images or videos. As for the global
position of the body root joint, it can be well regressed from the training data by learning
based algorithms as shown in recent works [2, 25, 34]. Since estimating the global position
is not the focus of this paper, we simply apply Singular Value Decomposition (SVD) to di-
rectly solve the inverse problem of Eq. 5 taking the global position (rooty, rooty, root;) as the
only unknown parameters regarding all joints of each pose. The resulting global position
maybe be further refined by learning based algorithms.

4 Experiments

4.1 Datasets

We evaluate our method on two public datasets, Human3.6M [10] and HumanEva-I [28].

Human3.6M. Human3.6M is currently the largest dataset for 3D human pose estima-
tion. It consists of about 3.6 million video frames collected from 11 subjects. Each subject
performs 15 actions recorded with a motion capture system having four RGB cameras and 1
depth camera synchronized at 5S0Hz. Following previous works [2, 6, 8, 19, 20, 25, 36, 40,
41], we adopt a 17-joint body skeleton, use subjects S1, S5, S6, S7 and S8 for training, and
subjects S9 and S11 for testing.

HumanEva-I. Compared with Human3.6M, HumanEva-I is a much smaller dataset. It
is recorded with 3 subjects from 3 different camera views at 60Hz. Following [20, 25],
we adopt a 15-joint body skeleton, and evaluate our method on 3 actions (Walk, Jog, Box)
using the provided train/test partition. It should be noted that manually synchronization and
sampling lead to inaccurate annotations for some samples, which makes HumanEva-I have
relative worse annotations in comparison to Human3.6M. We use it to test the generalization
ability of our method.

4.2 Implement Details

Following [6, 19, 20, 25, 40, 41], we also consider two application scenarios, using either
ground truth 2D joint locations (denoted as GT2D in our results) or outputs of a 2D joint
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Figure 2: Illustrative result visualizations on the test set of Human3.6M. The left of each
triplet shows the image overlayed with the detected 2D pose, the middle shows our 3D pose
predication, and the right shows the ground truth 3D pose.

detector (denoted as DET2D in our results) as inputs in both training and testing. As for
2D joint detector, we use Cascaded Pyramid Network (CPN) [4] pre-trained on the MS-
COCO dataset [17]. The pre-trained 2D joint detector is fine-tuned on each dataset. We
normalize 2D joint inputs and 3D predications by subtracting the mean and dividing by the
standard deviation. We follow the standard evaluation protocol, and report the Mean Per-
Joint Position Error (MPJPE) in millimeters (mm) on both datasets. MPJPE measures the
mean Euclidean distance between the estimated 3D joint locations and the ground truth. To
better show the advantage of our method, in each experiment, we train one model for all
actions instead of training a different model for each action.

2D-to-3D pose lifting networks. As our method is designed to boost the performance of
existing 2D-to-3D pose lifting networks, we consider three state-of-the-art lifting network-
s [6, 20, 41] in our experiments. Specifically, we apply our method to the well-known lifting
network [20] in our basic experiments, and consider two recently proposed lifting network-
s [6, 41] in an ablative study. We use the code released by the authors to train each lifting
network from scratch on a single NVIDIA Titan X GPU. We train each lifting network for
200 epochs with a batch size of 200 and Adam optimizer. The learning rate starts with 0.001
and decays exponentially with a shrink factor of 0.96. Taking the outputs of each lifting net-
work as the initial 3D pose estimates, we train 4 residual regressors progressively with the
same settings except the number of training epochs is set to 5 as our method shows very fast
convergence. As a result, our model has only about 0.6 million of parameters, running with
an average speed of about 4000 fps on a single NVIDIA Titan X GPU (without considering
the time cost of the lifting network).

4.3 Results on Human3.6M

Table 1 summarizes the results of our method and other recently proposed methods on the
Human3.6M dataset, in which we report both averaged error over all actions and action-
specific errors. For the GT2D input, it can be seen: (1) when the root joint (i.e., pelvis joint)
location is not available, our model shows 35.8 mm error using estimated root joint locations,
which is better than the previous best result; (2) using ground truth root joint locations, our
model achieves 33.9 mm error, outperforming [6] by a margin of 2.4 mm. For the DET2D
input, we can observe: (1) using estimated root joint locations, the error of our model is 53.0
mm, which is comparable to the state-of-the-art result obtained by a temporal convolution
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Method Dir. Dis. Eat Gre. Phon. Phot. Pose  Pur Sit SitD.  Smo.  Wait ~ WalkD. Walk WalkT [ Avg
Pavlakos er al. [21] 674 719 667 691 720 770 650 683 837 965 717 658 74.9 59.1 63.2 71.9
Tekin et al. [32] 542 61.4 60.2 61.2 79.4 78.3 63.1 81.6 70.1 107.3  69.3 70.3 743 51.8 63.2 69.7
Zhou et al. [42] 54.8 60.7 58.2 71.4 62.0 65.5 53.8 55.6 752 111.6 642 66.1 51.4 63.2 553 64.9
Sun et al. [30] 52.8 54.8 542 543 61.8 67.2 53.1 53.6 71.7 86.7 61.5 534 61.6 47.1 534 59.1
Sun et al. [31] 63.8 64.0 56.9 64.8 62.1 59.8 60.1 71.6 91.7 60.9 70.4 65.1 63.2 513 554 64.1
Martinez et al. [20] 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 524 62.9
Fang et al. [8] 50.1 54.3 57.0 57.1 66.6 733 534 55.7 72.8 88.6 60.3 577 62.7 47.5 50.6 60.4
Yang et al. [39] 515 58.9 50.4 57.0 62.1 65.4 49.8 52.7 69.2 85.2 574 58.4 43.6 60.1 471.7 58.6
Zhao et al. [41] 47.3 60.7 514 60.5 61.1 49.9 47.3 68.1 86.2 55.0 67.8 61.0 42.1 60.6 45.3 57.6
Pavllo et al. [25] 471 506 490 518 536 614 494 474 593 674 524 495 553 39.5 42.7 51.8
Cietal.[6] 462 499 500 505 560 673 491 474 634 716 527 503 559 40.8 459 53.1
Ours 467 508 490 507 568 668 489 478 627 730 526 510 55.0 39.7 43.9 53.0
Cietal. [6](+) 46.8 523 44.7 50.4 529 68.9 49.6 46.4 60.2 78.9 51.2 50.0 548 40.4 433 52.7
Ours(+) 43.3 47.1 46.2 47.9 50.9 62.7 46.5 44.0 58.0 67.9 49.2 47.6 50.4 37.1 41.4 49.4
Martinez et al. [20] 37.7 44.4 40.3 42.1 48.2 54.9 44.4 42.1 54.6 58.0 45.1 46.4 47.6 36.4 40.4 45.5
Zhao et al. [41] 378 494 37.6 409 45.1 41.4 40.1 48.3 50.1 42.2 535 443 40.5 473 39.0 438
Pavllo et al. [25] - - - - - - - - - - - - - - - 372
Cietal.[6] 362 408 331 381 399 472 422 353 439 468 385 405 389 311 338 39.1
Ours 34.4 36.4 31.2 350 37.6 454 36.4 31.2 40.6 427 36.2 34.8 37.2 278 30.7 35.8
Ciet al. [6](+) 36.3 38.8 29.7 37.8 34.6 425 39.8 325 36.2 395 344 384 382 313 342 36.3
Ours(+) 34.1 33.8 28.8 33.4 356 423 35.1 28.7 37.8 39.0 34.2 33.2 353 26.8 30.0 339

Table 1: Results comparison on the Human3.6M dataset using the standard evaluation metric
MPJPE (mm). The upper part of the table shows the results using the GT2D as the input
during both training and testing, and the lower part shows the results using the DET2D as
the input. As the default setting of our method, we use SVD to directly estimate global root
joint locations for training and testing samples, while (+) indicates the ground truth root joint
locations are used. Results of all the other methods are obtained from the original papers.
For our method, we train a lifting network of [20] for generating initial 3D pose estimates,
which also applies to the other experiments of this paper unless otherwise stated.

network (single frame testing) [25]; (2) when the root joint location is supposed to be known,
our model achieves an impressive error of 49.3 mm.

Note that we train a lifting model of [20] to generate initial 3D pose estimates. By
applying our method to refine its predications, we improve the results reported in [20] by
over 9.5 mm margin in the context of using either ground truth 2D joint locations or outputs
of a joint detector. Although we directly use SVD to estimate the root joint location for each
pose sample and achieve very competitive results, we notice more accurate estimation results
can be obtained by learning based algorithms [2, 25, 34], which we leave for our future work.
Some illustrative 3D pose results of our method are shown in Figure 2.

4.4 Ablation Studies

We conduct extensive ablative experiments to evaluate the effectiveness of different compo-
nents of our method, and its generalization ability to different lifting networks and datasets.

Residual regressor number. Firstly, we analyze the tradeoff between the number of
residual regressors and training convergence. From the results shown in Figure 3, we can see
the error curve converges at no more than 4 stages. Large error drop appears at the first three
residual regressors under all four different training settings, and the latter stages show minor
error adjustments.

Root joint for projection model. Secondly, considering 2D pose feature reconstruction
depends on the projection model, we conduct experiments to compare the performance of
our method using estimated root joint locations vs. the ground truth. Results are shown in
Figure 3. Itis not surprising that the more accurate the root location, the higher the estimation
accuracy. The blue curves in both left and right sub-figures show the lowest boundary when
the root location is sufficiently accurate. With DET2D and coarse root location predications,
the improvement compromises on a small margin.
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Figure 3: Error distribution of our method with different numbers of residual regressors on
the Human3.6M dataset. Stage 0 denotes the baseline lifting model [20] reproduced by us.

Recon. Feature Init. 2D Pose Init. MPJPE(mm) Final MPJPE(mm) Gain(mm)
Init2D GT2D 37.5 37.3 0.2
Proj2D GT2D 37.5 374 0.1
Concat GT2D 37.5 35.2 2.3

Residual GT2D 37.5 33.9 3.6
Init2D DET2D 53.4 53.4 0
Proj2D DET2D 534 534 0
Concat DET2D 534 50.5 2.9

Residual DET2D 53.4 49.3 4.1

Table 2: Evaluation of our method on the Human3.6 dataset using different reconstructed 2D
pose features. The root joint location is assumed as known. Inif2D represents original 2D
pose. Proj2D represents back-projected 2D pose estimate. Concat represents the concatena-
tion of Init.2D and Proj2D. Residual represents our proposed 2D pose residual feature. We
use our reproduced lifting model [20] as the baseline.

2D pose feature reconstruction. Thirdly, we study different choices of reconstruct-
ing 2D pose features fed into each residual regressor for predicating 3D pose increment.
Specifically, we evaluate four choices: (1) original 2D pose denoted as Init2D; (2) back-
projected 2D pose estimate denoted as Proj2D; (3) the concatenation of Init2D and Proj2D
denoted as Concat; (4) the proposed one denoted as Residual, i.e., the residual difference be-
tween Init2D and Proj2D. Evaluation results are provided in Table 2. Comparatively, we can
see Init2D and Proj2D have negligible improvements to baseline lifting models, and Concat
performs much better by incorporating both Init2D and Proj2D, while our Residual is the
best showing over 3.5 mm margins in both training settings.

2D-to-3D pose lifting networks. Fourthly, since our method intends to improve the
performance of existing 2D-to-3D pose lifting networks, we conduct experiments to validate
its effectiveness on different lifting baselines. Evaluation results in Table 3 show that our
method also brings large improvements to two other state-of-the-art lifting networks [6, 41]
as well as the well-known one [20]. Besides, we also explore the possibility of using the
back-projected 2D pose from 3D estimate of a 2D-to-3D pose lifting network as the new
input to directly refine its estimate. Taking ground truth 2D pose as the initial input for the
example case, the back-projected 2D pose is less accurate than the initial input, thus feeding
it to a 2D-to-3D pose lifting network will worsen 3D pose estimate. Specifically, in the
experiments on Human3.6M, accuracy drop to [20], [6] and [41] is 4.8 mm, 3.4 mm and 4.2
mm, respectively. Similar drop is also observed on detected 2D pose input.
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Lifting Network Root Joint Locations ~ Error on GT2D  Error on DET2D

Martinez et al. [20] GTRoot 33.9 (37.5) 49.4 (53.4)
Cietal. [6] GTRoot 35.3(39.1) 50.0 (53.5)
Zhao et al. [41] GTRoot 36.3 (39.9) 53.3(57.2)
Martinez et al. [20] EstRoot 35.8 (37.5) 53.0 (53.4)
Cietal. [6] EstRoot 37.2(39.1) 53.2 (53.5)
Zhao et al. [41] EstRoot 38.1 (39.9) 56.8 (57.2)

Table 3: Evaluation of our method on the Human3.6 dataset using different 2D-to-3D pose
lifting networks. Results (mm) inside the bracket are for baselines, while outside ones are
ours.

Walk Jog ‘ Box
S1 S2 S3 S1 S2 S3 [ S1 S2 S3

Palvakos[21] 223 195 297 | 289 219 238 - - -
Martinez[20] 19.7 174 468 | 269 182 18.6 - - -
Pavlakos[23] 18.8 127 292 | 235 154 145 - - -

Lee[15] 186 199 305 | 257 168 17.7 | 428 48.1 534

Martinez[20](*) | 19.6 18.1 263 | 275 166 178 | 299 372 355
Ours 153 127 223 | 228 135 145 | 27.7 352 307

Table 4: Results comparison on the HumanEva-I dataset. MPJPE (mm) is computed after
procrustes transformation. * represents the baseline lifting model [20] reproduced by us.

Generalization to HumanEva-I. Finally, we apply our method to HumanEva-I dataset
to testify its generalization ability using the same lifting network [20] as on the Human3.6M
dataset. We train our model using DET2D and estimated root point locations. The results are
shown in Table 4 from which we can see: regarding different subjects over all three actions,
our model brings at least 2.0 mm and at most 5.4 mm error reduction to the baseline lifting
model. Our method mostly achieves lower errors compared with other methods.

5 Conclusions

In this paper, we present ERD, a fast and effective 3D human pose estimation method, which
learns a set of residual regressors to progressively refine the predication of any existing 2D-
to-3D pose lifting network merely using 2D joint features from a single image. Experiments
on two public datasets validate the effectiveness of our method.
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