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Abstract

Transferring learned models to novel tasks is a challenging problem, particularly if
only very few labeled examples are available. Most proposed methods for this few-shot
learning setup focus on discriminating novel classes only. Instead, we consider the ex-
tended setup of generalized few-shot learning (GFSL), where the model is required to
perform classification on the joint label space consisting of both previously seen and
novel classes. We propose a graph-based framework that explicitly models relation-
ships between all seen and novel classes in the joint label space. Our model Graph-
convolutional Global Prototypical Networks (GcGPN) incorporates these inter-class re-
lations using graph-convolution in order to embed novel class representations into the
existing space of previously seen classes in a globally consistent manner. Our approach
ensures both fast adaptation and global discrimination, which is the major challenge in
GFSL. We demonstrate the benefits of our model on two challenging benchmark datasets.

1 Introduction
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Figure 1: In each episode, the label space of seen
classes is extended by novel classes from which only few
samples are presented (support set). Our framework is
able to exploit a relational graph between classes to im-
prove the transfer from seen to novel classification tasks.

Few-shot learning (FSL) [3, 10, 27, 41]
is inspired by the human ability to learn
new concepts from very few or even
only one example. This extreme low-
data setup is particularly challenging
for deep neural networks, which re-
quire large amounts of data to ensure
generalization. FSL has mostly been
approached from the meta-learning
perspective, focusing on the problem
setup of N-way K-shot classification.
For each N-way K-shot task, the model
has to discriminate N novel few-shot
classes with only K labeled examples
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available per class. Unlike in standard transfer learning, meta-learning requires the model
to adapt well across a series of various previously unknown tasks instead of a fixed, specific
target task. Therefore, efficient on-the-fly model adaptation based on very few examples is
at the core of most FSL models [11, 13, 14, 23, 35, 39, 45].

However, this FSL problem setup focuses only on discriminating novel classes from each
other and offers no incentive for the model to remember classes previously seen during train-
ing or to maintain a globally consistent label space. However, we would like the model to
incorporate few-shot novel classes into the label space of previously seen classes. This leads
us to an extended scenario called generalized few-shot learning (GFSL), where the model
has to discriminate the joint label space consisting of both previously seen and novel classes.
This terminology is adopted from zero-shot learning (ZSL) and generalized zero-shot learn-
ing (GZSL), where novel classes come with no labeled examples at all and classification
relies on side information such as attributes or semantic label embeddings [1, 48]. It is a
well-known observation that many ZSL models fail dramatically at discriminating the joint
label space (GZSL) despite good performance on novel label space (ZSL) [6, 48]. Simi-
larly, GFSL is a more challenging task compared to FSL due to the trade-off between fast
adaptation to novel classes and maintaining a global consistency across the joint label space.

We address the GFSL problem setup by explicitly modeling inter-class relationships
as a weighted graph. We propose the Graph-convolutional Global Prototypical Network
(GcGPN) which models representative prototypes for all novel and seen classes jointly. In
particular, the prototypes are updated by graph convolutional operations [18] according to
the relationship graph. Fig. 1 provides an illustration of our approach. To summarize, our
main contributions are: We propose the first flexible framework for relational GFSL that

(1) considers an arbitrary weighted graph describing relations between classes (from any
source of side information, attention mechanism or other similarity measures),

(2) applies graph-convolution for modeling prototypes and allows for end-to-end learning,
(3) accommodates previous (G)FSL methods [14, 39] as special cases and
(4) achieves state-of-the-art performance on GFSL tasks.

2 Related Work
Few-shot learning (FSL) has been approached from different perspectives including mim-
icking the human learning behavior by modeling high-level concepts [20], learning simi-
larity measures [19] and extending deep neural networks by an external memory module
to allow for direct incorporation of few-shot examples [16, 36]. Moreover, recent meta-
learning approaches focus on the N-way K-shot setup and can be divided in two categories:
Optimization-based methods [2, 11, 35] rely on a meta model that learns an optimal strategy
which is carried out by an inner model to efficiently adapt to varying novel tasks. Distance-
based methods such as Matching Networks [45] and Prototypical Networks [39] perform
nearest-neighbor-based classification with a learned distance measure. Despite its simplic-
ity, the method in [39] achieves excellent performance and has inspired extensions which
parameterize the distance measure or the prototype mechanism in a more flexible way [40].

Generalized few-shot learning (GFSL) in the context of meta-learning is not yet a
well-studied setup. Alternatives to meta-learning include matching seen and novel feature
spaces [38, 44], modeling the global class structure in the joint label space [24], obtaining
transferable features from a hierarchy between seen and novel classes via clustering [21],
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propagating labels from class-level to instance-level graphs [51], and learning generative
models to synthesize additional image features for the few-shot classes [49] or additional
samples [22]. These methods, however, require knowledge about all novel classes a priori,
e.g. by leveraging a pre-trained feature space or graph construction, which is in contrast to
the meta-learning setup where the model must be able to adapt on-the-fly to unknown and
varying novel classes. The most relevant work to our target setup is Dynamic FSL without
Forgetting [14] (DFSLwoF), which utilizes within a meta-learning setup an attention-based
weight generator for novel classes to extend the classifier from seen classes to the joint label
space. Its connections to our work is discussed in detail in Section 4.2. Their work is ex-
tended in [15] by a graph neural network (GNN) based denoising autoencoder to regularize
the class prototypes, where the underlying graph is a special case of our fully connected
setup. Further, the GNN layer consists of a separate neighbor-aggregation block based on
Relation Networks [37] and an update-block to combine the prototypes with their respective
neighbor-information. In contrast, our method uses a simpler model structure while provid-
ing a more general framework to include side information, and is trained end-to-end instead
of the two-stage training procedure in [15, 37]. An orthogonal approach has been proposed
in [34], where a pre-trained network can be extended to additional few-shot classes by pre-
dicting the final-layer parameters from the activations. This method is most notably useful
when working with an existing, very strong model where further training is hard to realize.

Side Information plays a crucial role in zero-shot learning (ZSL), where no labeled ex-
amples are available for novel classes at all. In particular, ZSL methods typically build on
side information from knowledge graphs [28], semantic word embeddings [26, 33] or visual
attributes [8]. Generalization can be achieved by relating visual image features to semantic
side information either through a learned mapping or a joint embedding space [1, 12, 30, 38].
Furthermore, graph-convolutions can be applied to distill information from relational knowl-
edge graphs and class embeddings to predict the classifier weights for unseen classes [47].
Apart from ZSL, a range of FSL methods exist that incorporate side information, e.g.,
to regularize the feature space with textual embeddings for alignment on a distributional
level [43], to use attention mechanisms for synthesizing additional training examples for
few-shot classes [42], or to match a visual classifier with a knowledge-based representa-
tion [32]. Besides the low-shot data regime, relational information has also been used to
improve loss functions for deep learning in general [50].

Graph-convolutional networks (GCN) [7, 9, 18] are a powerful tool to jointly learn
node representations for inherently graph-structured data such as items in recommender sys-
tems or users of social networks [5]. Graph-based methods have been applied to FSL [13, 17]
by representing image instances with graph nodes in an N-way K-shot classification setup.
In contrast, we represent classes by graph nodes with a GFSL setup. Class-level graph-
convolution has been used in a similar way for ZSL [47]. Alternatively, GCNs may exploit
the manifold structure in the data to propagate labels from labeled to unlabeled images by
using edge weights that depend on learned distances in the feature space [25].

3 (Generalized) Few-Shot learning
Few-shot learning (FSL) We consider N-way K-shot classification, which is the most
widely studied problem setup for FSL. The classifier has to perform a series of N-way K-
shot tasks, where each task consists of N previously unseen, novel classes with K labeled
examples each (usually K ≤ 5). More precisely, let Ynovel denote the novel class label space
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with |Ynovel| = N, and let Dnovel = ∪N
n=1

{
(xn,k,yn)

}K
k=1 denote the support set, where xn,k

is the k-th labeled example of the class with label yn. For a new query example x, the FSL
prediction is given by

ŷ = argmax
y∈Ynovel

pψ(y|x,Dnovel). (1)

N-way K-shot classification considers FSL from a meta-learning perspective. Unlike in
standard transfer learning, the goal is not to generalize to a specific novel label space but
to adapt and perform well across a series of various novel label spaces presented at test
time. Therefore, most FSL methods adopt episodic training [45], where a new N-way
K-shot task gets randomly sampled from a larger training set in every episode. This in-
volves randomly selecting N simulated1 novel classes and sampling K support set exam-
ples per class along with a batch B of query examples. The loss on this batch is given by

1
|B| ∑(x,y)∈B− log pψ(y|x,Dnovel), which is used to train the model parameters ψ .

An FSL model is only concerned with discriminating the novel label space since all test
time queries, by design of the task setup, come from one of the novel classes. Hence the
argmax in eq. (1) is only over Ynovel. Classes seen during training no longer play a role at
test time. This setup emphasizes fast adaptation to varying new tasks but does not encourage
the model to accumulate knowledge, which may not always be very practical. Many real-
world applications require the model to incorporate novel few-shot classes into the existing
space of seen classes while maintaining global discrimination. Therefore, we consider the
extended setup of generalized few-shot learning (GFSL) with test time queries that may
come from both novel and seen classes.

Generalized few-shot learning (GFSL) In generalized N+-way K-shot classification, the
model has to discriminate the joint label space Yjoint = Yseen∪Ynovel consisting of the novel
few-shot classes and all previously seen training classes. We denote the training set by
Dseen = ∪Nseen

n=1

{
(xn,k,yn)

}Kn
i=1, where Nseen is the number of training classes and Kn is the

number of labeled examples available for class yn ∈Yseen. In general, Nseen�N and Kn�K.
For a new query x, a GFSL model performs

ŷ = argmax
y∈Yjoint

pψ(y|x,Dnovel). (2)

In contrast to eq. (1), the argmax is over Yjoint instead of Ynovel since a query x may come
from any of the seen and novel classes. In particular, GFSL requires discrimination of a
much larger label space than FSL (N+ := N +Nseen instead of N). In addition, the model
has to maintain a globally consistent joint label space while, at the same time, achieve fast
adaptation to novel classes based on very few examples. In general, we cannot expect FSL
models to perform well in GFSL since there is no explicit reward to remember the training
classes and learn a well-separated joint label space.

4 Graph-convolutional Global Prototypical Networks
We propose Graph-convolutional Global Prototypical Networks (GcGPN) to perform rela-
tional GFSL. The key idea is to explicitly model and incorporate the relationships among all

1 The “novel” classes at training time are randomly sampled from the training classes in order to simulate the
test time setup, but they are disjoint to the real novel classes at test time.
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(e.g. including seen and novel) classes through a weighted graph when learning class repre-
sentations (so-called prototypes). This addresses the challenge of GFSL to maintain global
consistency and discrimination when incorporating novel classes into an existing space of
seen classes.

4.1 GcGPN: Model Overview
Fig. 1 illustrates our method, and more details on our framework are visualized in the supple-
mentary. First, GcGPN maps all support set and query examples into a d-dimensional feature
space by a feature extractor fψ(·). Next, initial prototypes cn ∈ Rd , n = 1, . . . ,Nseen +N, are
computed for all classes. While seen class prototypes are learned as model parameters, novel
class prototypes are initialized on-the-fly since the novel label space varies at test time. The
novel initial prototypes are given by the per-class average cn =

1
K ∑

K
i=1 z̄n,i of the normalized

support set examples z̄n,k =
fψ (xn,k)

|| fψ (xn,k)||
, n = Nseen + 1, . . . ,Nseen +N, as in [14, 39]. Then, a

graph-convolution block g̃(·) as defined below updates these node initializations jointly ac-
cording to the inter-class relationships specified in the edge weights. The updated prototypes
c′n, n = 1, . . . ,Nseen +N, are then adapted representations of the joint label space of the N+-
way K-shot task at hand. Finally, the predicted class probabilities for a query x are obtained
from its cosine similarities between its feature representation and the updated prototypes:

p(y = n|x,c′1, . . . ,c′Nseen+N) =
exp

(
τ cos( fψ(x),c′n)

)
∑

Nseen+N
m=1 exp

(
τ cos( fψ(x),c′m)

) , (3)

where τ is a learnable temperature. In [14], this is referred to as the “cosine classifier”. We
adopt it since it was found to be preferable over the originally proposed L2 distance [39]
when combining existing and novel classes [4, 14]. To train the model, we use the cross-
entropy loss on eq. (3). Note that the sum in eq. (3) is over all class prototypes in the joint
label space, which is in accordance with eq. (2) and differs from the FSL objective. Further,
we apply episodic training for GFSL: For each episode, N out of Nseen training classes are
sampled to act as novel classes and the remaining Nseen−N are treated as the label space of
seen classes. Contrary to an FSL episode, the GFSL query setQmust also contain examples
from the seen classes, thus rewarding the model for maintaining global discrimination instead
of focusing only on the novel classes. In every episode, the gradient of the loss is computed
and all learnable parts of the model get updated including the parameters ψ of the feature
extractor, the initial prototypes cn, n = 1, . . . ,Nseen of seen classes, trainable components of
the graph-convolution block g̃(·) and the classifier temperature τ . Unlike previous work [14],
our model does not require multi-stage training but trains all parts of GcGPN jointly.

The graph-convolution block The graph-convolution block g̃(·) is at the core of GcGPN.
To recap, a graph-convolution block [18] consists of L graph-convolution layers g(·) =
gL(gL−1(. . .(g1(·)))) on a graph of V nodes, which is given in its general form by

X (l+1) = gl(X (l)) = ρ( ∑
B∈A

BX (l)
θ
(l)
B ), (4)

where l ∈ {1, . . . ,L} indexes the layer of the block, X (l) is the (V × dl)-dimensional input
matrix containing dl-dimensional node features in its rows, A denotes a set of (V ×V )-
dimensional linear node operators such as the adjacency or weight matrix of the graph, θ

(l)
B
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with B ∈A denotes a (dl×dl+1)-dimensional matrix containing learnable parameters of the
l-th layer and ρ(·) is a non-linearity. For example, if B is the adjacency matrix of the graph,
the local convolutional operation BX (l) computes for each node the sum of its neighbors.

In our GFSL model, eq. (4) is applied to the class prototypes to model relations between
them. More precisely, let C denote the ((Nseen +N)×d)-dimensional matrix, where the n-th
row contains the initial prototype cn of the n-th class. Further, let the operator entries Bm,n
encode a similarity score between classes represented by cm and cn. Then, L-layered graph-
convolution block takes X (0) := C as input and computes the updated class prototypes as
C′ = g(C) = gL(. . .g1(C)) according to eq. (4).

Note that graph-convolution can be interpreted as performing two steps to update a class
prototype: First, a weighted average of similar prototypes is computed with weights given in
the convolution operator B and second, a non-linear post-convolution transform is applied
given by θ

(l)
B and ρ(·). The first part models interactions among classes and operates only

on node-level, while the second part operates only on feature-level by applying the same
transform to all classes.

The general graph-convolution definition from eq. (4) operates in Euclidean spaces.
We adopt the graph-convolution block to be consistent with cosine similarities as used
in eq. (3) by intermediate normalizations x̄ = x

‖x‖ to keep the prototypes at unit length.

Our graph-convolution block is thus defined by C′ = g̃(C) = g̃L(. . . g̃1(C)) with g̃l(C(l)) =

ρ(∑B∈A sBBC̄(l)θ
(l)
B ), l = 1, . . . ,L, where scalars sB are introduced to trade-off between dif-

ferent operators in A. The relational information between the classes is modeled by the
operators B ∈ A and we call these the semantic operators.

Graph-convolutional operators: In typical applications for graph convolutional networks
such as recommender systems or social network analysis, the adjacency matrix is a popular
choice [18]. Inter-class relationship modeling suggests to more generally use a weighted
graph, where entries express some notion of similarity. In general, there are several possible
strategies to define the operator entries Bn,m:

(1) Any distance/similarity on the prototype space such as L2 distance or cosine similarity.

(2) Learned similarities, either using a standard measure in a learned transformed space or
learning a flexible transform of the element-wise absolute differences as done in [13].

(3) Similarities within a learned key space as proposed in [14]. This means learning a key
kn for each class n and obtaining inter-class similarities by matching the corresponding
keys in the key space.

(4) Side information from external sources of information such as knowledge graphs or
semantic models. This can be extracted as relational scores (e.g. shortest-path distance
between two class names in an ontology [47]) directly or obtained from per-class em-
beddings such as word vectors or attributes [1] by computing pairwise similarity.

Note that also sparse graphs (as arising from e.g. sparse knowledge graph structure, operator
thresholding, adjacency) are covered and higher-order structures are easily incorporated, e.g.
by adding higher-order versions of the adjacency matrices to A or using similarity scores
that already contain higher-order information such as the path similarity in WordNet [47].

Due to the multi-operator design, our model can naturally combine multiple of the above
strategies, resulting in a general and flexible framework for relational GFSL.
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Post-convolutional transforms: The parameters θB are another crucial component of the
model. Since the output of g̃(·) are updated prototypes, we choose θB to preserve the dimen-
sionality. Using a learnable quadratic weight matrix is the most straight-forward approach,
although restricting θB similar to [14] is also a competitive option.

4.2 Generalization of existing approaches

There is a naive extension of the state-of-the-art FSL method Prototypical Networks [39]
(PN) to the GFSL setup: For a readily trained PN, seen class prototypes can be obtained as
feature averages over all available training examples for that class2, which can then be used
to perform GFSL tasks. This extension referred to as PN+ corresponds to the assumption
that the learned feature extractor and prototype mechanism would naturally generalize over
the joint label space. Thus, there is no explicit inter-class dependency modeling, which is
equivalent to setting all B ∈ A, ρ(·), sB, θ

(l)
B to identity matrices or functions in our GcGPN

framework. We will observe in the experiments later that this assumption is not appropriate.
The model in [14] addresses GFSL successfully by an attention-based weight generator

that computes classifier weights w∗ for novel classes based on their support sets and their
similarities to seen classes. Both our model and theirs utilize a cosine classifier. However,
while the cosine classifier in our model operates on representative prototypes in the feature
space, theirs operates in the weight space and computes cosine similarities between seen
class weights and transformed support set image features. The Average Weight Generator
variant in [14] can be recovered in our framework by using a GcGPN with prototype initial-
ization as in sec. 4.1 and one graph-convolution layer (L = 1) with A= {B̂1, B̂2} containing
two block-structured operators

B̂1 =

(
INseen×Nseen 0Nseen×N
0N×Nseen 0N×N

)
, B̂2 =

(
0Nseen×Nseen 0Nseen×N
0N×Nseen IN×N

)
(5)

with identity matrix on the seen- and novel-class blocks respectively and zeros elsewhere.
This corresponds to not modeling inter-class relations at all. θB̂1

is the identity matrix and
θB̂2

is a learnable diagonal matrix. The Attention Weight Generator variant in [14] can
be recovered by adding one more operator to A, whose lower-left block contains attention
weights that are obtained by matching the respective classes in a learned key space (see
semantic operator option 3 above). This corresponds to an underlying relational graph with
weighted directed edges from seen to novel classes, such that novel prototypes do not only
depend on the support set but also on similar seen classes.

To summarize, GcGPN generalizes over [14] in several respects: (i) We use a fully con-
nected graph, allowing not only relations from seen to novel classes but among all classes
(i.e., operators inAmay be full matrices); (ii) our framework accommodates any kind of sim-
ilarity modeling (not only attention matching) and offers a natural way to combine multiple
strategies (see semantic operators (1)–(4)); (iii) more general post-convolution transforms
and layer stacking (L ≥ 1) result in a more flexible joint model for class prototypes; (iv) all
parameters can be trained end-to-end through a GFSL objective, thus does not require the
2-stage training procedure from [14].

2This is in contrast to our method, where prototypes are learnable parameters, initialized with an average over
the support points.
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5 Experiments
We evaluate our method on two widely used benchmark datasets. First, we use the FSL
benchmark dataset miniImageNet [45], which consists of 100 classes and 600 images per
class. We adopt the split specified in [35] to obtain 64 seen, 16 novel validation and 20 novel
test classes. To obtain training, validation and test sets for the seen class label space, we
further follow the approach in [14]. We enrich this dataset with side information based on
conceptual semantics and lexical relations by mapping class names into the ontology Word-
Net [28]. In particular, we use WordNet path similarities [31] between class labels, which
are scores based on the shortest path distances between words in the taxonomy. Second, we
evaluate our method on Caltech-UCSD Birds-200-2011 (CUB) [46], which is widely used
for ZSL. This dataset contains 11,788 images across 200 classes of different bird species.
Each class has 312 annotated continuous attributes describing visual characteristics of the
respective bird species. We follow the standard split used in ZSL [29] to obtain 150 seen and
50 novel test classes. Further, we randomly select 20 from the 150 seen classes for validation.
For each seen class, 25% of the images are hold out as seen class test set and 10% as seen
class validation set. In this dataset, we obtain edge weights by computing pairwise cosine
similarities between class attributes. These semantic operators B̃, where class similarities are
used as edge weights, are depicted in the supplementary.

FSL GFSL

1-shot Seen-Seen Novel-Novel Joint-Joint Seen-Joint Novel-Joint H-Mean

PN+ [39] 54.02±0.46 53.88±0.78 27.02±0.23 54.02±0.46 0.02±0.01 0.04±0.03
DFSLwoF [14] 69.93±0.41 55.80±0.78 49.42±0.41 58.54±0.43 40.30±0.74 46.95±0.55
GcGPN 63.68±0.42 55.67±0.73 46.82±0.41 51.08±0.46 42.57±0.72 45.68±0.48
GcGPN-aux 68.39±0.40 56.59±0.75 49.66±0.39 58.16±0.44 41.16±0.69 47.51±0.51
GcGPN-split 68.26±0.42 55.68±0.76 49.60±0.41 55.22±0.47 43.98±0.76 48.13±0.49
GcGPN-aux-split 68.13±0.43 60.40±0.71 51.63±0.41 54.68±0.46 48.59±0.72 50.83±0.45
GcGPN-cos-aux 69.86±0.41 54.00±0.77 47.94±0.40 62.39±0.45 33.50±0.67 42.88±0.59

5-shot Seen-Seen Novel-Novel Joint-Joint Seen-Joint Novel-Joint H-Mean

PN+ [39] 60.42±0.45 70.84±0.66 31.70±0.25 60.41±0.45 2.99±0.20 5.54±0.34
DFSLwoF [14] 70.24±0.43 72.59±0.62 59.08±0.40 59.89±0.47 58.26±0.68 58.58±0.41
GcGPN 66.51±0.43 71.53±0.63 57.16±0.40 56.73±0.45 57.59±0.67 56.69±0.41
GcGPN-aux 68.89±0.43 71.81±0.64 58.03±0.39 60.56±0.45 55.50±0.67 57.41±0.42
GcGPN-split 68.69±0.43 71.83±0.62 57.87±0.38 57.78±0.46 57.96±0.67 57.36±0.39
GcGPN-aux-split 68.30±0.45 73.31±0.62 58.63±0.40 57.93±0.48 59.32±0.68 58.12±0.41
GcGPN-cos-aux 68.03±0.43 71.22±0.65 57.41±0.41 60.26±0.48 54.56±0.72 56.66±0.45

Table 1: Test set accuracies (in %) for 5+-way 1-shot and
5+-way 5-shot classification on miniImageNet.

Evaluation protocol We fol-
low the episodic testing eval-
uation protocol from previ-
ous meta-learning work in
(G)FSL [11, 13, 14, 35, 39,
40, 45] and evaluate all mod-
els across 600 test episodes,
where each test episode is
an N+-way classification task
with all seen classes plus N
novel classes randomly sam-
pled from a larger test set con-
taining more than N novel test
classes.3 The average performance with the 95% confidence interval is reported in Table 1
and 2. In addition to the evaluation measures Seen-Seen, Novel-Novel and Joint-Joint in [14],
we adopt the convention in GZSL [48] and report Seen-Joint and Novel-Joint accuracies and
their harmonic mean, which capture the joint label space classification performance sep-
arately for seen and novel classes, and the harmonic mean balances the unequal sizes of
seen and novel classes. See the supplementary for details on the performance measures and
pseudo-code for meta-testing.

Baselines Recall the three major requirements for GFSL models: (1) handle dynamic novel
label space on-the-fly, (2) store and represent all seen classes at test time, and (3) consistently
embed novel classes into the existing label space. Most FSL models satisfy (1) but cannot
be easily extended to (2). Either the entire training set would have to be stored at test time
(e.g. [13, 45]), or the model is tailored to N-way classification only (e.g. [4, 11]). In contrast,

3Note that in the meta-learning setup, N is usually smaller than the number of all available novel test classes
since the label spaces should vary during episodic training.
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PN [39] offers a straight-forward extension PN+ to handle requirement (2) as discussed
in 4.2. Since our paper aims at improving GFSL performance, the relevant baselines are PN+

and DFSLwoF [14]. For the sake of completeness, we compare the Novel-Novel accuracy
of a GFSL to the performance of FSL models in the supplementary.

Model setup for GcGPN To evaluate the ability of leveraging side information for rela-
tional GFSL, we explore multiple variants of GcGPN with different specifications for the
graph-convolution block. At the core of almost all model variants is the semantic operator
B containing all graph edge weights (similarities among all Nseen +N classes). For repro-
ducibility details on network architecture and hyperparameters see the supplementary. We
exploit the model’s flexibility to combine multiple operators and include variants where the
operator setA is augmented by the two auxiliary operators B̂1 and B̂2 defined in eq. (5) (vari-
ant indicated by -aux). This allows the model to trade-off between self-connection and the ef-
fect of similar prototypes. Further, note that the operators have an inherent four-block struc-
ture with relations between seen-seen, seen-novel, novel-seen and novel-novel classes (sim-
ilar to eq. (5)). We explore the effect of either utilizing only one semantic operator A= {B}
with all class similarities or splitting B into four individual operatorsA= {Bss,Bsn,Bns,Bnn}
with one activated block each. The latter variant, indicated by -split, allows the model to
learn specialized post-convolution transforms for each block.

To further study the effect of the semantic operator and the post-convolution transform,
we conduct two more ablation experiments on CUB: Variant GcGPN-aux-sn has reduced
capacity in the operator by deactivating all inter-class relations other than the seen-novel
block, whereas GcGPN-aux-fcθB has increased capacity in the post-convolution transform
by using fully connected instead of diagonal θB.

We also explore GcGPN-cos-aux, a very simple way to make use of inter-class relation-
ship modeling without using any side information. We obtain the operator entries by com-
puting cosine similarity between the respective class prototypes (see 4.1, graph-conv. oper-
ators (1)). This also serves as an ablation to understand the effect of the graph-convolution
based framework without the additional benefit of including side information. We provide an
ablation study on different variants of this in the supplementary, including using L2-distance
instead of cosine similarity and dropping the auxiliary operators.

For all variants, we use one graph-convolution layer and diagonal post-convolution trans-
form θB with learnable entries.

Results and Discussion Tables 1 and 2 show results for generalized 5+-way K-shot clas-
sification on miniImageNet (mIN) and CUB. Since PN+ is only trained for FSL, its perfor-
mance on novel class queries drops drastically when changing from the novel to the joint
label space (cf. Novel-Novel and Novel-Joint). The novel classes are well-separated from
each other but not consistently embedded into the seen label space.

GcGPN-cos-aux is the simplest variant with an explicit inter-class relationship model
given by the cosine similarity between class prototypes. DFSLwoF [14] also relies on cosine
similarity, but between keys. More precisely, every class has a d-dimensional key kn, which
are trainable model parameters in addition to the prototypes. Thus, DFSLwoF has higher
modeling capacity and flexibility for the inter-class relations than GcGPN-cos-aux. While
maintaining an edge on mIN, it is clearly outperformed by GcGPN-cos-aux on CUB in terms
of both Joint-Joint accuracy and the harmonic mean. This shows that our graph-convolution
based framework with an in general fully-connected graph can potentially obtain better per-
formance with a much simpler inter-class relationship model.
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FSL GFSL

1-shot Seen-Seen Novel-Novel Joint-Joint Seen-Joint Novel-Joint H-Mean

PN+ [39] 35.16±0.42 58.87±0.91 17.61±0.21 35.16±0.42 0.05±0.02 0.09±0.04
DFSLwoF [14] 47.02±0.56 59.87±0.93 37.87±0.48 41.55±0.56 34.19±0.82 36.34±0.56
GcGPN 43.96±0.55 70.49±0.81 45.46±0.48 34.92±0.54 56.00±0.84 42.21±0.47
GcGPN-aux 46.26±0.57 71.17±0.79 47.61±0.47 36.35±0.56 58.88±0.78 44.21±0.48
GcGPN-split 40.60±0.53 71.77±0.81 46.09±0.48 30.49±0.52 61.68±0.80 40.15±0.50
GcGPN-aux-split 50.99±0.53 71.51±0.75 47.33±0.46 45.64±0.53 49.01±0.77 46.53±0.47
GcGPN-cos-aux 51.79±0.55 59.80±0.95 44.06±0.52 41.25±0.57 46.87±0.88 42.90±0.52

Ablations
GcGPN-aux-fcθB 51.88±0.55 72.72±0.80 47.49±0.46 47.33±0.55 47.66±0.74 46.77±0.48
GcGPN-aux-sn 38.71±0.56 70.25±0.84 44.67±0.48 29.26±0.54 60.09±0.81 38.61±0.52

5-shot Seen-Seen Novel-Novel Joint-Joint Seen-Joint Novel-Joint H-Mean

PN+ [39] 43.04±0.44 75.81±0.67 25.26±0.26 42.90±0.44 7.62±0.32 12.45±0.44
DFSLwoF [14] 48.37±0.55 74.73±0.79 44.97±0.51 45.09±0.55 44.85±0.82 44.19±0.54
GcGPN 44.33±0.53 76.98±0.75 50.35±0.46 36.44±0.53 64.26±0.75 45.92±0.48
GcGPN-aux 50.73±0.56 75.87±0.74 50.62±0.49 45.92±0.54 55.33±0.79 49.53±0.48
GcGPN-split 52.31±0.53 76.49±0.74 49.16±0.48 48.37±0.54 49.95±0.78 48.42±0.49
GcGPN-aux-split 51.39±0.56 76.63±0.75 48.87±0.50 47.79±0.57 49.95±0.80 48.11±0.52
GcGPN-cos-aux 50.56±0.56 74.70±0.77 46.90±0.48 46.82±0.57 46.99±0.80 46.06±0.50

Ablations
GcGPN-aux-fcθB 42.27±0.54 77.38±0.76 50.11±0.48 34.21±0.52 66.02±0.80 44.45±0.49
GcGPN-aux-sn 45.42±0.55 76.27±0.74 49.37±0.49 38.45±0.55 60.29±0.83 46.22±0.48

Table 2: Test set accuracies (in %) for 5+-way 1-shot and
5+-way 5-shot classification on CUB.

On mIN, GcGPN benefits
from auxiliary operators and
splitting on both tasks. Our
best variant achieves state-
of-the-art Joint-Joint accuracy
and harmonic mean on the 1-
shot task while being compet-
itive with DFSLwoF [14] on
the 5-shot task. On CUB,
our model outperforms state-
of-the-art by a wide margin on
both 1-shot and 5-shot tasks
and in terms of both Joint-
Joint accuracy and harmonic
mean performance. These im-
provements mainly stem from
the model’s enhanced ability
to incorporate novel classes
consistently into the seen class label space, which is suggested by the significant increase
in Novel-Joint accuracy while the Seen-Joint accuracy remains comparable with [14]. Com-
paring to GcGPN-cos-aux, we see that side information has a clear beneficial effect on the
accuracy of around 3%. Unlike on mIN, splitting was not beneficial. We do observe improve-
ments from using auxiliary operators, however, the simplest GcGPN already outperforms the
baselines significantly. Note that our model variants do not require learning an additional key
space and an attention module as in DFSLwoF, but instead relies on side information only.
Thus, the quality of the side information becomes crucial. The attributes on CUB provides
fine-grained visual information which, according to our empirical results, proves to be a
richer source of relational information compared to the taxonomy-based similarity for mIN.

We conducted a further ablation study for GcGPN on CUB, which suggests that increas-
ing the post-convolution transformation capacity (GcGPN-aux-fcθB) improves the model’s
discriminative power in the 1-shot task. Restricting the relational graph to novel-seen de-
pendencies turns out to harm the performance, which is in line with our key intuition that
learning prototypes jointly by incorporating all inter-class relationships helps to handle the
challenging trade-off in GFSL.

6 Conclusion and future work
We propose GcGPN which takes inter-class relationships defined by weighted graphs into
account to consistently embed previously seen and novel classes into a joint prototype space.
This allows for better generalization to novel tasks while maintaining discriminative power
over not only novel but also all seen classes. Our model generalizes existing approaches in
FSL and GFSL and achieves strong state-of-the-art results by leveraging side information.

Future work along this line would include an extensive analysis and comparison of dif-
ferent kinds of operators. Further, identifying useful external sources of side information
would greatly leverage the benefits of using semantic operators for few-shot learning tasks.
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