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Abstract

We aim to simultaneously estimate the 3D articulated pose and high fidelity volu-
metric occupancy of human performance, from multiple viewpoint video (MVV) with as
few as two views. We use a multi-channel symmetric 3D convolutional encoder-decoder
with a dual loss to enforce the learning of a latent embedding that enables inference of
skeletal joint positions and a volumetric reconstruction of the performance. The inference
is regularised via a prior learned over a dataset of view-ablated multi-view video footage
of a wide range of subjects and actions, and show this to generalise well across unseen
subjects and actions. We demonstrate improved reconstruction accuracy and lower pose
estimation error relative to prior work on two MV'V performance capture datasets: Human
3.6M and TotalCapture.
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1 Introduction

Human performance capture is used extensively within biomechanics and the creative in-
dustries. Commercial approaches are typically constrained to skeletal joint estimation in the
presence of subject-worn markers captured from multiple viewpoints by specialised (e.g.
infra-red) cameras. In this paper, we present a method for video-based performance capture,
able to estimate both 3D skeletal pose and shape (volumetric occupancy) of a subject ac-
curately from multiple-viewpoint video (MVV). Uniquely, we do so without a parametric
shape model (e.g. SMPL [21]), and without the need for worn markers or sensors [36, 42],
nor a large camera count [8]. Our approach considers MVV with as few as two wide base-
line cameras, motivated by real-world scenarios that may constrain the on-set deployment of
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large numbers of witness camera views due to limitations on camera cost or placement (e.g.
security or sports events).

Our technical contribution is to learn a generative model that accepts a coarse poor quality
volumetric proxy formed from a low number of wide baseline camera views of a subject. In a
single inference step, we estimate both the skeletal joint positions (pose) and refine a higher
fidelity volumetric reconstruction from the rough proxy (occupancy).

Our architecture is a volumetric encoder-decoder convolutional neural network (CNN)
in which the latent bottleneck is partially constrained to estimate the 3D skeletal pose and
partially unimpeded to enhance the fidelity of volumetric reconstructions derived from just
a few wide-baseline camera viewpoints. A joint loss between both outputs is used within a
generative adversarial network to ensure the refinement of the volumetric solution to enable it
to be perceptually indistinguishable from real high-fidelity reconstructions restoring fine de-
tail such as hands and legs. Unlike prior work that has explored volumetric encoder-decoder
networks for pose [38] or for content up-scaling [12], we leverage use of 2D semantic de-
tections to supplement the background occupancy volumetric proxy. The encoder-decoder
network serves to learn a prior for human shape, regularised by a generative adversarial net-
work (GAN) loss that ensures realism in the output high-fidelity volumetric reconstruction
output and enabling both the pose estimation and reconstruction to be learnt from a minimal
set of camera views. The work by Trumble et al [38] inspires this work, however with sig-
nificantly improved performance through the introduction of several notable novelties; the
inclusion of semantic labels as well as occupancy probabilities in the voxels that make the
PVH. The incorporation of a GAN discriminator on the output volume and the extension of
the bottleneck of the encoder-decoder with additional latent features besides the body joint
coordinates. We demonstrate SOTA results and several ablation studies in the paper which
show the value of these contributions.

2 Related Work

Our work is inspired by contemporary super-resolution (SR) algorithms that apply learned
priors to enhance visual detail in images, volumetric performance capture or reconstruction
and human pose estimation (HPE).

Super-resolution: Classical image restoration / SR approaches combine multiple data
sources (e.g. images [11], or self-similar patches [13, 47]) under regularization e.g. total
variation [29]. Convolutional neural network (CNN) autoencoders have been applied to image
[9, 43, 45] and video-upscaling [30]. Volumetric SR has been explored for microscopy [1],
and for multi-spectral sensing [4]. Recently SR for volumetric performance capture was
explored using encoder-decoder networks [12].

Volumetric Performance Reconstruction: Volumetric performance capture pipelines
typically use multiple wide baseline viewpoints [7, 32] arranged around the capture volume.
More recently, data driven machine learning approaches [39, 40, 46] have demonstrated
improve reconstruction from a single camera. Varol et al [40] use a neural network for direct
inference of volumetric body shape from a single image. While Jackson et al [39] directly
regress the volumetric representation of the 3D geometry using a standard, spatial, CNN
architecture, and Zheng et al [46] also uses the parametric representation of the SMPL body
model [21] fusing different scales of image features into the 3D space through volumetric
feature transformation, to recover accurate surface geometry.

Human Performance Estimation: There are two distinct categories of HPE; bottom-up
data-driven and top-down fitting a model. In general, top-down 2D pose estimation fits a pre-
viously defined articulated limb model to data incorporating kinematics into the optimisation
to bias toward possible configurations. The model can be user-defined or learnt through a
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Figure 1: Network architecture. The input is a low fidelity geometric proxy (V) from two
wide baseline camera views. This proxy is passed through a decoder-encoder (D, ) to pro-
duce a 3D human pose estimate (joint angles J(V,)) via the latent space and to output, a
high-fidelity geometric proxy (V) regularised via discriminator (D).

data defined model such as the SMPL Body Model [21]. Spatio-temporal tracking of pictorial
structures is applied to HPE in [19], and [2] explored the fusion of pictorial structures with
Ada-Boost shape classification. Malleson ef al [22] used IMUs with a full kinematic solve to
adequately estimate 3D pose both indoor and outdoor. Recently, the SMPL model has been
employed by several pose estimation techniques with IMUs [41, 42] and 2D images [17, 33].

Bottom-up pose estimation is driven by image parsing to isolate components, Srinivasan
et al [31] used graph-cuts to parse a subset of salient shapes from an image and group these
into a model of a person. Ren et al [27] recursively splits Canny edge contours into segments,
classifying each as a putative body part using cues such as parallelism. Ren [26] also used
Bag of Visual Words for implicit pose estimation as part of a pose similarity system for dance
video retrieval. In DeepPose, Toshev [35] used a cascade of convolutional neural networks to
estimate 2D pose in images. Elhayek ef al [10] used MVV with a Convnet to produce 2D pose
estimations while Rhodin ez al [28] minimised the edge energy inspired by volume ray casting
to deduce the 3D pose. Trumble ef al [37] used a flattened MV'V based spherical histogram
with a 2D convnet to estimate pose. While Pavlakos ef al [24] used a simple volumetric
representation in a 3D convnet for pose estimation and Wei et al [44] performed related work
in aligning pairs of joints to estimate 3D human pose. Since detecting pose for each frame
individually leads to incoherent and jittery predictions over a sequence, many approaches
exploit temporal information [3, 23] often using LSTMs [15]. Trumble et al. [38] estimate 3D
pose using the latent space of a volumetric encoder-decoder, but do not incorporate semantic
information nor GAN constraint.

3 Joint minimal camera Pose and Volume reconstruction

We present an overview of our process for simultaneously estimating pose and high fidelity
occupancy in Figure 1. First, a pre-processing step [14] reconstructs a coarse Probabilistic
Visual Hull (PVH) proxy using a limited number of cameras (Sec. 3.2). For each voxel, we
encode a feature reflecting its occupancy and semantic label (e.g. joints) lifted from 2D.
This initial estimate (Sec. 3.1) typically contains phantom limbs and sub-volumes. Next,
a 3D convolutional encoder-decoder (Sec. 3.3) and generative adversarial network (GAN)
(Sec. 3.3.1), learns a deep representation of body shape and the skeletal pose encoding with
a dual loss. The feature representation of the PVH (akin to a low-fidelity image in super-
resolution pipelines), is deeply encoded via a series of convolution layers, embedding the
skeletal joint positions in a latent or hidden layer, concatenating the joint estimates with an
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additional unconstrained feature representation. This latent space enables non-linear mapping
decoding to a high fidelity PVH, while the 3D joint estimations are fed to LSTM layers to
enforce the temporal consistency of the 3D joints (Sec. 3.3.3).

3.1 Visual Features

To estimate the pose, we propose to lift 2D visual features to form a 3D voxel features from
two distinct modes created from RGB images of each camera view; a 2D foreground oc-
cupancy matte and 2D semantic joint detections. The probabilistic occupancy provides a
low fidelity shape-based feature, relatively invariant to appearance and clothing, that comple-
ments a semantic contextual 2D joint estimate that provides internal feature description. To
compute the matte, the difference between the current frame / and a predefined clean plate
P approximates pixel occupancy. A thresholded L2 distance between the two images in the
HSV colour domain provides a soft occupancy probability. 2D joint belief labels estimated
through the approach of Wei [6, 44] generate the 2D semantic joint detections, a multi-stage
process that iteratively refines the 2D joint estimates based on both the input image and the
previous stage’s returned pixel-wise belief map. At each stage s and for each joint label j the
algorithm returns dense per pixel belief maps 2], which provides the confidence of a joint
centre for any given pixel (x,y).

M(x,y) = argmaxm}(x,y) (1)
J

The per joint belief maps are maximised over the confidence of all possible joint labels to
produce a single label per pixel image M(x,y).

3.2 Volumetric Representation

To construct our data representation consisting of a volume voxel, we use a multi-channel
based probabilistic visual hull (PVH). We assume a capture volume observed by a limited
number C of camera views ¢ = [1,..,C] for which extrinsic parameters {R.,COP.} (camera
orientation and focal point) and intrinsic parameters { f.,0%, o} (focal length, and 2D optical
centre) are known. An external process, (e.g. a person tracker) isolates the bounding sub-
volume X; € V corresponding to, and centred upon, a single subject, and which is decimated

into voxels V' = [ v, vl i ] fori={1,...,|VL]]; each voxel is Smm? in size. Each
voxel v € Vy, projects to coordinates (x[v'],y[v']) in each camera view c.
Then given an 2D image denoted as 1., with ® = [1,...,¢] feature channels (from 2D

occupancy/joints), point (x,y.) is the point within 7, to which Vy,' projects in a given view:

; i . Vi
x[VL'] = fc:}x +of and y[Vp']= f—i}—i—oﬁ, )
Zz 4
[vi Vi v ] = COP.—R;'V]. 3)

The likelihood of the voxel being part of the performer in a given view c is:
p(Vi'le) = L(x[VLT,¥[VL]. 9). )

The overall probably of occupancy for a given voxel p(VL’A7 @) is:

a

p(VL,9) = [T1/(1 +e PO, )

i=1
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3.3 Dual Loss Convolutional Volumetric Network

‘We propose to learn a deep representation or output given an input tensor Vi, where Vy, €
RXXY*Zx9 "where each dimension encodes the probability of volume occupancy p(X,Y,Z)
derived from a PVH obtained using a low camera count (Eq.5) from channels (¢); foreground
occupancy and semantic 2D joint estimates. We wish to train a deep representation to solve
the prediction problem Vg = F (V) for similarly encoded tensor Vg € RW>*#*P*¢ derived
from a higher fidelity PVH of identical dimension obtained using a higher camera count.
Where W, H,D, ¢ are the width, height, depth and channel of the performance capture vol-
ume respectively. Function F is learnt using a CNN, specifically a convolutional Sec. 3.3
consisting of successive three-dimensional (3D) alternate convolutional filtering operations
and down- or up-sampling with nonlinear activation layers for a similarly encoded output
tensor Vi, where Vg = F(V1,) = D(E(VL)) for the learnt encoder (£) and decoder (D)
functions. The encoder yields a latent feature representation via a series of 3D convolutions.
Each convolutional layer is followed by batch normalisation and a ReLU in the Generator
and convolutional strides for a layer in both the encoder and decoder. The encoder enforces
J(VL) = (V1) where J(VL) is a concatenation of the skeletal pose vector corresponding to
the input PVH; specifically a 78-D vector concatenation of 26 3D Cartesian joint coordinates
in x,y,z to generate the pose estimate and an additional latent embedding of size e (in general
e = 200). The decoder inverts this process to output tensor Vi matching the input resolu-
tion but with higher fidelity. The full network parameters are: ng = [64,64,128,128,256],
np = [256,128,128,64,64], ke = [3,3,3,3,3], kp = [3,3,3,3,3], k, = [0, 1,0, 1,0] where k[i]
indicates the kernel size and n[i] is the number of filters at layer i for the encoder (£) and de-
coder (D) parameters respectively. The location of the two skip connections are indicated by s
and link two groups of convolutional layers to their corresponding mirrored up-convolutional
layer. The passed convolutional feature maps are averaged to the up-convolutional feature
maps element-wise and passed to the next layer after rectification.

The goal of F is thus to regress a high fidelity 3D volumetric representation given an
initial poor fidelity blocky 3D volume estimate. Learning the end-to-end mapping from blocky
volumes generated from a small number of camera viewpoints to both cleaner high fidelity
volumes as if made by a greater number of camera viewpoints and accurate 3D joint position
estimates, requires estimation of the weights ¢ in F represented by the convolutional and
deconvolutional kernels. Specifically, given a collection of training sample triplets x', 7', j,
where x' € V1, is an instance of a low camera count volume, 7 € Vyy is the high camera count
output groundtruth volume and j’ € J is a vector of groundtruth joint positions for the given
volume. The Mean Squared Error (MSE) is minimised at the output of the bottleneck and
decoder across N = W x H x D voxels through the two losses Ly, and Lpyp.

1Y . . ‘
L(9) = Ljois +ALpyy = N YIFE:¢)—ZBE+AE(VL: 0) - j[5 (6)
i1

Where A = 1073, ensures both terms are of a similar magnitude.

3.3.1 Generative Adversarial Network Model

The encoder-decoder model described in the section above with the dual volume and joint
pose loss can produce consistent results. However, we propose to constrain and improve
the reconstruction quality of the decoder output of the 3D occupancy volume and the pose
estimation by employing a generative adversarial network (GAN).

The encoder model from section 3.3, which we refer to as the Generator G estimates the
improved volume, whilst the discriminator maximises the chance of recognising real PVH
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volumes as real and generated PVH volumes as fake, optimizing the minimax objective::

minmaxV (D, G) = Evp, [log(D(x))] + Ez.p, [log(1 — D(x))] 0

where P, is the (real) data distribution and P, is the (generated) model distribution, defined by
X = G(z),z ~ P(z), where the input z is a sample from a simple noise distribution. Once both
objective functions are defined, they are learnt jointly by the alternating gradient descent.

3.3.2 Skip Connections

Deeper networks in image restoration tasks can result in finer image details being lost given
the compact latent space. Recovery of this detail is an under-determined problem, exasper-
ated by the need to reconstruct the additional dimension in volumetric data. We add skip
connections between two corresponding convolutional and deconvolutional layers. Omitting
the skip connections the detail of extremities such as lower arm position is poorly estimated
by both the volume and 3d joints (see sup. material).

3.3.3 Temporal Consistency

Given the inherent temporal nature of the human pose, we enforce temporal consistency with
additional Long Short Term Memory (LSTM) layers. These help to smooth noisy individual
joint detections to enable a smoother prediction of the joint estimation. The latent vector from
the encoder J(Vy,;) = £(VL,) at time ¢ consisting of concatenated joint spatial coordinates
passed through a series of gates resulting in an output joint vector J,. The aim is to learn
the function that minimises the loss between the input vector and the output vector J, =
oy otanh(c,) (o denotes the Hadamard product) where o, is the output gate, and ¢, is the
memory cell, a combination of the previous memory ¢,_; multiplied by a decay based forget
gate, and the input gate. Thus, intuitively the LSTM result is the combination of the previous
memory and the new input vector. In this implementation, the model consists of two LSTM
layers both with 1024 memory cells, using a look back of 7 = 5.

4 Results and Discussion

To quantify the performance of our proposed approach, we report Mean Per Joint Position
Error, the mean 3D Euclidean distance between ground-truth and estimated joint positions of
the 26 joints. We performed quantitative evaluation over two public multi-view video datasets
of human actions. 3D human pose is evaluated for Human 3.6M [18], and the performance
of both the skeleton estimation and volume reconstruction is evaluated on TotalCapture [36].

To train F, we initially, train the encoder for just the skeleton loss, purely as a pose
regression task without the decoder or critic networks, due to the large parameter count in
the volumetric network. These trained weights initialise the encoder stage to help constrain
the latent representation during the full, dual-loss network training. Then given the learnt
weights as initialisation for the encoder section, we train the entire encoder/decoder network
end-to-end constrained by the dual loss of the skeleton and volume occupancy through the
GAN critic network. The encoder-decoder Generator and Discriminator network are trained
alternately, with the opposing network weights fixed.

We train with a batch size of 32 and a sequence length of 7 = 5 (we experimented with
different sequence lengths and found sequence length 3, 4, 5 and 6 generally gave similar
results). We augment the data during training with a random rotation around the central
vertical axis of the PVH to introduce rotation invariance.
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Approach Num  SeenSubjects(S1,2,3) UnseenSubjects(S4,5) Mean
Cams W2 FS3 A3 W2 FS3 A3
Tri-CPM-LSTM [5] 8 457 1028 719 57.8 1429 59.6  80.1
2D Matte-LSTM [37] 8 94.1 1289 1053 109.1 168.5 120.6 121.1
3D-PVH [36] 8+13IMU 30.0 90.6 49.0 36.0 112.1 109.2 70.0
AutoEnc [38] 8 13.4 498 243 220 71.7 40.7 355
Fusion-RPSM [25] 8 19 58 21 32 54 33 29

IMU 1Cam SMPL [42] 1+13IMU - - - - - 26.0
Proposed DualLLoss GAN 2 9.2 303 15.2 133 41.7 253 214
Table 1: Comparison of our approach on TotalCapture to other human pose estimation ap-
proaches, expressed as average per joint error (mm) on previously seen and unseen test
subjects. (where W2, FS3, A3 are groups of test sequences of walking, freestyle and acting
respectively)

4.1 TotalCapture Evaluation

We quantitatively evaluate tracking accuracy on the TotalCapture dataset [36]. We study
the accuracy gain due to our method by ablating the set of camera views available on the
TotalCapture dataset. Jointly training the generative adversarial dual loss model using high
fidelity PVHs obtained using all (C = 8) views of the dataset and 78-D vector concatenation of
the 26 3D Cartesian pose joint coordinates. With the corresponding input low fidelity, PVHs
obtained using fewer views (we train for C = 2 and C = 4 random neighbouring views), we
follow the train and test strategy of [36]. The dataset contains five subjects, with four diverse
categories of sequences; ROM, Walking, Acting, and Freestyle, with each sequence, repeated
three times by each subject. The sequences are long, with around 3000-5000 frames, resulting
in 1.9M frames. Within the acting and freestyle sequences, there is a great deal of diversity
in the captured content.

The PVH at C = 8 provides the ideal 3D reconstruction proxy estimation for comparison,
while C = {2,4} input covers at most a narrow 90° view of the scene. Before refinement,
the ablated view PVH data exhibits phantom extremities and lacks fine-grained detail, par-
ticularly at C = 2 (Fig. 4). These crude volumes would be unsuitable for pose estimation or
reconstruction as they do not reflect the true geometry and would cause poor defined joint
estimations and severe visual misalignments when projecting camera texture onto the model.
However, our method can estimate the joint positions accurately and also clean up and hallu-
cinate a volume equivalent to one produced by the unabated C = 8 camera viewpoints. Tab. 1
quantifies the pose animation error between previous approaches using in general multiple
camera views [5, 36, 37, 38] or additional data modalities [36, 42] and our proposed approach
with only two camera views. We outperform best camera approach [25] by 8 mm indicating
the importance of the GAN loss and semantic 2D joint estimates.

W

S5FS3 Fr2771 S4 A3 Fr 2597 S5 FS3 Fr2941

Figure 2: Representative pose estimations from (Fr)ames of unseen (S)ubjects performing
(A)ctions with challenging poses (TotalCapture dataset).
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Approach Features Model SeenSubjects(S1,2,3) UnseenSubjects(S4,5) Mean
Occ 2Djoint Enc Dec LSTM GAN W2 FS3 A3 W2 FS3 A3
Encoder 8cam - - 4201205 59.8 584 162.1 1034 854

v 82 305 15.0 102 40.8 247 20.7
GAN4cam 4cam 4cam v 98 299 15.3 135 422 249 216
GAN2cam 2cam 2cam v 92 303 152 133 417 253 214
Table 2: Ablation study of the Mean per joint error (mm). for the individual components on

the TotalCapture dataset.

Vi _
EncoderLSTM 8cam - v - v - 152 657 544 178 73.0 506 584
AutoEncLSTM 8cam - v v v - 134 498 243 220 71.7 407 355
2DJoint - 8cam Vv VvV v - 212 123.1 88.6 1057 1422 977 412
Occ+2DJoint  8cam 8cam v Vv v 10.2 123.1 88.6 1057 1422 97.7 31.1
GANS8cam 8cam 8cam Vv @V v

v v v

v v v

2cam Input  2cam Result 4cam Input 4cam Result  8cam Result

Figure 3: Examples of input/resultant reconstructions for [2,4,8] cameras on TotalCapture.

4.2 Ablation Study

To understand the influence of the individual components and design decisions, we perform
an ablative analysis of tracking accuracy for our individual contributions (Tab. 2). Each part of
the process enables an improvement in the accuracy performance, especially the use of tem-
poral information (EncoderLSTM) and dual loss in the approach (AutoEncLSTM). The
inclusion of the 2D joint (2DJoint) estimates into the dual-channel PVH further reduces
this loss by around 4 mm to 31.1 average joint error. The inclusion of the Discriminator
(GAN8cam) to enforce improved 3D occupancy volume result, enables the loss to be further
reduced to 21mm per joint using all eight camera views. The greater the number of cameras,
the more visually realistic the input PVH is. However, it is possible to remove a large num-
ber of these cameras with little or no impact on performance (GAN4cam and GAN2cam).
Despite greatly degrading the appearance of the input PVH when using only 2 or 4 views as
input, as indicated by Fig. 3. The figure also illustrates the resulting output PVH, and this can
be seen to be of a high-fidelity result invariant to the number of cameras used. In summary,
using a low fidelity PVH from only two camera views with phantom and missing voxels,
achieves a headline performance of 21.4mm mean per joint error.

4.3 Evaluating Reconstruction Accuracy

In addition to the pose estimation, the dual loss model is also able to reconstruct the high-
fidelity 3D volume for the given low fidelity PVH input. Tab. 3 quantifies the error between
the unablated (C = 8) and the reconstructed volumes for C = {2,4} view PVH data, baselining
these against C = {2,4} PVH prior to enhancement via our learnt model (input).

To measure the performance, we compute the average per-frame MSE of the probability
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Method Cams SeenSubs(S1,2,3) UnseenSubs(S4,5) Mean
C W2 FS3 A3 W2 FS3 A3

Input 2 19.1 285 239 234 275 252 246

Input 4 114 16.5 125 12.0 152 142 11.6
2
2

[12] 543 10.03 6.70 534 10.05 871 7.71

Ours 544 994 634 5.16 9.86 849 7.34

Ours 4 485 932 584 483 956 8.03 7.02
Table 3: Quantitative performance of volumetric reconstruction on the TotalCapture dataset
using 2-4 cameras before our approach (Input) and after, versus unablated groundtruth using
eight cameras (error as MSE x 1073). Our method reduces reconstruction error to 30% of the
baseline (Input) for two views.

of occupancy across each sequence. Comparing the two and four camera PVH volume before
enhancement and our results indicate a reduction in MSE of around three times through our
approach when using two cameras views for the input and a halving of MSE for a PVH
formed from 4 cameras. View count C =4 in a 180° arc around the subject perform slightly
better than C = 2 neighbouring views in a 90° arc. However, the performance decrease is
minimal for the significantly increased operational flexibility that a two camera deployment
provides. In all cases, MSE is more than halved (up to 34% lower) using our refined PVH
for a reduced number of views. Using only two cameras, we can produce an equal volume
to that reconstructed from a full 360° C = 8 setup. We show qualitative results of using only
two and four camera viewpoint to construct the volume in Fig. 4.

2cam 3D Pose : 2cam 8cam 2Cam RGB
Input on input ; Reconstruction GT 3D Pose Image
1 pu
i % *
S4A3 ; :ﬁ
Fr520 i =
: o
i
!
S4A3 : ;:,.
Fr920 i vy
1
i

Figure 4: Qualitative visual comparison of the input PVH and 3D Pose estimate on encoder
against the resultant Reconstruction and 3D Pose estimation using C = {2} views on the
TotalCapture dataset. False colour volume occupancy (PVH) and groundtruth C = 8 PVH.

4.4 Human 3.6M evaluation

We perform a further quantitative and qualitative evaluation on the Human 3.6M [18] dataset.
Human 3.6M is the largest publicly available dataset for human 3D pose estimation and con-
tains 3.6 million images of 7 different professional actors performing 15 everyday activities.
Each video is captured using four calibrated cameras arranged in the 360° arrangement and
contains 3D pose ground truth. We follow the standard train and evaluation protocols of the
Human3.6M dataset [20, 34]. Therefore, we explore (Tab. 4) the transfer of the high fidelity
8cam trained model from the TotalCapture dataset to the 4 cam human3.6M dataset through
three specified methods of training:
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Approach Direct. Discus Eat Greet. Phone Photo Pose Purch.
Lin et al [20] 132.7 183.6 1324 164.4 162.1 2059 150.6 171.3
Lin et al [23] 580 683 633 658 753 931 612 657
Trumble et al [38] 417 432 529 700 649 830 573 63.5
Imtiaz et al [16] 442 4677 523 493 599 594 475 46.2
Qiu et al [25] 289 325 266 28.1 283 293 280 @ 36.8
Human3.6Model 55,6 521 51.8 599 621 582 552 620
TCModel 37.1 453 47.1 459 60.1 576 499 481

TCModel+FineTune(H36M) 26.0 24.0 235 235 333 382 27.1 252
Sit.  SitD Smke Wait W.Dog walk W.toget. Mean

Lin et al [20] 151.6 243.0 162.1 170.7 177.1 96.6 1279 162.1
Lin et al [23] 98.7 1277 704 682 73.0 506 577 73.1
Trumble et al [38] 61.0 950 700 623 662 537 524 62.5
Imtiaz et al [16] 599 65.6 558 504 523 435 451 51.9
Qiu et al [25] 42.0 305 356 300 283 300 305 31.2
Human3.6Model 533 746 618 59.1 618 658 612 59.6
TCModel 56.8 682 563 531 477 505 502 54.7

TCModel+FineTune(H36M) 30.2 48.1 37.6 312 344 281 27.1 30.5
Table 4: Comparison of the proposed 3 methods to baseline methods on Human 3.6M.

Human3.6Model: A baseline approach, using the specified Human 3.6M training data with
the four cameras assuming the semantic 2D joints will compensate in part for the phantom
part and ghosting that occurs to the occupancy voxels.

TCModel: Transfer of the trained 2 — 8 camera views model from the TotalCapture dataset,
without any further training, to estimate pose as if 8 cameras were used at acquisition.
TCModel+FineTune(H36M): 2 epochs of fine-tuning of the learnt 2 — 8 TCModel on Hu-
man3.6M dataset.

Our TotalCapture trained model (TotalCaptureModel) improves the baseline training of
Human 3.6M (Human3.6Model) alone by Smm and the combined TotalCapture of fine-
tuned model TotalCapture+FineTune(H36M Model) improves this performance by a fur-
ther 10mm. Our network improves on Qiu [25], and dramatically improves on other prior
work. By using the information of temporal context and semantic joint estimations, our net-
work reduces the overall error in estimating 3D joint locations, especially on actions like
phone, photo, sit and sitting down on which for previous methods did not perform well due
to heavy occlusion.

5 Conclusions

This proposed work generates accurate 3D joint and 3D volume proxy reconstructions, from
a minimal set of only two wide baseline cameras, through learning constrained by a dual loss
on the joints and a generative adversarial loss on the 3D volume. The dual loss in conjunction
with the Discriminator in the GAN framework delivers state of the art performance. Further-
more, we have demonstrated that a trained model with plentiful data (from the TotalCapture
dataset) can be used to improve performance on other sets of data (in this case from the
Human3.6M dataset) that have a limited set of camera views.
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