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Abstract

Multi-task learning (MTL) using convolutional neural networks (CNN) deals with
training the network for multiple correlated tasks in concert. For accuracy-critical ap-
plications, there are endeavors to boost the model performance by resorting to a deeper
network, which also increases the model complexity. However, such burdensome mod-
els are difficult to be deployed on mobile or edge devices. To ensure a trade-off between
performance and complexity of CNNs in the context of MTL, we introduce the novel
paradigm of self-distillation within the network. Different from traditional knowledge
distillation (KD), which trains the Student in accordance with a cumbersome Teacher,
our self-distilled multi-task CNN model: SD-MTCNN aims at distilling knowledge from
deeper CNN layers into the shallow layers. Precisely, we follow a hard-sharing based
MTL setup where all the tasks share a generic feature-encoder on top of which sep-
arate task-specific decoders are enacted. Under this premise, SD-MTCNN distills the
more abstract features from the decoders to the encoded feature space, which guarantees
improved multi-task performance from different parts of the network. We validate SD-
MTCNN on three benchmark datasets: CityScapes, NYUv2, and Mini-Taskonomy, and
results confirm the improved generalization capability of self-distilled multi-task CNNs
in comparison to the literature and baselines.

1 Introduction
The deep convolutional networks (CNN) have showcased superlative performance for a wide
range of computer vision tasks, thanks to their ability towards learning a data-driven feature
hierarchy. By and large, the CNNs designed to handle individual tasks require the availability
of an ample amount of labeled training examples for training [14]. However, obtaining an-
notations is non-trivial in many resource-constrained scenarios. To this end, several notable
endeavors exist to tackle the problems due to the dearth of annotations, including transfer
learning, active learning, and multi-task learning [19, 29].

Multi-task learning (MTL) accounts for jointly training semantically related tasks within
a unified framework so that the tasks can cooperate among themselves to enhance the overall
learning. This can be regarded as more effectual not only in terms of memory and response
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time, but MTL also assists in getting rid of the label shortage problem since the tasks can
collectively regularize each other. Amongst the variety of applications [4, 12], MTL is espe-
cially of interest in computer vision given the mutual dependence of several inference tasks
like segmentation, depth-estimation, and many more. Nonetheless, the key issue in framing
out deep CNNs for MTL arises from the design protocol to be adhered to. Amidst multiple
possibilities, the notion of hard-sharing based approaches provides reasonable insights where
an encoder-decoder based framework is broadly followed. The encoder is shared among the
tasks, whereas the decoders are designed for each task autonomously, thus disentangling the
generic to specific feature learning [17].

From a different point of view, any deep learning system’s performance is expected to in-
crease with expanding model complexity in terms of network depth or width. This severely
hinders the deployment of CNN models for resource-constrained mobile or edge devices,
which instigates research in the area of deep model compression without permitting signifi-
cant performance drop. Amid different prospects, the notion of distilling the inherent knowl-
edge of a very deep CNN model into a shallow network: knowledge distillation (KD), has
demonstrated immense potential [9]. This leads to the construction of shallow CNN models
(Student) that possess generalization proficiency at par with very deep models (Teacher) but
offer extensive deployment scenarios due to their less-complex design.

Despite its success for single-task driven CNN models, the paradigm of KD suffers from
two inherent bottlenecks: i) it is ideally incomprehensible to distill any Teacher to any Stu-
dent, i.e., finding the optimal Student network for a given Teacher is a tedious job, ii) since
the Student tries to mimic the final predictions of the Teacher, obtaining a distinguished Stu-
dent model which can overtake the Teacher is practically occasional. In order to combat these
issues, the idea of self-distillation [28] has recently emerged, which aims at distilling knowl-
edge from the deeper layers which are supposed to contain more high-level features into the
shallow network layers through an end-to-end training strategy. The resultant model not only
requires less training time but can accomplish high accuracy. Although this paradigm clearly
shows benefits for single-task CNN models, deployment of this idea for multi-task CNN is
non-trivial given that the overall loss function for MTL combines variants of classification
and regression loss measures the unique design strategies usually followed for the multi-task
CNN models. As a result, what to distill and between which pair of layers designate the two
critical aspects for inducing self-distillation in MTL.

Based on the above deliberations, we are convinced about the possibility of self-distilling
CNN models for MTL to be utilized in conjunction with low-latency devices, besides en-
hancing the overall model’s performance. In this line, we introduce the novel notion of Self-
Distilled Multi-Task CNN (SD-MTCNN) for multi-view visual scene understanding using
hard-sharing based multi-task CNNs. Specifically, we majorly solve the problems of seman-
tic image segmentation, depth-estimation, and surface-normal prediction from monocular
images. SD-MTCNN distills the features from the task-specific decoders to the task-generic
encoder-space within a unified training regime. The full network with both the encoder and
decoder layers acts as the Teacher, while the sub-network consisting of the shared encoder
and direct output branches specifies the Student model. Hence, if high-level task-oriented
features from the Teacher can influence the learning of Student, the network layers can, in
turn, learn more discriminative features for the tasks, thus revamping the overall knowledge
embedded in the model. Since the Student is expected to mimic the teacher’s performance
at optimality, either of the models can well be utilized during inference. We introduce two
training strategies for SD-MTCNN where i) one considers the Teacher/Student loss and the
distillation loss, and ii) the other considering an ensemble of the Teacher and Student to-

Citation
Citation
{Collobert and Weston} 2008

Citation
Citation
{Kendall, Gal, and Cipolla} 2018

Citation
Citation
{Liu, Johns, and Davison} 2019

Citation
Citation
{Hinton, Vinyals, and Dean} 2015

Citation
Citation
{Zhang, Song, Gao, Chen, Bao, and Ma} 2019



JHA, KUMAR, BANERJEE, NAMBOODIRI: SELF-DISTILLED MULTI-TASK CNN 3

gether with the distillation loss. Below, we summarize the novel contributions of this work:

• We introduce the novel paradigm of self-distillation for multi-task CNN and pro-
pose a novel framework called SD-MTCNN. Ours is the first method to employ self-
distillation for MTL, to the best of knowledge.

• SD-MTCNN aims at distilling knowledge from the task-specific decoder modules to
the task-generic sub-network, leading to a more discriminative feature embedding for
the tasks. In this regard, our backbone encoder is defined in terms of standard CNN,
while the decoders are equipped with task-specific attention learning. We validate our
model on both Segnet [1] and U-Net [21] based architectures.

• We perform rigorous experiments on the benchmark CityScapes [5], NYUv2 [23],
and Mini-Taskonomy [27] datasets for up to five concurrent tasks and find the self-
distillation paradigm improves the MTL performance by a substantial margin.

2 Related Works
Multi-task learning: MTL [2, 7, 15] has been regarded as one of the cost-effective solutions
for executing several related tasks together. Consequently, MTL aims to improve the learning
capabilities for each of the tasks by judiciously exploring the complementary and common
information available in all of them. Before the inception of deep learning, MTL was largely
dealt with by utilizing traditional feature transformation based approaches such as latent
support vector machine (SVM) [30], Bayesian matrix factorization [25], task clustering [11],
matrix decomposition [3] and many more.

Lately, the traditional ad-hoc approaches are succeeded by deep learning techniques
given their prominence in performing data-driven feature learning. MTL approaches de-
veloped in conjunction with the deep CNN models have successfully been implemented
for solving several related visual perception tasks together [6]. From the architecture point
of view, the feature extractor can either be soft or hard-shared among the tasks. While in
soft-sharing, separate feature extractors are considered for the tasks with certain constraints
on the network parameters. The hard-sharing-based approaches utilize a common encoder
for all the tasks [13, 18]. For the soft-sharing based models, accurate segregation of the
task-specific features from the generic feature space plays a crucial role. The usage of task-
specific attention learning is helpful in this aspect [17].
Knowledge distillation: Inspired by the notion of Teacher-Student modeling for pairwise
knowledge transfer, the knowledge distillation (KD) paradigm [9] is regarded as one of the
promising remedies for deep model compression. The central idea behind KD is to simu-
late an over-parameterized Teacher model into a condensed Student network. The Student
model is further capable of exploiting the knowledge encapsulated in the Teacher and do-
ing so, high compression and acceleration can be achieved without compromising much on
the accuracy front. There are various endeavors proposed to excel the potential of Student’s
learning such as attention transfer [26], hint learning in FitNet [20], generative adversarial
learning for KD [16, 22], better test data generalization [8], to name a few. To circumvent
the need to train separate Teacher and Student models, recently [28] introduces the idea of
self-distillation with the network. Ideally, self-distillation mainly concentrates on boosting
the model performance rather than model compression and acceleration by discarding the
consideration of any external Teacher model.
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As expected, handling multiple tasks within the realm of a single network is onerous
than the typical single-task learning frameworks. This is mainly due to the specialized model
architecture followed for MTL and the combination of heterogeneous loss functions, some-
thing the self-distillation strategy of [28] which solves a classification problem, cannot ex-
plicitly support. In contrast, SD-MTCNN is designed specifically keeping the multi-task
learning setup in mind and follows a more streamlined approach to combine the loss mea-
sures, apart from augmenting the generic feature space by high-level task information.

3 Formulation of SD-MTCNN
The objective is to develop a multi-task CNN which incorporates the notion of knowledge
distillation within the network. In this regard, we consider a typical encoder-decoder based
CNN architecture for MTL (Segnet or U-Net) where the encoder is shared among the tasks
on top of which separate task-specific decoders are placed. Decoders are further supple-
mented with attention learning modules to ensure the extraction of diligent task-oriented
features. As already mentioned, the Teacher is represented by the entire network while the
sub-network up to the shared-encoder specifies the Student. Hence, the Teacher follows a
symmetric architecture where the same number of layers are considered both in the encoder
and decoders. While for the Student, task-specific output branches are generated from the
encoder bottleneck through the application of deconvolution. In a way, the Student can be
considered as a naive network model where multiple loss measures are defined from the
same feature embedding space (Figure 1). We aim at distilling the high-level features from

Figure 1: The proposed encoder-decoder based SD-MTCNN model. (Pink) The shared-
encoder, (Green) The encoder bottleneck, (Blue) The decoders for the Teacher, (Grey) The
decoders for the Student, and (Orange) The attention module. As a whole the Teacher is
represented by the Pink, Green, and the Blue parts of the model. On the other hand, the
Student is defined in terms of the Pink, Green, and the Grey parts.

the deepest decoder layers of the Teacher into the penultimate layer of the Student, e.g.,
the final shared-encoder layer. Through iterative training, this will simultaneously enhance
the representation abilities of both the shared feature space as well as the decoders. Be-
sides uplifting the Teacher’s performance, the student’s accuracy, which is generally poor
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compared to the Teacher due to its shared nature, is expected to be enhanced considerably.
Once trained, the Student or the Teacher can be deployed into different environments during
inference as per the requirement.

Formally, let us consider a multi-task dataset X = {xi,{yt
i}Tt=1} equipped with T tasks

where x ∈ X denotes the input image and yt ∈ Y t is the output corresponding to the tth

task. In majority of our experiments, we consider three dense structured prediction tasks:
semantic segmentation, depth estimation, and surface-normal prediction, respectively, from
the input image. Further, the outputs corresponding to the Teacher and Student for the tth-
task are referred to as yt

T and yt
S for the sake of clarity. The encoder network is denoted as

fE(; ,θE) with parameters θE . On the other hand, the decoder networks for the Teacher can
be denoted by f T D

t (; ,θ T D
t ) with task-specific parameters θ T D

t while we use f SD
t (; ,θ SD

t ) with
parameters θ SD

t to denote the task-specific output branches of the Student. The predictions
of the network for the tth-task can be put forward as,

x̂ = f E(x,θ E), ŷt
S = f SD

t (x̂,θ SD
t ), ŷt

T = f T D
t (x̂,θ T D

t ) (1)

3.1 Loss functions used for the tasks
We note that while semantic segmentation is regarded as a supervised classification task,
depth estimation and surface-normal prediction are envisaged as regression tasks in general.
In the same line as of the literature [17], we follow i) a cross-entropy based loss for seg-
mentation, ii) `1-distance based loss for depth estimation, and iii) element-wise dot-product
between the ground-truth and the model predictions for surface-normal evaluation, respec-
tively. In this regard, the losses are to be evaluated at both the Teacher and Student ends.
For brevity, we use LS

t and LT
t to denote the loss incurred for the Student and the Teacher

for the tth task where t = 1,2 and 3 for segmentation, depth perception, and surface-normal
prediction. The loss functions are reported in the following for m ∈ {S,T},

Lm
1 (y

1, ŷ1
m) = E[− 1

HW
∑

H−1
j=0 ∑

W−1
k=0 ŷ1( j,k) logy1

m( j,k)]

Lm
2 (y

2, ŷ2
m) = E[

1
HW

∑
H−1
j=0 ∑

W−1
k=0 || y

2( j,k)− ŷ2
m( j,k) ||11]

Lm
3 (y

3, ŷ3
m) = E[− 1

HW
∑

H−1
j=0 ∑

W−1
k=0 y3( j,k) · ŷ3

m( j,k)]


(2)

3.2 Self-distillation loss
The primary aim of the distillation loss is to equip the Student with the teacher model’s
capabilities. However, it is not straightforward to define the distillation loss in the MTL
context since it includes both the classification and regression loss functions. In traditional
KD, the distillation for the classification task is typically attained by training the Student
using the soft-labels from the already trained Teacher. However, in our case, both the Student
and the Teacher are concurrently trained, besides the fact that both the models share the
feature extraction sub-network. Hence, we constrain the Student to follow the evolution of
the teacher model’s outputs over the iterations. As a result, we consider the Kullback-Leibler
(KL) divergence between the Student and the Teacher’s outputs as the distillation loss for the
segmentation task,

L1
KD = E[KL(ŷ1

S, ŷ
1
T )] (3)
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In Equation 3, it is assumed that the outputs of both models are interpreted as softmax scores.
In the same line, we resort to the `2-distance as the distillation loss measures corresponding
to depth estimation and surface-normal prediction, respectively, as follows.

L2
KD = E[|ŷ2

S− ŷ2
T |2]+E[|ŷ3

S− ŷ3
T |2] (4)

3.3 Overall loss functions
We propose two different overall loss functions for training the SD-MTCNN model. They
are specified below,

• In the first approach, we train the model with the task-specific loss functions for the
Teacher plus Student and the distillation losses of Equation 3-4 as below.

argmin
θ E ,θ SD,θ T D

LT
1 +LT

2 +LT
3 +LS

1 +LS
2 +LS

3 +λ (L1
KD +L2

KD) (5)

The Teacher network, being deeper, is expected to learn more high-level features than
the Student given only the task-specific loss functions. On the other hand, the inclu-
sion of the distillation loss measures in this respect directs the Student to learn features
comparable to the Teacher. Since the representation ability of the shared feature en-
coder enhances due to the self-distillation paradigm, sharp performance improvements
for both the Student and Teacher can be observed as a consequence. λ defines the
weighting parameter.

• While the model of Equation 5 has separate task-specific losses for both the Student
and Teacher, our second model is based on the idea of ensemble learning. Precisely,
the task-specific loss functions are defined by aggregating the predictions of both the
networks and then comparing them with the respective ground-truths. In this case, the
overall loss corresponds to the summation of the new task-specific loss measures and
the distillation loss. Let us consider ỹt =

ŷt
T+ŷt

S
2 for t ∈ {1,2,3}, then we define the

cumulative cost function as where L1−3 are defined as per Equation 2,

argmin
θ E ,θ SD,θ T D

L1(y1, ỹ1)+L2(y2, ỹ2)+L3(y3, ỹ3)+λ (L1
KD +L2

KD) (6)

4 Experimental evaluations
We consider three benchmark datasets for evaluating SD-MTCNN. NYUv2: We consider
the NYUv2 [23] dataset for the joint segmentation, surface normal prediction, and depth es-
timation tasks, respectively. This dataset consists of RGB-D indoor scene images from 13
semantic categories. It is challenging to handle primarily due to variations in camera view-
point, scene occlusion, differences in lighting conditions, etc. CityScapes: The CityScapes
[5] dataset contains high-resolution street-view images to be deployed for semantic segmen-
tation and depth estimation. In this regard, we consider the standard 7 semantic classes for
evaluating the segmentation performance of SD-MTCNN. Mini Taskonomy: The Taskon-
omy [27] dataset consists of over 4.5 million images for 26 visual inference tasks as a whole.
However, we consider a subset of the dataset called Mini-Taskonomy [24] with five tasks:
semantic segmentation (for 18 classes), depth estimation, surface-normal prediction, 2D key-
points estimator, and edge prediction, respectively.
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4.1 Model architecture and training protocols
The architecture of SD-MTCNN consists of the encoder-decoder based Segnet model for all
the datasets primarily. However, we show experiments with respect to the U-Net model as
well. The shared feature encoder consists of four CNN blocks. As shown in Figure 1, the
first and second blocks have two CNN layers each, while the third and fourth blocks have
three and four CNN layers with a kernel size of 3×3 is considered for all the blocks. A max-
pool layer follows each convolution block with a kernel stride of 2. To ensure stability during
training, ReLU non-linearity and Batch-normalization are used after each block. In essence,
the encoder module computes the feature maps of depth 64, 128, 256, 512, respectively. The
bottleneck layer or the shared features space consists of 1024 feature-maps. With respect to
the shared feature encoder, a symmetric architecture is followed for the decoder modules.
In addition, the decoders’ CNN blocks are equipped with attention learning modules, each
making up two convolution layers with a kernel size of 3×3. Batch-normalization follows
each convolution layer, and Sigmoid non-linearity is appended finally to ensure the mask’s
values to lie within the range [0,1]. In addition to this arrangement for the full SD-MTCNN
model or the so-called Teacher network, the Student network is built by implementing sepa-
rate deconvolutional layers to deduce the task-specific outputs directly from the bottleneck.
The training is iterated for 200 epochs with an initial learning rate of 1e− 4 and using the
Adam optimizer. A batch size of 2, 4, 8, are used for the NYUv2, Mini-Taskonomy, and
CityScapes, respectively. The λ parameter of Equation 5 and 6 is set to 1 in all the experi-
ments. Also, we note that equal weights are considered for the task-specific loss functions,
given that our major focus is to showcase the efficacy of the self-distillation approach. We
consider the standard evaluation metrics for all the tasks as detailed in [17].

4.2 Baselines and comparison to the literature
We initially validate the usage of the distillation loss measures for two single-task scenarios
for NYUv2, namely, segmentation and depth perception. Ideally, the networks follow a sin-
gle encoder and single decoder setup. They are trained with a combination of the respective
task loss and the distillation loss (either the KL-loss or the `2-loss) where the Teacher/Student
is defined in the same way as of SD-MTCNN. As per Table 1, sharp enhancements can be
observed in all the metrics for both the Teacher and Student in comparison to the stan-
dalone encoder-decoder based single-task CNNs using both the traditional and ensemble-
based training strategies of Equation 5 and 6. We also note that the teacher and student’s
performance are very much comparable for both the tasks. This confirms that the shared
feature encoder indeed can inherit the discriminative characteristics from the deeper decoder
layers.

Furthermore, we consider four baselines to compare our full SD-MTCNN models as fol-
lows, i) Vanilla Segnet model: We train a vanilla Segnet model, which mimics the structure
of our Teacher (Baseline-1). ii) MTL CNN without any distillation loss: In this case, we
train the network given the combined task-specific losses of both the Teacher and the Student
but without the distillation losses (Baseline-2): we report results according to Equation 5 and
6 but setting λ = 0. iii) Traditional knowledge distillation: We follow the traditional KD
approach where the Teacher model is trained first, and then a distillation stage is carried out
to train the Student. Precisely, the Student is trained with a combination of the task-specific
losses and the distillation losses (Baseline-3). We follow the architectures of the Teacher
and Student for traditional KD in accordance with the SD-MTCNN model. iv) SD-MTCNN
without attention in the decoders: To showcase the effectiveness of the task-specific at-
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tention learning at the decoders, we train both the models (Equation 5 and 6) but without
any attention learning (Baseline-4). For Baseline-2 and 4, we report the performance of both
the Teacher and the Student, while the Student’s performance is mentioned for Baseline-3.
In Table 2, we report the baseline analysis for the three-tasks setup of the NYUv2 dataset
1. As can be observed, the proposed self-distillation strategies considerably improve the
performance of both the Teacher and the student. Specifically, self-distillation performance
outperforms that of the traditional distillation strategy for all the tasks without the burden of
training two separate networks. Figure 2 shows the qualitative assessment on the segmen-
tation and depth-estimation tasks of both the Teacher and Student as per Equation 5 with
respect to Baseline-3 on CityScapes. We also highlight the efficacy of self-distillation in
the U-Net model (Table 2), where the self-distillation strategies of Equation 5 and 6 sharply
extend the performance of the vanilla U-Net.

Method Segmentation ↑ Depth error ↓
IoU mIoU Abs. Rel.

Single Task 49.84 15.35 0.7102 0.2863
SD-Single TaskT (?) 56.83 22.80 0.6211 0.2627

SD-Single TaskS 56.48 22.22 0.6430 0.2755
SD-Single TaskT (??) 56.58 21.93 0.6361 0.2666

SD-Single TaskS 56.39 21.66 0.6413 0.2697

Table 1: Validation of the distillation losses for classification and regression (only for depth-
estimation) for single-task setups for NYUv2 dataset as per (?) by Eq. 5 and (??) by Eq. 6
and following the Segnet based models. T Teacher, S Student.

Table 3-5 depicts the comparative analysis of SD-MTCNN for CityScapes (two tasks),
NYUv2 (both two and three tasks), and Mini-Taskonomy (five tasks), respectively, with
respect to a number of recent techniques. While we find that the Teacher modules for both the
models (Equation 5-6) sharply outperform the literature in most of the performance metrics,
the performance of the respective Students is at par or even better than most of the considered
approaches. This signifies the effectiveness of the self-distillation model in jointly promoting
the efficiency of both the deep Teacher and shallow Student in parallel. Further, the model
of Equation 5 is found to be better than the model of Equation 6.

Figure 2: Semantic seg. and depth visualization on CityScapes dataset. From left to right:
input, ground truth, Student network from Baseline-3, and the Teacher and Student of SD-
MTCNN of Eq. 5, respectively. Wrong predictions shown by red boxes.

1Baseline analysis for CityScapes and Mini-Taskonomy are mentioned in the supplementary
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Method Segmentation Depth error Surface Normal
↑ ↓ Angle Distance ↓ Within t◦ ↑

IoU mIoU Abs. Rel. Mean Median 11.25 22.5 30
Vanilla Segnet† 51.88 15.59 0.6177 0.2511 32.08 26.93 21.16 43.01 55.00

SD-Vanilla Seg.T (?)‡ 56.14 20.45 0.5922 0.2510 30.45 25.92 22.55 45.09 57.26
SD-Vanilla Seg.S 53.63 16.60 0.6374 0.2822 33.70 29.37 16.10 38.22 51.24

SD-Vanilla Seg.T (??)‡ 55.88 17.54 0.5874 0.2416 33.02 28.95 14.44 38.05 52.07
SD-Vanilla Seg.S 26.71 7.92 1.3621 0.5582 33.47 29.10 16.24 38.74 51.70

Trad. K.D.∓ 52.55 15.54 0.6136 0.2542 31.94 26.47 21.96 43.72 55.48
SD-MTCNNT (?)# 55.56 21.48 0.6019 0.2597 29.92 25.32 21.50 45.27 58.01

SD-MTCNNS 55.27 21.31 0.6114 0.2612 31.61 27.65 18.04 41.06 54.13
SD-MTCNNT (??)# 55.23 21.11 0.6057 0.2597 31.34 26.68 18.57 42.63 55.76

SD-MTCNNS 55.01 20.87 0.6213 0.2996 31.95 27.65 17.88 40.35 52.44

SD-MTCNNT (?) f ull 56.90 22.44 0.5857 0.2483 29.66 25.02 22.66 45.84 58.39
SD-MTCNNS 56.43 21.90 0.5986 0.2532 30.76 26.98 19.52 44.20 57.32

SD-MTCNNT (??) f ull 56.61 22.31 0.5864 0.2458 30.04 25.24 21.36 45.40 58.20
SD-MTCNNS 56.11 22.59 0.5899 0.2506 30.42 25.63 21.22 44.79 57.21

Ablation on U-Net
U-Net 60.15 22.47 0.6871 0.2599 29.93 25.73 22.45 46.28 60.12

U-NetT (?) f ull 61.34 23.91 0.6792 0.2610 28.51 24.05 23.67 47.36 60.56
U-NetS 60.16 22.84 0.7188 0.2935 30.87 26.88 19.23 45.05 58.59

U-NetT (??) f ull 61.04 23.30 0.6808 0.2664 29.38 25.22 23.07 46.77 60.35
U-NetS 60.03 22.72 0.7110 0.2984 30.76 26.11 19.91 45.31 57.79

Table 2: 3-task validation results on the NYUv2 dataset for 13-class semantic seg., depth,
and surface normal prediction with various baselines on Segnet based models and ablation
analysis on U-Net model. T Teacher, S Student. † Baseline-1, ‡ Baseline-2, ∓ Baseline-3,
# Baseline-4, (?) by Eq. 5, (??) by Eq. 6. We compare SD-MTCNN(?) against all the (?)
baselines and similar for (??).

Method Segmentation Depth error Surface Normal
↑ ↓ Angle Distance ↓ Within t◦ ↑

IoU mIoU Abs. Rel. Mean Median 11.25 22.5 30
Single Task 49.84 15.35 0.7102 0.2863 32.49 28.81 20.47 42.14 52.39

Vanilla Segnet† 51.88 15.59 0.6177 0.2511 32.08 26.93 21.16 43.01 55.00
Dense [10] 52.73 16.06 0.6488 0.2871 33.58 28.01 20.07 41.50 53.35

Cross-Stitch [18] 52.73 14.71 0.6481 0.2871 33.56 28.58 20.08 40.54 51.97
Split (Wide) [17] 51.19 15.89 0.6494 0.2804 33.69 28.91 18.54 39.91 52.02

Split (Deep) 41.17 13.03 0.7836 0.3326 38.28 36.55 9.50 27.11 39.63
MTAN [17] 55.32 17.72 0.5906 0.2577 31.44 25.37 23.17 45.65 57.48

SD-MTCNNT (?) f ull 56.90 22.44 0.5857 0.2483 29.66 25.02 22.66 45.84 58.39
SD-MTCNNS 56.43 21.90 0.5986 0.2532 30.76 26.98 19.52 44.20 57.32

SD-MTCNNT (??) f ull 56.61 22.31 0.5864 0.2458 30.04 25.24 21.36 45.40 58.20
SD-MTCNNS 56.11 22.59 0.5899 0.2506 30.42 25.63 21.22 44.79 57.21

Table 3: 3-task task validation results on the NYUv2 dataset (13-class) semantic seg., depth
and surface normal prediction on Segnet based models. T Teacher, S Student. † Baseline-1,
(?) by Eq. 5, (??) by Eq. 6. We highlight the Teacher and Student whichever outperforms
the above-referred literature.

5 Conclusions

We introduce the novel paradigm of self-distillation within a network for the purpose of
multi-task learning. Given the hard-sharing based multi-task CNN architecture, we specifi-
cally aim at distilling knowledge from the task-specific decoders to the shared-encoder. Two
training strategies are followed to train the network end-to-end where one consists of a com-
bination of the task-specific losses of Teacher-Student together with the proposed distillation
losses for the tasks, whereas the other defines an ensemble-based learning strategy for the
task-specific losses along with the distillation losses. Experimentally, we find that the pro-
posed self-distillation outperforms the traditional distillation strategies and many benchmark
MTL approaches. We are currently interested in performing a more principle continuous
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Method Segmentation ↑ Depth error ↓ SN ↑ Key ↓ Edge ↓
IoU mIoU Abs. Rel. CS Abs. Abs.

Single Task 86.93 43.45 0.0340 0.4979 0.8657 0.0172 0.0190
Vanilla Segnet† 89.04 50.38 0.0336 0.3607 0.8805 0.0153 0.0103

Dense [10] 87.93 44.76 0.0379 0.6329 0.8677 0.0459 0.0329
Cross-Stitch [18] 86.87 35.66 0.0375 0.5481 0.8601 0.0488 0.0396
Split (Wide) [17] 88.72 49.26 0.0447 0.5125 0.8631 0.0455 0.0411

Split (Deep) 88.89 47.52 0.0453 0.4909 0.8674 0.0408 0.0390
MTAN [17] 88.38 48.91 0.0361 0.6440 0.8707 0.0481 0.0211

SD-MTCNNT (?) f ull 89.36 55.36 0.0290 0.3572 0.9058 0.0138 0.0097
SD-MTCNNS 89.02 54.78 0.0370 0.4010 0.8608 0.0327 0.0118

SD-MTCNNT (??) f ull 89.21 55.26 0.0327 0.4318 0.8907 0.0147 0.0101
SD-MTCNNS 88.93 53.68 0.0419 0.5221 0.8616 0.0340 0.0129

Table 4: 5-task validation results on the Mini-Taskomomy dataset for semantic seg., depth,
surface normal, key-points, and edge on Segnet based models. T Teacher, S Student. (?)
by Eq. 5, (??) by Eq. 6. We highlight the Teacher and Student whichever outperforms the
above-referred literature.

Dataset NYUv2 CityScapes
Method Segmentation ↑ Depth error ↓ Segmentation ↑ Depth error ↓

IoU mIoU Abs. Rel. IoU mIoU Abs. Rel.
Single Task 49.84 15.35 0.7102 0.2863 88.39 48.19 0.0167 33.52

Vanilla Segnet† 50.64 14.90 0.6244 0.2612 89.73 49.71 0.0161 35.91
Dense [10] 55.59 17.22 0.6002 0.2654 90.89 51.91 0.0138 27.21

Cross-Stitch [18] 53.99 17.01 0.6095 0.2671 90.33 50.08 0.0154 34.49
Split (Wide) [17] 55.83 18.13 0.6126 0.2584 90.63 50.17 0.0167 44.73

Split (Deep) 46.39 13.40 0.7321 0.3057 88.69 49.85 0.0180 43.86
MTAN [17] 56.24 18.32 0.5931 0.2562 91.11 53.04 0.0144 33.63

SD-MTCNNT (?) f ull 57.18 23.01 0.5847 0.2466 92.54 56.70 0.0131 27.68
SD-MTCNNS 55.80 23.19 0.6033 0.2588 91.60 54.09 0.0150 33.23

SD-MTCNNT (??) f ull 56.29 22.63 0.6042 0.2544 91.57 54.63 0.0134 31.11
SD-MTCNNS 56.09 22.50 0.6103 0.2674 90.99 53.27 0.0151 34.82

Table 5: 2-task validation results on the NYUv2 and CityScapes datasets for 13 and 7
class semantic seg. and depth estimation on Segnet based models. T Teacher, S Student.
† Baseline-1, (?) by Eq. 5, (??) by Eq. 6. We highlight the Teacher and Student whichever
outperforms the above-referred literature.

self-distillation by introducing a number of pseudo-Teachers from intermediate decoders be-
tween the Student and the Teacher.
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