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Abstract

Deep Neural Networks (DNN5s) have recently been achieving state-of-the-art perfor-
mance on a variety of computer vision related tasks. However, their computational cost
limits their ability to be implemented in embedded systems with restricted resources or
strict latency constraints. Model compression has therefore been an active field of re-
search to overcome this issue. Additionally, DNNs typically require massive amounts
of labeled data to be trained. This represents a second limitation to their deployment.
Domain Adaptation (DA) addresses this issue by allowing knowledge learned on one
labeled source distribution to be transferred to a target distribution, possibly unlabeled.
In this paper, we investigate on possible improvements of compression methods in DA
setting. We focus on a compression method that was previously developed in the context
of a single data distribution and show that, with a careful choice of data to use during
compression and additional regularization terms directly related to DA objectives, it is
possible to improve compression results. We also show that our method outperforms an
existing compression method studied in the DA setting by a large margin for high com-
pression rates. Although our work is based on one specific compression method, we also
outline some general guidelines for improving compression in DA setting.

1 Introduction

In the past years, Deep Neural Networks have attracted much attention in vision tasks. In-
deed, they led to significant improvements in many problems including image classification
and object detection [21, 30]. This was mainly achieved by the development of complex
new architectures based on Convolutional Neural Networks (CNNs) [14, 34, 41]. These
architectures typically involve a huge number of parameters and operations for inference,
making them ill-suited to being deployed in constrained environments. Several different
strategies have been developed in order to circumvent this issue by compressing the models
into smaller ones achieving similar performances. The main methods can be categorized
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’ ; Figure 1: We propose a compression method
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into the following schemes: selectively pruning parameters [13, 23], distillation [1, 3, 16],
quantization [8, 46], or low-rank factorization and sparsity [17, 35]. Another main challenge
for DNNSs is to remain efficient on data coming from a target distribution similar yet not
identical to the training data. A popular technique is to use a model pre-trained on a large
source dataset and fine-tune its parameters on the desired target dataset. However it may be
that no labels are available on the target data. In that case, training requires unsupervised DA
techniques [2, 7, 33].

In this work, we seek to adapt compression objectives to the specific setting of DA.
Concretely, we are provided with both a source and a, possibly unlabeled, target distribution.
We are interested in compressing DNNs with high accuracy on the target distribution. Some
works have investigated this specific setting. The work in [26] is strongly related to ours but
only focuses on the case where a model is fine-tuned on a target dataset. Their method yields
great results in this setting because it is data-dependent. That is, compression depends on the
input data distribution. In this paper, we focus on a compression method that is also data-
dependent. The novelty of our work is to go further in the analysis of how the data affects
compression and to add a new regularization term. This regularization term is directly related
to a DA objective. It basically favors nodes that are non domain discriminative. This proves
useful as the more similar the features extracted are, between source and target distribution,
the more discriminative ability learned on the source distribution will also apply to the target
distribution. Finally we show that our extended compression method compares favorably
to [26] on various cases of fine-tuning a pre-trained model on a target dataset.

Non Non
Linearity Linearity

on low-rank matrix decomposition, while our
method is built on Spectral Pruning [39].

kxp

Non
Lmearl

2 Related work

Here we present a brief review of the main strategies used in model compression. One can
find in [4] a more in-depth analysis of the different methods. (1) Pruning. These methods
focus on finding weights of the network that are not crucial to the network’s performance.
Early works used magnitude-based pruning which removed weights with the lowest val-
ues [13]. This method was extended by various works yielding significant results [10, 23].
In this work we focus on a pruning method [39], which is based on spectral analysis of the
covariance matrix of layers [38, 40]. (2) Network distillation. These approaches are based
on a teacher-student learning scheme [1, 3, 16]. A compressed, small network will learn
to mimic a large network or ensemble of large networks. This is efficient because the stu-
dent model learns based on a combination of true labels, which are hard encoded, and soft
outputs of the teacher model. Those contain valuable information about similarity between
classes. Distillation can also train the student network to mimic the behavior of intermediate
layers [31]. (3) Parameter quantization. Network quantization is based on finding an effi-
cient representation of the network’s parameters by reducing the number of bits required to
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represent each weight. Various strategies can achieve this objective: [8, 46] applied k-means
scalar quantization to the weight values. Other work use a fixed (8 or 16) bit representa-
tion of the weights while maintaining the accuracy of the original model [11, 44]. In [5] a
network is constrained to use only binary weights while still achieving high accuracy. (4)
Low-rank factorization. The idea behind low-rank factorization and sparse techniques is to
decompose layers into smaller ones with fewer parameters. For convolutional layers, main
techniques rely on the fact that performing a convolution with the original filters can be ap-
proached by a linear combination of a set of convolutions with base filters [6, 35]. In [26]
truncation of Singular Value Decomposition (SVD) is used to factorize the weight matrices
of dense (fully connected) layers.

Some works explore pruning methods in DA (or transfer learning) setting [25, 27, 36, 42,
48, 49]. Unlike our work, most existing methods depend on iterative fine-tuning. Although
each fine-tuning step may mitigate information loss caused by each pruning step, strong
dependence on fine-tuning increases the risk of overfitting (see [24] for more discussion).

In contrast to the iterative fine-tuning approach, the Domain Adaptive Low Rank Ma-
trix Decomposition (DALR) method [26] can maintain accuracy without fine-tuning after
compression. DALR and our method are data-dependent, which makes them suited for DA
setting. Since DALR uses SVD, both are based on spectral analysis. An important difference
between DALR and our method is their structural modification. We describe the difference,
considering that uncompressed two layers have weight matrices of dimension m xnand n x p
as shown in Fig. 1. For compressing the first layer, DALR produces two smaller layers that
have weight matrices of dimension m X k and k x n (k is kept rank). First, it is noted that, to
actually reduce the number of parameters in the network, the parameter k must verify the fol-
lowing condition: k(m+ n) < mn. DALR affects only the layer being compressed since the
output shape remains unchanged. Conversely, our method does not create additional layers
but also affects the input dimension of the following layer. Second, DALR is only designed
to compress dense layers while our method can be applied to both dense and convolutional
layers. Finally, in [26], the authors only mention using k as a given input to compression.
Therefore compression and validation with various k£ will be needed unless a prior knowl-
edge of how much the layer is compressible is known. Our method helps to avoid this issue,
using an information retention ratio parameter defined in Section 3.1. It should be noticed
however that it is possible to reproduce a similar parametrization in DALR by computing the
ratio of kept singular values over all singular values of the decomposition.

3 Spectral pruning with DA regularization

Our work was built on a layer-wise compression method [39], which is based on spectral
analysis. The method does not require any regularization during training, but is applicable
to a pre-trained model. We will first detail this method then introduce our DA regularizer.

3.1 Principle

The method compresses the network layer per layer and can be applied to both dense and
convolutional layers. It aims at reducing the dimension of the output of a layer such that the
information of the input of the next layer remains mostly unchanged. To compress a layer,
it selects the most informative nodes (neurons) or feature map channels (corresponding to
convolutional filters). See Fig. 3 in [12] and Fig. 2 in [15] for visual explanations of pruning
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dense and convolutional layers, respectively. For brevity, we will avoid the distinction of the
layer types in the remainder of this paper and refer only to nodes for both cases.

More formally, let us denote x the input to the network and suppose that we are given
a training data (x;,y;)7_, with size n. Let us consider a model that is a sequence of con-
volutional and fully connected layers. We denote by f' and 1! respectively the mapping
function and activation function of a layer /. Finally we denote by ¢'(x) € R the represen-
tation obtained at layer [ where m; is the number of nodes in the layer /. Therefore we have
0'(x) = n'(f'(¢'~"(x))). The objective of the method is to find for each layer /, the subset
of nodes J C {1,...,m;} that minimizes the following quantity:

E[ll9' (x) —As07 ()], (1)
where E[.] denotes the empirical expectation, ¢ ! (x) denotes the vector composed of the com-

ponents of ¢ (x) indexed by J, and A; is a matrix to recover the whole vector ¢ from its
sub-vector ¢! ; as well as possible.

For a fixed J, it is easy to minimize the objective (1) with respect to A Jas A J= )A:E Jﬁi},
where £ := E[¢!(x)¢!(x) "](= L X7, ¢'(x;)¢'(x;) ") is the empirical covariance matrix and
F:={1,...,m} is the full set of indexes. Then ¢'(x) can be approximated by A;¢!(x)
which is equivalent to pruning the nodes of layer / that do not belong to J and reshaping the
weights of the next layer. Let us denote W, the weight matrix if the next layer is a fully
connected layer, 77, the weight tensor if it is a convolutional layer. In that case we denote
by the four dimensional tuple (o, i., W, H) the shape of the weight tensor where o, i, W, H
stand respectively for output channels, input channels, width, height. The reshaping of the
weights of the next layer is done the following way. For fully connected layers, we obtain
the reshaped weight matrix as Wit = w14, For convolutional layers, it is done by first
reshaping 7;,1 to a (W, H Oc,lc) tensor. Therefore each point of the filter grid is associated
to a filter matrix M,,;, € Ro*i that will be reshaped by the operation: MW =M, 4A;. The
tensor is then reshaped back to its original form (o, i.,W,H) where i, has been modified by
the process.

Once we obtained the optimal A J for a fixed J, then we minimize the objective (1) with
respect to J. By substituting the optimal A to the objective function (1), it can be re-written
as miny Tr[)jpf — ip’ ji;}ij_’]?]. The minimand in the right hand side is zero for J = F and
Tr[ip, r] for J = 0. Hence we may consider the following “ratio” of residual as an information
retention ratio r to measure the relative goodness of J:

Tr(ipﬁjij_y}ijf) (2)

Tr(ﬁpﬁ F)

The higher the ratio the more information computed by the layer will be retained. It is
no greater than 1 since the denominator is the best achievable value with no cardinality
constraint. Compression can therefore be parametrized by a required information retention
ratio parameter o and the final optimization problem translates to min;cr |J| s.t. r > o. To
solve the optimization problem, the authors of [39] proposed a greedy algorithm where J is
constructed by sequentially adding the node that maximizes the information retention ratio.

It is worth noticing that though the method is aimed at compressing each layer sequen-
tially, using o allows more flexibility than methods with a fixed compression rate for each
layer. Since we do not impose constraints on the cardinality of J, compression will adapt to
the inherent compressibility of the layer. We argue that this makes & an easy to tune and in-
tuitive hyperparameter and, if necessary, can easily be combined with cardinality constraints.
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3.2 Domain Adaptation regularization

In DA setting, informative nodes could be different between source and target domains. To
adjust this difference, we propose an additional regularization term to select better nodes.

As shown by [2], one of the main challenges of DA is to find a representation discrim-
inative with respect to the classification task but not discriminative between domains. The
general idea is that, by matching the two distributions, the classification knowledge learned
on the labeled source data can be transferred to the target data. Therefore, we propose to use
a measure of the alignment of the source and target features distributions for selecting nodes
during compression. We call our method Moment Matching Spectral Pruning (MoMaSP).

Previous work involving covariance alignment achieved high accuracy in DA tasks [37].
Following those observations, we define our regularization term as the following

Ry = |[Exxs [97 ()] = Evoxr [0 ()] ||+ 11800 © (5, = €11l 3)
where X*, X' denotes the source and target distributions, C*,C" respectively the source and

target empirical covariance matrices, S a scaling matrix defined by §;; = (Cl{iC} j)_% , © de-
notes the element wise multiplication, and || - ||p means the Frobenius norm of a matrix. This
quantity measures the discrepancy between the source and target distributions by using the
up-to second order statistics. The first term measures the discrepancy of mean and the second
term measures the discrepancy of the (scaled) second order moment. Hence, this regulariza-
tion term induces a moment matching effect and the two distributions become similar on the
selected nodes. We may use the MMD criterion (kernel-based discrepancy measure) [9] to
capture not only the first and second moments but also all higher moments instead, but we
found that it takes too much computational time. Although the kernelized alignment loss [19]
could speed-up computation, source and target samples per class need to be few.

Instead of the criterion (3), we also consider the following alternative formulation:
Rj = |[Euoxs (9] ()] = Evoxe [65 (01| + IS5 © (C} = Ci ) 4)
The first formulation (3) depends on the whole subset J while the second one computes
information more specific to each node. The second formulation is more computationally
efficient since the R;’s can be computed only once for each candidate index. The first one

needs to recompute it for every candidate index at each step of the procedure because of its
dependence on J.

3.3 Intuition behind our regularization

The intuition behind our regularization is the following. In DA setting where few or no labels
are available on the target distribution, the discriminative knowledge is learned mainly on the
source distribution. Thus the feature distributions on both domains should be aligned for the
discriminative knowledge learned on the source domain to apply to the target domain. When
comparing the information retention ratios of Eq. 2 for different nodes, we observed that
many of them had very close values. This means that many nodes capture approximately the
same amount of information, in the sense of total variance. Our intuition was that when these
relative differences are too small, they are not significant to discriminate between nodes and
are more likely the result of noise. Therefore a better criterion should be used to differentiate
nodes that capture a same amount of variance. Since our compression method is designed to
be applied on models that have been trained using DA methods, it is natural to use a criterion
related to DA objectives. We choose to compare nodes based on how well their feature
distributions on source and target domains are aligned. Nodes leading to a better alignment
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should be favored as they will allow for a better transfer of discriminative knowledge from
source to target domain. Our method realizes this via a moment matching type regularization.

3.4 Practical implementation

We present in Algorithm | a pseudo code for a Algorithm 1: MoMaSP

practical implementation of our method using the  Input :iF.FR: Err}pi‘;isaz covariance matrix,
. . a : Required information retention ratio

first formulation of our regularizer. If the sec-  Output: J: Subset of selected nodes

ond formulation is used, the regularization term for ~ Function FindSubset(Lp.r00)

J+—0

each node is computed only once before entering T eOTr(EF.F)
the while loop as it does not depend on J. At each CoF

X while r < a do
step of the algorithm, we denote by C the set of can- forjeCdo -
didate indexes. To select which node to add to J, Cjompule]R 5
the ratio from Eq. (2) is computed for each candi- Voo TR S
date index. We denote by V the vector where each end !
coordinate corresponds to the ratio value of a can- i+ argmax {vj “A-6(V)- WL(R])}
didate index. Similarly, we denote by R; the vector Je ,’jg,-} n

. . v

'Where each COQrdlnate correspond 'to the regulariz e \ (i)
ing term associated to a candidate index. end

Without regularization, the index to add to J is end

simply given by i = argmax ;. V;. Using regularization, the index to add to J is chosen as

Ry,
i=argmax{Vi—A-6(V) ——L—— >, Q)
e { ! V) man’(RJj/)

where o(V) is the standard deviation of (V;);cc. The values of R;; are rescaled to be in
the same range as V;’s by max normalization. Multiplying by V’s standard deviation, o (V),
ensures that the regularization will be applied at the right scale. It should only slightly
modify the relative ordering of the values in V' as the main criteria for selection must remain
the information ratio. Indeed, only taking into account the regularization term would favor
nodes that output a constant value across both distributions. The hyperparameter A allows
for more control over the trade-off between those two terms. We use 1 as the default A in our
experiments. The max normalization and scaling make A easier to tune. This compression
is applied after training and can therefore be combined with any DA method.

4 Experiments on digits images

In this section, we conduct experiments with a model trained on digits datasets, using a DA
technique [33]. The source dataset is the SVHN dataset [28] and the target dataset is the
MNIST dataset [22], which are standard for DA with adversarial training [7, 33, 43].

4.1 Model

Considering the relative simplicity of the task, we used a custom model composed of a 4 lay-
ers feature generator (3 convolutional + 1 dense) and a 2 layers classifier (see Supplementary
Material for details). To train the model we used the DA technique presented in [33] which
utilizes “maximum classifier discrepancy." Briefly, the adaptation is realized by adversarial
training of a feature generator network and two classifier networks. The adversarial training
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forces the feature generator to align the source and target distribution. Contrary to other
methods relying on adversarial training with a domain discriminator, this method considers
the decision boundary while aligning the distributions, ensuring that the generated features
are discriminative with respect to the classification task at hand.

Target Accuracy
o

Target Accuracy

0.4{ — Target
— Regj
— Reg)

03
95 096 097 098 099 0955 0960 0965 0970 0975 0980 0985 0990 0995
Compression rate Compression rate

Figure 2: Target accuracy over compression  Figure 3: Comparison using only target data
rate for three different settings of data used or each formulation of our DA regulariza-
as input. Results are presented as mean +/- tion. Results are presented as mean +/- stan-

standard deviation based on 10 iterations. dard deviation based on 10 iterations.
Test data First layer nodes specificity CR.(%) 960 965 970 975 980 985
Source Target None Target (%) 946 940 924 902 844 68.7
Source 0.79 0.77 0.72 RegJ (%) 950 941 937 911 833 727
Target 0.65 0.84 0.71 Regj(%) 952 949 943 906 893 775
Table 1: Mean activation rates. Table 2: Accuracy on target test dataset for

different compression rate (C.R.).

4.2 Data choice for compression

The uncompressed model was trained using both train splits and evaluated on the test split
of MNIST. It reached an accuracy of 96.64%, similar to the results obtained in the original
paper [33]. We then apply compression on the trained model. During compression, only
data of the train splits was used and the compressed models were evaluated on the MNIST
test split. Since the method is data-dependent, the choice of data to use to compute the
empirical covariance matrix should be taken care of. Three different settings were tested: (1)
Target: Using 14,000 samples from the target distribution; (2) Target/Source: Using 7,000
samples from the target distribution and 7,000 samples from the source distribution; and
(3) Target+Source: Using 14,000 samples from the target distribution and 7,000 additional
samples from the source distribution. The results obtained are presented in Fig. 2. Using
only target samples to compute the covariance matrix shows the best performance.

To give a better understanding of this result, we conducted an analysis about how the
nodes activation pattern depends on data distribution as follows: we compressed the first
layer of a trained network using either only target data or only source data. We then compared
the activation of nodes that were selected only in one of the two cases, in other words, nodes
specific to target or source data. We show the results in Table 1.

As expected, nodes selected using source data had a significantly higher activation rate on
the source distribution and conversely for target specific nodes. As a control case, we added
activation of nodes that were selected in neither of the two settings. Those do not show any
significant difference in their activation. Interestingly, this difference was no longer appear-
ing when comparing activation of the last fully connected layer, because DA training aligns
the distributions of extracted features. This experiment sheds light on how the input data
affects the compression of data-dependent methods. In case of a model trained on different
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distributions with DA, early layers contain nodes that are specific to each distribution. Thus
it is critical for compression to use data coming exclusively from the distribution the model
will be applied to. Partially using source data forces compression in the early layers to select
source specific nodes to the expense of target specific nodes leading to poorer results.

4.3 Regularization for compression

Finally we compared the results of the best baseline, using only target data, with adding
the regularization term introduced in Section 3. The results are presented in Fig. 3 and
summarized in Table 2. It appears that the second formulation of our regularizer gives the
best performance. This is probably due to the fact it focuses on node level information and
not on the whole subset J, giving better ability to discriminate against specific nodes.
Compared to the baseline, our regularizer leads to significant improvements in compres-
sion performance. We observe up to 9% bumps in accuracy. Yet, we notice that the baseline
performs slightly better for very high compression rates. We conjecture that reducing in-
formation loss becomes more important for such compression rates and our regularization
with A=1 is too strong. There is room for improvement by tuning the hyperparameter A
depending on the compression rate or developing methods for adaptive regularization.

S Experiments on natural images

In this section, we compare our method (MoMaSP) with the factorization based compression
method (DALR) in [26]. We reproduce the same setting as in their experiment: a VGG19
model pre-trained on the ImageNet dataset [32] is fine-tuned on different target datasets.

5.1 Experimental settings

We establish our comparison based on the following three datasets used in [26] experiments:
Oxford 102 Flowers [29], CUB-200-2011 Birds [45], and Stanford 40 Actions [47].

For all three datasets, we first trained uncompressed models by fine-tuning from an Im-
ageNet pre-trained VGG19 model. In the fine-tuning before compression, we trained the
weights of the fully connected layers while keeping the weights of the convolutional layers
frozen to their pre-trained value on ImageNet like [26].

We then compressed the models. The input data to compression was always composed
of 4,000 samples of the train split, except for the Oxford 102 Flowers where the whole train
split was used. Additional 4,000 randomly sampled images from the ImageNet train split
were used for DA regularization. Note that our method and DALR [26] do not need the
labels of target datasets in this compression phase. After that we optionally fine-tuned the
fully connected layers of compressed models with target labels.

We used the Adam optimizer [18] with a batch size of 50, a learning rate of 10~#, and a
weight decay of 5x 10~ for training models. See Supplementary Material for details.

5.2 VGG19 fc7 compression

We first evaluated the compression on the last fully connected layer (fc7) of the model,
containing 4,096 nodes, because the fc7 compression is a main evaluation setting in [26].
For each trial we report the results both with and without fine-tuning of the classifier layers
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k 4 8 16 32 64 128 k 4 8 16 32 64 128
params (%) 020 039 078 156 3.13 6.25 params (%) 020 039 078 156 3.13 6.25
SVD w/o FT. 52 128 302 546 652 676 SVD w/o FT. 41 126 303 469 548 605
SVD w/ FT. 137 367 566 659 700 708 SVD w/ FT. 173 39.1 512 572 58.8 585
DALR w/o FT. 86 31.1 551 669 710 728 DALR w/o FT. 56 231 493 578 601 609
DALR w/ FT. 189 482 644 703 70.7 723 DALR w/ FT. 190 409 540 59.8 593 595
Ours w/o FT. 689 693 700 712 720 725 Ours w/o FT. 583 582 582 588 593 602
Ours w/ FT. 673 689 703 699 70.8 70.6 Ours w/ FT. 579 573 577 582 582 59.7

Table 3: VGG19 fc7 compression on Oxford
102 Flowers. Test dataset accuracy results
(%). Original accuracy: 73.1%.

Table 4: VGG19 fc7 compression on CUB-
200-2011 Birds. Test dataset accuracy results
(%). Original accuracy: 61.5%.

k 4 8 16 32 64 128 Layers FT. CR. #params Accuracy (%)
params (%) 020 039 078 156 3.13 625 conv fo (%) P Oxford CUB_Stanford
SVDw/FT.  17.1 310 545 673 722 727 7 481 430 577
SVD w/ FT. 454 620 686 728 731 737 DALR v oo 849 Z2LIM oY e 674
DALR w/o FT. 207 433 650 730 743 747 7 481 371 6L0
DALR w/FT. 468 633 69.6 735 729 729 Ours v v 850 2LIM g S5 6o
Ours w/o FT. 69.0 702 71.8 731 739 738 v v 60.6 51.4 69.2
Ours w/ FT. 705 704 717 729 737 740 Ous ., , 8.4 204M . %3 726
Table 5: VGG19 fc7 compression on Stan- Table 6: VGG19 full compression on each
ford 40 Actions. Test dataset accuracy results Jataset.

(%). Original accuracy: 74.6%.

after compression. We also report the results of compression using basic SVD on fc7 weight
matrix as a baseline to further illustrate the advantage of using data-dependent methods. To
compare our method with DALR, a dimension k was set for the compression using DALR
then &, the dimension to keep in our method resulting in an equal number of parameters,
was determined accordingly. See Supplementary Material for details.

The results are presented in Tables 3, 4, and 5. We show the relative numbers of parame-
ters in the fc7 layer compressed by DALR in the “params” rows in the tables as in the DARL
paper [26]. In all experiments, our method maintains high accuracy even for high com-
pression rates. In such cases it outperforms DALR by a large margin. However, for lower
compression rates DALR consistently compares favorably to our method though the differ-
ence is arguably small. In most cases, fine-tuning does not improve much the performance
of any of the two methods, except for DALR for high compression rates. This phenomenon
implies that the learning rate and/or the dropout rate we used are too high especially for our
method (see additional fine-tuning results in Supplementary Material for details).

5.3 VGG19 full compression

It is important to notice that, contrary to DALR, our method is able to compress both con-
volutional and dense layers. To further demonstrate this advantage, we proceeded to the
comparison of fully compressing the VGG19 network using both methods. We conducted
the experiment on all three datasets. DALR was applied to the fully connected layers. The
dropout layers of models compressed by our method were disabled in fine-tuning, because
our method reduce the input dimension of the dropout layers unlike DALR, resulting in
performance degradation. See Supplementary Material for other details.

Results are presented in Table 6. For all three datasets, our method consistently achieves
a better compression rate (C.R.) while reaching test accuracy 5.2%—-12.5% higher than DALR.
If we apply our method to the fully connected layers only, the difference in accuracy is
smaller but still favorable to our method in many cases. Although further improvement
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would be preferable to keep representations for many classes (CUB-200 without fine-tuning),
in practice, it is not necessary to overcompress the fully connected layers by our method.

5.4 Discussion

Our method is drastically better for high compression rates, while DALR is slightly better for
low compression rates. We conjecture that this is mainly due to the fact that the two methods
modify differently the network (see Fig. 1). DALR affects only one layer. Therefore if
the compression is too important, it reaches a critical point where not enough information
can possibly be retained. Our method affects two successive layers therefore spreading the
effect of compression and avoiding this critical point for high compression rates. On the
other hand, our method needs to consider nonlinearity between two layers and uses a greedy
algorithm [39]. Thus only affecting one layer is better to maintain high accuracy for lower
compression rates, because the output of the one layer can be optimally approximated.

The optimization problem to solve in DALR admits a closed form solution, making it
a very fast compression method. Compared to DALR, it is a limitation of our method to
require an iterative optimization. However, the extra computational time is usually a few
hours on 1 GPU (Tesla V100) in our experiments. Furthermore, an iterative process is used
in the DALR paper [26] to determine compression rate pairs for fc6 and fc7, and it needs
iterative accuracy evaluation. Pruning methods based on iterative fine-tuning approach also
take time for pruning, fine-tuning, and evaluation. Therefore our method is practical enough.

6 Conclusions

In this paper, we investigated compression of DNNs in the DA setting. As shown by [26],
using a data-dependent method is crucial in order to achieve good results. In that matter,
our work shows that the input data to calculate information retention ratio for compression
should only come from the distribution on which the model will be applied to, the target
distribution in our case. This is because adding samples from another distribution will force
compression in the early layers to select nodes that are specific to this distribution. However,
we show that source data can still be used for regularization to improve nodes selection. This
is done by comparing the first and second order statistics of the node’s feature distributions
on each of the source and target data. This criterion serves as a measure of the alignment
of the two distributions which directly relates to DA objectives. Therefore we denote this
measure as a DA regularizer. We evaluated this regularization on a spectral pruning method
introduced in [39] and obtained significant improvements on its compression results. Fi-
nally we compared our regularized compression method with the factorization based method
of [26] on real world image datasets. Our method compares favorably on all three datasets,
leading to significant improvements in retained accuracy for high compression rates.
Although our work focused on one compression method, we argue that using first and
second order statistics of feature distributions to measure the alignment between source and
target features and using it as a criterion for compression can be applied to other methods.
This work can therefore serve as a first example and practical implementation of this idea.
Applying our method to unsupervised DA setting [20, 48] is an interesting future direction.

Acknowledgements TS was partially supported by JSPS KAKENHI (26280009, 15H05707,
and 18H03201), Japan Digital Design, and JST-CREST.
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