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Abstract

Monocular depth estimation is a challenging task that aims to predict a correspond-
ing depth map from a given single RGB image. Recent deep learning models have been
proposed to predict the depth from the image by learning the alignment of deep fea-
tures between the RGB image and the depth domains. In this paper, we present a novel
approach, named Memorable Domain Adaptation Network (MDA-Net), to more effec-
tively transfer domain features for monocular depth estimation by taking into account the
common structure regularities (e.g., repetitive structure patterns, planar surfaces, symme-
tries) in domain adaptation. To this end, we introduce a new Structure-Oriented Memory
(SOM) module to learn and memorize the structure-specific information between RGB
image domain and the depth domain. More specifically, in the SOM module, we de-
velop a Memorable Bank of Filters (MBF) unit to learn a set of filters that memorize the
structure-aware image-depth residual pattern, and also an Attention Guided Controller
(AGC) unit to control the filter selection in the MBF given image features queries. Given
the query image feature, the trained SOM module is able to adaptively select the best cus-
tomized filters for cross-domain feature transferring with an optimal structural disparity
between image and depth. In summary, we focus on addressing this structure-specific
domain adaption challenge by proposing a novel end-to-end multi-scale memorable net-
work for monocular depth estimation. The experiments show that our MDA-Net demon-
strates the superior performance compared to the existing supervised monocular depth
estimation approaches on the challenging KITTI and NYU Depth V2 benchmarks.

1 Introduction

Depth estimation is an important component in many 3D computer vision tasks like shape
analysis, shape generation, object detection and visual Simultaneous Localization and Map-
ping (visual SLAM) [3, 10, 11, 12, 13, 14, 21, 26, 31, 39, 43, 44]. Traditional approaches
have made significant progress in binocular or multi-view depth estimation by taking advan-
tage of geometry constraints of either spatial (i.e. stereo camera) or temporal (i.e. video
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sequence) pairs. With the prevalence of deep convolutional neural networks, researchers
have been trying to relax the constraints by tackling monocular depth estimation. Recent
works ([4, 6, 17, 19, 32, 38]) have demonstrated promising results using regression-based
deep learning models. Their models are trained by minimizing image-level losses with su-
pervised signal on predicted results. Nevertheless, the cross-modality variance between the
RGB image and the depth map still makes monocular depth prediction an ill-posed problem.
Based on this observation, some researchers have considered solving the problem with ad-
ditional feature-level structural constraints by minimizing the cross-modality residual com-
plexity between image features and depth features. Most existing methods either consider the
pixel-wise or structure-wise alignment in this regard. For instance, several architectures uti-
lize the micro discrepancy loss as similarity measures such like sum of squared differences,
correlation coefficients ([29]) and maximum mean discrepancy ([8, 27]) to align the RGB
images features with depth features from pixel to pixel independently without considering
the spatial dependencies. Another line of work has tried to apply the adversarial adaptation
methods ([15, 18, 37]) in conjunction with task-specific losses that concentrate on macro
spatial distribution similarity between the image features and depth ones. In this paper, we
seek a way to address this domain adaption challenge on both pixel-wise discrepancies and
the structure dependencies by extracting the structure-specific information between the two
domains.

S In order to explore the pixel-wise discrepancies as well as the structure dependencies
between the image features and depth features, we propose a memorable domain adaptation
network, with an image-encoder-depth-decoder regression network backbone, and a specif-
ically designed Structure-Oriented Memory (SOM) module coupled with a cross-modality
residual complexity loss to minimize the gap between latent distribution of the image and
depth map from both the pixel-level and structure-level. Given the observation that similar
type of scenes (e.g. roadside scenes) often share common structural regularities (e.g. repeti-
tive structure patterns, planar surfaces, symmetries), a set of filters could be trained to learn a
specific structural image-depth residual patterns. Therefore, in our SOM module, we build a
Memorable Bank of Filters (MBF) to store and learn the structure-aware filters, then we con-
struct an Attention Guided Controller (AGC) to automatically select the appropriate filters
(from the MBF) to capture the significant information from the given image features (gener-
ated by the image encoder) for the further depth estimation. Finally, the customized image
features are fed into the depth decoder network to output the corresponding depth maps.
Importantly, comparing to the direct alignment between the two domains features (e.g. di-
rect applying L; loss between Z; and Z;), our introduced SOM module not only improves
the fitting ability, but also reduces the training burden of the image encoder simultaneously.
The experiments conducted on two well-known large scale benchmarks KITTI and NYU
Depth V2, demonstrate that our proposed MDA-Net obtains the state-of-the-art performance
on monocular depth estimation tasks. Moreover, the performance margin between model
trained with SOM and the one trained with direct alignment, validate the effectiveness of our
proposed SOM module. In summary, our contributions in this paper are as follows:

e We introduce memory strategies to address monocular depth estimation by designing
a novel Structure-Oriented Memory (SOM) module with a Memorable Bank of Filters
(MBF) and an Attention Guided Controller (AGC) for feature-level cross-modality
domain adaptation.

e We propose a novel end-to-end deep learning model called MDA-Net which seam-
lessly integrates a front-end regression network with the SOM module that operates at
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feature-level to substantially improve the depth prediction performance.

e We achieve state-of-the-art performance on two large scale benchmarks: KITTI and
NYU Depth V2, which validates the effectiveness of the proposed method.

2 Related Works

Monocular depth estimation is a fundamental problem in computer vision which has widespread
application in graphics, robotics and AR/VR. While previous works mainly tackle this using
hand-crafted image features or probabilistic models such as Markov Random Fields (MRFs)
([34]), recent success of deep learning based methods ([4, 6, 17, 19, 32, 38]) have inspired
researchers to use deep learning techniques to address the challenging depth estimation prob-
lem.

Supervised Methods A majority of works focus on supervised learning to use the
learned features from CNNs to do accurate depth prediction. [5] first brought CNNs to
depth regression task by integrating coarse and refined features with a two-stage network.
The multi-task learning strategies were also applied in depth estimation to boost the perfor-
mance. [22] utilized the semantic segmentation as objectness cues for depth estimation.
Furthermore, [35] and [40] performed joint prediction of the pixel-level semantic labels
as well as the depth. Surface normal information was also adopted in many recent works
([4, 30, 38, 42]). Besides, some research works also demonstrated the robustness of multi-
scale feature fusion in pixel-level prediction tasks (e.g. semantic segmentation, depth estima-
tion). [6] adopted the dilated convolution to enlarge the perceptive field without decreasing
spatial resolution of the feature maps. In [2]’s work, inputs at different resolutions are utilized
to build a multi-stream architecture. Instead of regression, there are also methods that dis-
cretize the depth range and transfer the regression problem to a classification problem. In the
work of [6], the space-increasing discretization is proposed to reduce the over-strengthened
loss for the large depth values.

Unsupervised/Semi-supervised Methods Another line of methods on monocular im-
age depth prediction goes along the unsupervised/semi-supervised direction which mostly
takes advantage of geometry constraints (e.g. epipolar geometry) on either spatial (between
left-right pairs) or temporal (forward-backward) relationship. [7] proposed to estimate the
depth map from a pair of stereo images by imposing the left-right consistency loss. [41]
jointly learned a single view depth estimator and monocular odometry estimator using stereo
video sequences, which enables the use of both spatial and temporal photometric warp con-
straints. Moreover, following the trend of adversarial learning, the generative adversarial
networks (GANSs) have been utilized in the depth estimation problem. [18] proposed an un-
supervised domain adaptation strategy for adapting depth predictions from synthetic RGB-D
pairs to natural scenes in the depth estimation task.

Cross-Modality Domain Adaptation In addition to the recent depth estimation meth-
ods, research works focused on the cross-modality domain adaption are also highly relevant
to ours. The existence of cross modality, or domain shift, is commonly seen in real-world ap-
plication, which is the consequence of data captured by different sensors (e.g. optical camera,
LiDAR or stereo camera), or varying conditions (i.e. background). Most deep domain adap-
tation methods utilize a siamese architecture with two streams for source and target models
respectively, and the network is trained with a discrepancy loss to minimize the pixel-wise
shift between domains. [27] used maximum mean discrepancy together with a task-specific
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Figure 1: The network structure of Memorable Domain Adaptation Network (MDA-Net).

loss to adapt the source and target, while [36] proposed the deep correlation alignment algo-
rithm to match the mean and covariance. [1] proposed to learn a dense representation using
an auto-encoder. [28] trained the network with L; constrain in latent space to transfer feature
from 2D to 3D in order to directly predict 3D point cloud from a single image. In our work,
we aim to design a domain adaptive (SOM) module using memory mechanism, so that the
image features can be automatically customized to obtain a better depth prediction.

3 Proposed Method

The monocular depth estimation problem can be defined as a nonlinear mapping f: 1 =Y
from the RGB image I to the geometric depth map Y, which can be learned in a supervised
fashion given a training set X = {/’,Y"} |. To learn the mapping function, we propose
MDA-Net as shown in Fig. 1, which is composed of a (pre-trained) depth auto-encoder, an
image encoder and a depth predictor equipped with SOM module. All the components are
trained into two stages. In the first stage, a series of ‘target” depth features {Z], le € R¥
are learned by training a depth map auto-encoder (E;, D). In the second stage, we train an
image encoder E;, SOM modules M;; and a depth predictor P; to map the 2D image to the
depth map in an end-to-end manner. Particularly, E; encodes the RGB image to the ‘source’
image features {Z!}*_, € R¥, which act as queries to obtain image-depth residual patterns
from SOM module. The residual is then concatenated to the source feature to form a newly
transferred feature set {Z! d}le € Rk (which is expected to be aligned with the target feature
{Z, f:l with supervision) is fed to the predictor P; to estimate the output depth map. We
will elaborate the network structures from two stages separately.

3.1 Stage 1: Depth Auto-Encoder

In order to learn a strong and robust prior over the depth map as a reference in the latent
matching process, we train a depth auto-encoder (E,, D) which takes a ground truth depth
map ¥; € RM*N as input, and outputs a reconstructed depth map ¥, € R¥*N. As shown
in Figure 1 (stage 1), DenseNet-121 is utilized for constructing the depth encoder (Figure
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1 (a)), in which four feature maps with cascading resolutions are extracted from different
blocks (shallow to deep) for depth decoding. In order to make sure that the object contours
as well as details are well preserved, we use a Feature Pyramid Network (FPN) to build the
depth decoder, fusing multi-scale features in a pyramid structure. Specifically, as shown in
Fig. 1 (b), four features with sizes 1/4, 1/8, 1/16 and 1/32 of the input are derived. Starting
from the deepest feature, each feature map is first upsampled by a factor of 2, and element-
wisely added to its following feature map. After the fusion process of the multi-scale feature
maps, each of the newly generated feature maps is upsampled to size of 1/4 the original
input (or the size of the shallowest feature map), and concatenated together to form a feature
volume. Finally, the output depth map is predicted via extra CNN layers on the concatenated
feature volume. The FPN decoder is able to preserve details in the depth map decoding
process.

3.2 Stage 2: Depth Prediction with SOM Module for Latent Space
Adaptation

In the second stage, we aim to train the network in an end-to-end manner to effectively
transfer the features derived from image encoder E; from image domain to depth domain,
as a strong prior over the ground truth depth, so as to better deduce the depth from the
transferred prior. To this end, this stage contains three major components as shown in Fig.
1 (¢), (d) and (e): the image encoder, the SOM module for latent space adaptation, and the
depth predictor (E;, M;4, Py). Each component of the network will be explained below.

Image Encoder and Depth Predictor as Regression Backbone In order to make
sure that the network derive both depth features and image features at the same scale, we
design the encoder-decoder based backbone ((c) and (d) in Fig. 1) for stage 2 exactly the
same as those of stage 1 but without weight sharing. Specifically, the structure of image
encoder E; ((c) in Fig. 1) is identical to that of depth encoder E; ((e) in Fig. 1), and similarly
for D, ((b)) and P; ((e)).

SOM Module for Latent Space Adaptation In the latent space, we propose an addi-
tional structure oriented memory module consisting of two collaborative units: a Memorable
Bank of Filters (MBF) that stores a bank of learned filters to detect the cross-modality resid-
ual complexity between the depth feature and the image feature, and an Attention Guided
Controller (AGC) which controls the interaction between the image feature with the MBF.
The image feature as a specific query feature selects filters from MBF with an attention
guided read controller, and the MBF is updated through a write controller that is naturally
integrated into the back propagation to make the network can be trained end-to-end. The
proposed SOM reading and writing process are as follows.

SOM Reading Different from reading by ‘addressing’ in general memory concept, the
proposed SOM module is reading by ‘attention’, which means each memory slot is assigned
with a weight, and the whole memory is merged per weights as reading output. As demon-
strated in Fig. 2, given the query feature Z;, in order to obtain weights for each memory
slot, we build a LSTM-based read controller to learn the weights. Specifically, each fil-
ter from the memory slot {M;}! , is firstly convolved on the feature, and the intermedi-
ate outputs are denoted as {x;}!"_,, where n is the memory size, and x; is formulated as:
x =W, xZ;+ b, M, = (W,,b,), W, is the kernel, b, is the bias, and * is the convolution op-
eration. The intermediate outputs {x;}_, could be thought of as the ‘unweighted/unbiased’
output that takes each filter/memory slot equally. Then in order to further add weighted
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Figure 2: The SOM reading process (of a single SOM module).

attention on the result pool, a Bi-Directional Convolutional Long Short Term Memory is
applied as the read controller on {x,}/", to explore the correlation within the pool, so as to
aggregate the memory slots with strong attention. Particularly, read controller processes
{x}}_, from two directions and computes the forward hidden sequence /4 by iterating
the input from # = 1 to n, and the backward hidden sequence hj, by iterating the input
from t = n to 1. The forward/backward flow of the LSTM cell is formulated as below:
i = (Wi x; +Whixhy 1 +Wejoc 1 +bi), fy = 6(Wap %X + Wiy 1 +Wepoc 1 +by),
¢ = fioc—1 +iotanh(Wye s x + Wy x ly—1 + be),
= 0 (Wyo *x; + Wy % hy—1 + Weo 0, + by ), by = 0; o tanh(cy ),
where # is the hidden sequence, o is the logistic sigmoid function, * is the convolution
operator and o denotes the Hadamard product. i, f;,0;,c, represent input gate, forget gate,
output gate, and cell activation vector respectively, and Wy, is the hidden-input gate matrix,
while W,, is the input-output gate matrix. The final attention sequence « is computed with
regard to both /1y and &, as follows: o = so ftmax(Wiyh s() +Wi,yhp(r) +by), wheret =1 to
n, and each y after softmax operation in the output sequence is associated with the weight for
each memory slot (refer to o value in Fig. 2, the redder the color, the higher the attention),
therefore Z{-‘ZI a; = 1. The memory output Z,, is a combination of the output sequence
that focuses more on the slot with higher attention, while less on lower attention value:
Zyn =YY" Y,y = Oyux;. Finally, Z,, is concatenated with the query feature itself to reproduce
a transferred feature Z;; that is supposed to match the distribution of the depth feature Z,;.
SOM Writing The proposed memory writer can be seamlessly integrated to network
back propagation. The attention learned from the read controller will also operate in the
memory writing process, and specifically, the slot with higher attention will be updated to a
larger extent and vice versa. The update rule could be formulated (in a simplified form) as
W; <= W, + oy Aw,, where o is the attention for each slot, 7 is the learning rate, and Ay, is
the total gradient from both branches.

3.3 Learning objectives

We design multiple objectives to constrain the joint training of the network with details as
follows.

Depth Estimation Objective = The depth estimation objective poses constraints on
the front-end pipeline of the single image depth estimation. In order to reduce the over-
emphasized error on large depth values, we use the logarithm mean squared error (RMSE))
loss to make the predictor focus more on closer objects which makes up the main portion in
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Figure 3: Results on KITTT validation set.

a depth map. The objective is formulated as Lgepr, = \/% Yicn ||log(di) —log(d)||?, where
d is the ground truth depth map, while d* is the predicted depth map.

Auto-Encoder Objective  The objective for the depth auto-encoder is utilized in the
first training stage. To make sure that the depth features and the image features are in the
same scale with same constraints, we also applied the RMSE;,; on the auto-encoder as

Lag = \/ﬁ Yicn |[log(d;) —log(d;)||2, where d is the ground truth depth map, while d is
the reconstructed depth map.

Cross-Modality Residual Complexity Objective  The latent adaptation objective is
applied to constrain the SOM module to minimize feature distribution discrepancies. We use
L1 loss between the ‘target’ depth features (pretrained from stage 1) and the SOM transferred
image features. The objective is a sum of feature alignment losses at different levels as
Lemre = Yy |12, — ZK| |1, where k is the number of features involved in latent matching.

Gradient and Surface Normal Constraints To further strengthen the network by
pulling out the model from local minima, we added extra constraints on the predicted depth
map including the gradient loss and the surface normal loss to finetune the training. The
gradient loss is defined as Lgradions = % YN, ||Vd; — Vd}||1, and specifically, we adopt Sobel
filter to calculate the gradient both vertically and horizontally; Vd is the image gradient of
the ground truth depth map, while Vd* is the image gradient of the predicted depth map. The
surface normal loss is defined as the similarity between the surface normal of the ground truth

depth map with the predicted depth map as Loopma = 5 Lo (1— %), formulated

with the corresponding gradient.

In total, the training objectives are summarized as follows: (1) In training stage 1, the
total loss is: Lg, = Lag; (2) In training stage 2, the total loss is : Ls, = AgepinLaepin +
)LCMRC£CMRC + lgmdiem‘cgmdient + A'n()rm(/zl Enarmala where A is the Weight for each ObjeCtive'

4 Experiments

In this section, we present our experiments on two large-scale datasets by introducing the
implementation details, benchmark performance and ablation studies validating the effec-
tiveness of the proposed approach.

Implementation Details The proposed method is implemented using the TensorFlow
and runs on a single NVIDIA TITAN X GPU with 12 GB memory. The encoder-decoder
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Table 1: Performance on KITTI validation set. All scores are evaluated on Eigen split ([4]).

Method Error (lower is better) Accuracy (higher is better)
AbsRel | SqRel | RMSE | RMSE,,, | 6 <1.25 | 0 <1.25% | 6 <1.25°
Saxena [34] 0.280 3.012 | 8.734 0.361 0.601 0.820 0.926
Liu [23] 0.217 1.841 | 6.986 0.289 0.647 0.882 0.961
Zhou [42] 0.208 1.768 | 6.858 - 0.678 0.885 0.957
Eigen [5] 0.190 1.515 | 7.156 0.270 0.692 0.899 0.967
Garg [7] 0.177 1.169 | 5.285 - 0.727 0.896 0.962
Kundu [18] 0.167 1.257 | 5.578 0.237 0.771 0.922 0.971
Zhan [41] 0.135 1.132 | 5.585 0.229 0.820 0.933 0.971
Godard [9] 0.114 0.898 | 4.935 0.206 0.861 0.949 0.976
Kuznietsov [19] | 0.113 0.741 | 4.621 0.189 0.862 0.960 0.986
Ours 0.097 0.398 | 3.007 0.133 0.913 0.985 0.997

Ground truth

Prediction

Inputs Prediction Ground truth Inputs Inputs Prediction Ground truth

Figure 4: Examples of predicted depth maps on NYU V2 Depth dataset.

structure from both stage 1 and stage 2 are identical but without weight sharing. The depth
auto-encoder is trained from scratch, while the image encoder is initialized with ImageNet
([33]) pre-trained parameters. For multi-scale feature fusion, we consider four levels of
feature maps which are derived from different blocks of the DenseNet-121 backbone with
the feature map sizes 1/4, 1/8, 1/16 and 1/32 of the input images. For instance, in NYU
Depth V2 dataset, with the input resolution 480 x 640, four feature maps with cascading
sizes 120 x 160, 60 x 80, 30 x 40, 15 x 20 are extracted. The network is trained with initial
learning rate 0.001, and decreased every 10 epochs. The weight decay and momentum set
to 107 and 0.9 respectively. We used the Adam optimizer and batch normalization during
training, with normalization decay 0.97. We set the weights for each objective as Agep = 1,
Agradient = 1, Anorm = 1, and Acyre = 2. The gradient loss is added after 4k steps of training,
and the surface normal loss is added after 8k steps of training.

Results on KITTI Dataset (Eigen split) The KITTI dataset is a large scale dataset
for autonomous driving, which contains depth images captured with LiDAR sensor mounted
on a driving vehicle. In our experiment, to compare the results at the same level, we follow
the experimental protocol proposed by [4], in which around 22600 images (resolution 384 x
1280) from 32 scenes are utilized as training data, and around 800 images from 29 scenes
are used for validation. Following the previous works, the depth value of the RGB image is
scaled to 0-80m. During training, the depth maps are down-scaled to resolution 192 x 640,
and up-sampled to the original size in evaluation process. Table 1 shows the comparison with
the state-of-the-art methods on KITTI dataset. We compared with state-of-the-art methods
([5,7,9, 18, 19, 24, 34, 41, 42]). Particularly, the methods proposed by [5, 18, 24, 34, 42]
only employ monocular images in both training and testing, while approachesin [7,9, 19, 41]
are unsupervised methods that use stereo images in training and apply single image during
testing. The proposed method outperforms all these methods by a large margin, and Fig. 3
displays a few visualized prediction results on examples randomly chosen from the validation
dataset.
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Table 2: Performance comparison on NYU Depth V2.

Error Accuracy
Method Rel | RMSE | Jog, | 6<125 | 6<125 | 6 <125
Saxena [34] 0.349 1.214 - 0.447 0.745 0.897
Karsch [16] 0.35 1.2 0.131 - - -
Liu [25] 0.335 1.06 0.127 - - -
Ladicky [35] - - - 0.542 0.829 0.941
Zhuo [45] 0.305 1.04 - 0.525 0.838 0.962
Li [20] 0.232 0.821 0.094 0.621 0.886 0.968
Wang [38] 0.220 0.745 - 0.605 0.890 0.970
Xu [40] 0.214 0.792 0.091 0.643 0.902 0.977
Liu [23] 0.213 0.759 0.087 0.650 0.906 0.976
Roy [32] 0.187 0.744 - - - -
Ours (E; +Dpure) 0.231 0.828 0.095 0.631 0.889 0.968
Ours (E; + Drpy) 0.229 0.803 0.092 0.633 0.891 0.969
Ours (E; + Dppy +align) 0.148 0.627 0.075 0.802 0.944 0.986
Ours (E; + Dppy +SOM) | 0.136 0.604 0.067 0.814 0.959 0.990

Results on NYU Depth V2 Dataset The NYU Depth V2 dataset contains 120K pairs
of RGB-D (resolution 480 x 640) captured by Kinect. The dataset is manually selected and
annotated into 1449 RGB-D pairs, in which 795 images are used for training, and the rest for
validation. The depth value ranges from O to 10m. In the training process, the depth maps are
down-scaled to resolution 120 x 160, and in testing/ evaluation, the predicted depth map is
upsampled to the original resolution. Table 2 shows the comparison of the proposed method
with state-of-the-art methods (official test split). We compare with both hand-crafted feature
based approaches ([16, 34, 35]) and deep learning based ones ([20, 23, 25, 32, 38, 40, 45]).
Fig. 4 shows examples of predicted depth maps on the NYU Depth V2 dataset.

Ablation Studies  To further demonstrate the effectiveness of the proposed method, we
conduct ablation studies from two aspects on NYU Depth V2 dataset. Firstly, we compare
the performance of the depth estimation pipeline with different decoder structures: (1) The
decoder that simply uses symmetric structure with the encoder that cascadingly upsample
the feature map until the output size. (2) The decoder that takes four different feature maps
from the encoder and fuses them in a pyramid fashion (as described in Section 3.1). The
qualitative comparison are shown in Table 2 (E; + Dpyre and E; + Drpy). As can be seen
from the evaluation results, the decoder structure with pyramid multi-sacle feature fusion
out-performs the one that only takes the latent feature as input by a large margin, especially
in the 8; < 1.25 metric. Therefore, it is obvious that the mixture of features from different
levels are beneficial for the details compensation (i.e. contour, edges).

To validate the effectiveness of the proposed SOM module, we compare the performance
of the proposed method with SOM settings against direct alignment and analyze the results.
Firstly, we add the feature alignment loss for latent feature maps based on the E; + Dppy
structure to test the performance of direct feature alignment (E; + Drpy + align). The quan-
titative results of direct alignment rarely improved compared with the one that is trained
without feature alignment loss, reflecting the limited capability of the encoder for feature
adaptation. Then, we add the SOM module at feature level (E; + Dppy +SOM) and compare
the results with the baseline structure that goes without memory. The large margin quantita-
tive improvement in Table 2 implies that structure-specific feature alignment with memory
mechanism (SOM) is superior to other approaches such as direct alignment.

5 Conclusion

In this paper, we developed a novel memory guided network named MDA-Net for monocular
depth estimation, consisting of the encoder-decoder based structure, as well as the external
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SOM module which is trained to learn and memorize the structure attentioned image-depth-
residual pattern in cross-modality latent alignment. The proposed method achieves state-of-
the-art performance on challenging large-scale benchmarks, and each component is validated
to be effective in the ablation study.
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