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Abstract

In this paper, we aim at studying the new problem of weakly paired multi-domain im-
age translation. To this end, we collect a dataset that contains weakly paired images from
multiple domains. Two images are considered to be weakly paired if they are captured
from nearby locations and share an overlapping field of view. These images are pos-
sibly captured by two asynchronous cameras—often resulting in images from separate
domains, e.g. summer and winter. Major motivations for using weakly paired images
are: (i) performance improvement towards that of paired data; (ii) cheap labels and abun-
dant data availability. For the first time in this paper, we propose a multi-domain image
translation method specifically designed for weakly paired data. The proposed method
consists of an attention-based generator and a two-stream discriminator that deals with
misalignment between source and target images. Our method generates images in the
target domain while preserving source image content, including foreground objects such
as cars and pedestrians. Our extensive experiments demonstrate the superiority of the
proposed method in comparison to the state-of-the-art. The new dataset and the source
code are available at https://github.com/zhangma123/weaklypaired.

1 Introduction
When dealing with image-to-image translation, most of the state-of-the-art deep learning
models are either fully supervised or unsupervised. Fully supervised training is very efficient
since the generated image can be directly compared to the desired outcome, i.e. a target
image. Unsupervised models and losses, on the other hand, do not require strongly paired
data. The advantage is apparent: Strongly paired data is usually difficult to acquire. A
major drawback of unsupervised methods—in addition to the training instability—is the
need of additional hard constraints like cyclic consistency [29], which often results in large
networks that are difficult to train. This raises the question of whether weakly paired data
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Figure 1: Examples of paired, weakly paired, and unpaired data used for image translation.

can be efficiently used to train deep learning models? We consider two images to be weakly
paired if they are captured from nearby locations and share an overlapping field of view
(see Figure 1). These images may be captured by two cameras at very different instants of
time—often resulting in images from separate domains, e.g. summer, winter, day, and night.

In essence, weakly paired images are neither pixel-wise aligned (as in the strongly paired
case) nor do they lack pixel-wise correspondences (as in the unpaired case). We argue that
the acquisition of weakly paired images, unlike that of strongly paired ones, is easy and
the current availability is abundant. Our requirement for "weakly pairedness" is that the
geographic location and orientation should be roughly the same, sharing some overlapping
field of view. This setup does not put any restrictions on foreground objects and image style.
The requirements for weakly paired images can easily be satisfied by using independently
moving cameras which roughly look towards the same scene, or by using sensory data such
as GPS-tags and compass information. In this work, we highlight the fact that setups using
weakly paired images have gathered little to no attention in the literature. To address this,
this paper proposes a novel method for the first time, to the best of our knowledge. Two
major motivations of using weakly paired images are: (i) performance improvement towards
that of paired data; (ii) cheap labels and abundance in data availability.

While being a promising alternative to the paired case, weakly paired data comes with
its own share of challenges, which include misalignments and the change in dynamic scene
parts. For example, in the data used in this paper (i.e. the Oxford Robotcar [14]), images
are taken by a camera mounted on a car. As the car travels along a fixed route during dif-
ferent seasons and weather conditions, weakly paired images from different domains are
gathered together with the location and orientation of the vehicle. Since these images are
inevitably misaligned and differ in terms of dynamic content (due to inaccurate GPS data,
change in traffic/construction, or other scene dynamics), a method devised to handle weakly
paired data must avoid the direct pixel-to-pixel comparisons. In this work, we make multiple
necessary considerations to handle such data and demonstrated the effectiveness of the de-
veloped method for the intended task of image translation, as well as one of its applications
for image retrieval. The major contributions of this paper can be summarized as follows:

• We formulate and address the problem of multi-domain image translation leveraging
weakly paired images. To facilitate research in direction, we curated a the Oxford
Robotcar Dataset [14] into a large scale multi-domain weakly paired images.

• We design a novel method that uses an attention model to tackle dynamic parts during
image generation, a joint distribution learning concept for exploiting weakly paired
data, and image classification for multi-domain image translation.
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• In addition to the improvements in image translation, we provide an experimental
evaluation demonstrating the superiority of the proposed method for image retrieval.

2 Related Works
The task of image-to-image translation can be broadly classified into two categories: paired
and unpaired. The paired translation methods assume that the pixel-wise mapping between
source and target is known [4, 9, 25]. On the other hand, unpaired image translation meth-
ods [12, 27, 29], use sets of images, each set representing a certain style or domain. Some
extensions of these methods are used for many applications. For example, [2] uses trans-
lation model to improve the retrieval accuracy of night images. Similarly, [19] uses the
same for foggy image segmentation. A key extension includes image translation in multi-
domain scenarios, where images are translated to the desired target domain using deep net-
works [1, 8, 10, 11, 15, 20, 22, 26]. In this regard, three notable works include, StarGAN [5],
GANimation [17], and SPADE [16].
StarGAN [5]. StarGAN alleviated the need for n(n−1) networks for n domains by encoding
the target domain information into the generator input. Using cycle consistency, StarGAN
generates images on multiple target domains without requiring strongly paired data. Similar
to CycleGAN [29], this cycle consistency forces the network to preserve key information for
reconstructing the original image. A class prediction loss is introduced to ensure that the
generator produces images in the correct domain. Furthermore, [5] also introduced a method
to train a single model on multiple datasets by applying a mask vector to the label condition.
Following [5], StarGANv2 [6] suggests to replace the domain label with a domain-specific
style code that is able to represent more diverse styles of a specific domain using a mapping
network and a style encoder. The mapping network is trained to transform random noise into
a style code, while the encoder learns to extract the style code from a given reference image.
GANimation [17]. In contrast to StarGAN’s discrete nature of the domains’s definition,
GANimation synthesizes images on a continuous spectrum. GANimation is mainly tested
for human facial features, such as emotions, that are best represented by continuous action
units. GANimation also uses an attention network to mask areas requiring no modifications,
whereas cycle consistency is used to preserves important information during translation.
SPADE [16]. Similar to pix2pixHD [9], SPADE generates photo-realistic conditioned upon
a semantic image. The semantic images are used for spatially variant denormalization, which
allows the realistic texture synthesis for a uniform semantic patch. On the generator side, a
gradual upsampling scheme is on the input segmentation map to feed semantics in to SPADE
blocks up to the desired output image size. The discriminator uses a multi-scale architecture
which learns the joint distribution between semantic and RGB images.

3 Problem Formulation
Let us define the set of N different image domains as {Xi}N

i=1. For each pair of domains
{Xi,X j}, we use pairs of weakly-aligned images Pk

i j = {Ik
i ∈Xi,Ik

j ∈X j}, which are captured
from nearby locations and share an overlapping field of view. The task of weakly paired
multi-domain image translation aims at learning a mapping function ψθ (i) : I→ Î ∈ Xi,
which maps any image I to domain Xi, given the target domain. In the context of this
paper, ψ is a convolutional neural network and θ are the network parameters. For the task
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WNO WNR WDSn WDO-1 WDO-2 WDSu WDO-3 SDS-1 SDO SDS-2 SDR
Winter Winter Winter Winter Winter Winter Winter Summer Summer Summer Summer
Night Night Day Day Day Day Day Day Day Day Day
Overcast Rain Snow Overcast Overcast Sun Overcast Sun Overcast Sun Rain

Table 1: Summary of the obtained data with corresponding attributes used. The domain is
abbreviated and shown the top-most row. These shorthands are used throughout the paper.

of multi-domain image translation, we wish to learn θ using a given set of weakly paired
images {Pk

i j}. Inspired by [5], we aim at learning a single multi-domain model that translates
any image into the target domain, by avoiding O(N2) complexity of training N2 separate
cross-domain models. Note that the pairs Pk

i j are neither unpaired nor paired, as commonly
assumed for the task of image translation. To leverage such weakly paired data, it becomes
necessary to design a new model that is different from the cases of paired or unpaired data.

4 Data Collection

We use the Oxford Robotcar Dataset [14] to train and test our model, after carefully curating
the original dataset making it suitable for the problem at hand. It consists of video sequences
taken from a driving car acquired over a period of a year along a fixed driving route. These
video frames come with INS (Inertial Navigation System) data, which is used to pair the
images. The pairing takes place between several different weather, season, and lightning
conditions. Inherently, these images are weakly paired since dynamic objects will inevitably
change. Furthermore, two images in a pair are very likely to be misaligned due to imperfect
INS data and possibly other traffic conditions. We pair the images (frames extracted from
videos) such that the geometric distance between two images in a pair is within a chosen
threshold. Using this method, we were able to collect more than 120k images. A summary
of the curated dataset is provided in Table 1.

5 Proposed Approach

In the suggested scenario of weakly paired image translation, any paired images are captured
from nearby locations, but are generally misaligned and contain varied dynamic content. In
general, this disables the use of those methods with direct pixel-to-pixel supervision. To ad-
dress this, our solution is the exploitation of generative distribution learning, which typically
enforces a generator to approximate the distributions of images from target domains so that
the input can be transformed to the given target domains. In particular, the key idea of our
approach is to learn multi-domain mappings by exploiting the technology of generative ad-
versarial networks (GANs) [7] that has shown its strong capability of distribution learning.
To this end, we design an attention-based generator to handle dynamic parts when learning
the mapping set between multiple domains, while exploiting a two-stream discriminator to
align the feature maps of misaligned inputs for better marginal and joint distribution learn-
ing on the weakly paired multi-domain real and produced images. The generator and the
discriminator are jointly optimized by a min-max objective function. The overview of the
proposed model architecture is illustrated in Figure 2.
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Figure 2: Overall architecture. The generator takes an input image, a class label c and prior
z and synthesizes an image. "Mux" refers to a multiplexer that chooses between the real
and fake images during training. The discriminator takes either an input+fake pair or an in-
put+real pair and outputs the joint, marginal, and class predictions p j, pm and ĉ, respectively.
The intermediate features φ(I) extracted from the discriminator are used to compute L f eat .

5.1 Network Architecture
Generator. The structure of our generator is based on the SPADE generator [16]—given
its superiority for paired image translation—where we change the output layers to produce a
color mask C as well as an attention mask M. Following the attention-based residual learning
of GANimation [17], the generated image is obtained by,

IOut = M∗ IIn +(1−M)∗C. (1)

The color mask C∈R3×H×W describes the color information that the generator paints on top
of the input while the attention mask M∈ [0,1]1×H×W describes the position where the color
painting is performed. This architecture enables the model to preserve background while
changing the the foreground objects as well as the style of the scene. We noticed significant
qualitative improvements when using an attention-based approach over the original generator
structure of [16]. For conditioning on the desired target domain, we use a binary encoding
of the label and concatenate it with a prior z which is sampled from a normal distribution.
Additionally, we introduce zalign ∈ R1×H×W and concatenate it to the input image along
the channel dimension. This alignment noise allows the generator to synthesize differently
aligned images, which is also sampled from a normal distribution (independent of the prior
z) during training and inference.
Discriminator. We employ a multi-scale discriminator architecture similar to that of SPADE,
i.e. real/fake prediction is performed on two different image scales. Similarly, intermediate
layer activations are extracted to compute the GAN Feature Loss. For marginal as well as
joint distribution learning, a marginal discriminator is added in parallel to the original joint
discriminator. The marginal discriminator also outputs an additional class label prediction.
With such generator, it is very likely that the generated image is more aligned to the input
than to the target. This allows the discriminator to distinguish between fake image pairs
(input + fake) and real image pairs (input + real) based on their alignment to the input, re-
sulting in a too powerful discriminator that fails to properly guide the training process of
the generator. To alleviate this issue, we divide the discriminator input paths into two sep-
arate streams, D1 and D2. The underlying motivation is to use these intermediate layers to
transform images into a representation where alignment is not a dominant factor.
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Figure 3: Generator architecture. To the left, the prior z (red) is sampled from a normal
distribution and concatenated with the domain label (green). The alignment noise z_align is
shown in yellow behind the input image. The input image is fed into the generator at different
scales via SPADE Blocks (blue) which are directly taken from SPADE [16]. The input image
together with the Color and Mask are fused into the synthesized image. Mask regularizations
Latt and LTV ensure that the mask is smooth and well saturated. The perceptual loss Lvgg is
computed between the input and synthesized image using a pretrained VGG19 network.

Figure 4: Discriminator architecture. D1 and D2 are two networks that handle input and
fake/real image respectively. Their outputs are concatenated and further processed by the
joint discriminator where features φi are extracted from the intermediate layers to compute
L f eat . Both the joint and marginal discriminator produce predictions p j, pm on whether the
input was synthesized by the generator or sampled from the data to compute the losses L joint
andLmarg respectively. The marginal discriminator only has access of the output of D2 which
also outputs a class prediction ĉ. The prediction ĉ is later used to compute the loss Lcls.
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5.2 Optimizing the Model

Adversarial Loss. We use joint and marginal adversarial losses to train our generator and
discriminator, denoted by L joint and Lmarg, respectively. This is to ensure that the generator
synthesizes images that are indistinguishable from real images.
GAN Feature Loss. Following SPADE [16], we extract intermediate features φi of the joint
discriminator and compute the L1 distance between the features of the synthesized and target
images. This loss is denoted by L f eat . Layer-wise loss terms are combined using positively
weighted mean, with higher weights to lower-level features.
VGG Loss. This perceptual loss is computed by taking the L1 distance between features ex-
tracted by a pretrained VGG19 network. In contrast to L f eat , this loss is computed between
the synthesized and input image. We also weigh each layer by assigning higher weights to
higher-level features in order to preserve as much semantic details as possible. Note that
Lvgg and L f eat have opposite objectives: VGG Loss tries to pull the image closer to the in-
put, while the GAN Feature Loss tries to push the image closer to the target.
Classification Loss. Similar to StarGAN [5] we also introduce a classification loss by com-
paring the class prediction ĉ with the ground truth domain label. We use Binary Cross
Entropy for this loss, on the predictions for synthesized as well as the target images.
Mask Regularization. We regularize the attention mask M by rewarding smooth masks
(minimize the total variation of the mask LTV ). In contrast to GANimation [17], we penalize
“dark masks", i.e. we assign a higher loss if the mask is close to zero since that would make
the mask redundant. The loss corresponding to this regularization is denoted by Latt .
Full Objective. The full training objectives LG and LD, respectively for the generator G and
the discriminator D are derived from two sets of losses, SG = {L joint ,Lmarg,L f eat ,Lvgg,L f

cls,
Latt ,LTV} and SD = {L joint ,Lmarg,Lr

cls}. The LG (resp. LD) combines the losses of SG
(resp. SD) using a set of appropriate hyperparameters. Please, refer to the supplementary
material for the details about our hyperparameters. In terms of the loss computation com-
plexity, despite of used several loss terms, our model is only marginally higher compared to
SPADE [16]. More specifically, only the tail of the generator and the head of the discrimi-
nator are expanded, accordingly which result in significant improvement in performance for
our problem. Moreover, majority of loss terms respect the same setup as in SPADE [16] and
GANimation [17], making the task of hyperparameter tuning straightforward.

6 Experiments

6.1 Multi-Domain Image Translation

Evaluation Metric. Finding suitable metrics for the evaluation of our model is not straight-
forward. Similarity scores such as the Structural Similarity (SSIM) and Peak Signal-to-Noise
Ratio (PSNR) are not suited for weakly paired data since the generated image will always de-
viate from the target image. Therefore, we use other quantities such as the Fréchet Inception
Distance (FID), which compares image distributions. Other learned metrics such as LPIPS
[28] are not meaningfully applicable: Since the generated image is directly compared with
the target, large foreground objects significantly decrease the score (increase the distance).
We therefore propose the average SIFT descriptor distance. This metric is motivated by
the misalignments and changes in dynamic objects in each scene. One reasonable approach
is to first find the Fundamental Matrix that relates keypoints between two images. Given
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Input WDSn WNO WDSu SDO SDR

Figure 5: Multi-Domain Image Translation results. The input domains are WDO (top) and
SDO (bottom). This figure shows that our model is capable of translating images into differ-
ent target domains as indicated by the column description. The attention masks are depicted
in the second and forth row, respectively.

two images, we detect and compute SIFT descriptors of both images and use a FLANN al-
gorithm (KNN, k=2) to match these descriptors. Since there are many matches and most of
them are ambiguous, we use a ratio test to filter these out as proposed by Lowe [13]. Af-
terward, RANSAC is used to calculate the Fundamental Matrix and the inliers. Using these
keypoints we then can extract the SIFT descriptors and compute the average distance (L1
norm) between them. To accommodate for different numbers of matches we normalize the
score by dividing by the total number of matches for each image pair as well as by 128.
Comparison to Baseline Models. We refer to [18] for an overview of state-of-the-art mod-
els that can achieve multi-domain image-to-image translation. The two most notable ones
are StarGAN [5] as well as GANimation [17]. Despite both of them dealing with facial
expressions, these models come closest to our task. The most recent work, StarGANv2 [6]
improves many aspects of StarGAN and can also deal with animal faces. Unfortunately, we
were unable to produce meaningful results using StarGAN and StarGANv2. We believe that
this failure can be attributed to the following: 1) StarGAN and StarGANv2 were originally
designed for the translation of faces rather than scenes which is much more challenging. 2)
The one-way cyclic constraint of both models may be too weak to preserve meaningful input
features. 3) StarGANv2 uses a style encoding network that produces latent codes for dif-
ferent domains which may not be sufficient to condition the generator output. We therefore
only use GANimation as a baseline model, training the model in a fully unsupervised set-
ting, using GANimation’s default hyperparameters. As a baseline relying on strongly paired
images, we use SPADE in its original form. For all the competing methods, we use about
30k training data. Figure 6 and Table 2 report qualitative and quantitative results. By com-
parison, our proposed method generally shows its superiority over competing models.
Ablation Study. We study the relative importance of the different components of our model:
alignment noise, classification loss, attention-based modeling, and stacking the discriminator
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Input no_mask GANimation SPADE_org Final Target

Figure 6: Ablation Study and Model Comparison. We compare the final method to GANi-
mation [17] and SPADE [16] as well as the ablation model that disregards the attention mask
denoted by "no_mask". The right-most column shows the weakly paired target images.

Domain no_gen_align no_classify_loss no_mask stack_discr SPADE_org GANimation FINAL
FID SIFT FID SIFT FID SIFT FID SIFT FID SIFT FID SIFT FID SIFT

WNO 62.772 10.186 60.642 10.120 66.276 10.283 70.334 10.152 66.903 10.056 74.816 10.836 62.675 10.836
WNR 55.173 10.159 57.077 10.570 65.121 10.750 51.419 10.330 46.783 10.594 103.225 11.483 53.637 10.151
WDSn 63.477 11.258 74.535 11.579 70.966 11.735 60.901 11.584 68.767 11.719 84.556 11.691 77.133 11.006
WDO-1 54.649 8.244 52.958 8.397 58.393 8.617 53.573 8.158 46.951 8.004 75.065 9.644 54.092 8.253
WDO-2 53.724 8.732 52.938 8.837 57.033 9.017 52.704 8.716 48.441 8.569 74.516 9.840 53.806 8.685
WDSu 64.514 10.622 69.056 11.114 74.615 11.186 72.149 10.732 72.379 11.036 80.119 11.152 65.945 11.011
WDO-3 97.690 10.355 94.172 10.374 97.955 10.464 99.759 10.298 94.482 10.159 98.172 10.732 89.235 10.191
SDS-1 58.931 10.019 59.255 10.213 63.408 10.553 62.814 10.326 61.970 10.281 93.415 11.218 54.354 9.949
SDO 54.435 10.265 52.428 10.212 55.840 10.427 55.539 10.160 52.511 10.148 73.000 10.696 53.578 10.096
SDS-2 85.206 10.993 84.859 11.236 88.249 11.188 80.861 11.063 79.759 11.752 99.548 11.306 79.426 10.471
SDR 73.851 10.811 61.618 10.651 65.668 10.787 68.473 10.463 69.403 10.249 79.138 11.162 65.490 10.360
Mean: 65.857 10.150 65.413 10.300 69.411 10.455 66.230 10.180 64.395 10.233 85.052 10.887 64.488 10.092
Std: 14.262 0.912 13.877 0.958 13.176 0.916 14.533 0.971 15.072 1.144 11.414 0.643 12.504 0.886

Table 2: FID scores and average SIFT descriptor distances. Each column indicates the model
that is used and is subdivided into FID Score (left) and SIFT descriptor distance (right).
Lower is better in both cases. The lowest FID and SIFT values per row are marked in bold.

input. The last aspect involves concatenating the (input + real/fake) pair at the input of the
discriminator instead of forwarding the images through two separate networks, namely D1
and D2. Figure 6 shows some results of the ablation study. Only the results of "no_mask"
are depicted, i.e. if we regress the output directly without an attention mechanism, although
other ablation models were considered as well which are listed in Table 2 along with their
scores. Looking at these results we can conclude the following: The motivation behind the
alignment noise was to allow the generator to output differently aligned images. However,
the testing results show that this is not the case, meaning that the noise was ignored. It may
act as regularization which improves the model’s overall generalization capability, therefore
increasing the score. When disabling the classification loss we only noticed a slight de-
crease in image quality. Unsurprisingly, removing the mask and falling back to the original
SPADE generator architecture drastically decreases the image quality, both quantitatively
and qualitatively. The model’s ability to directly apply details from the input is a substantial
advantage. Lastly, concatenating the images at the beginning of the discriminator substan-
tially decreases the quality, as we had hoped.

6.2 Multi-Domain Image Retrieval

One application that benefits from image domain translation is multi-domain image retrieval.
In a setting where query images are taken under different conditions than the reference im-
ages, retrieval can be facilitated by translating all images into the same domain prior to
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Figure 7: Top-1 retrieval accuracy on the Oxford Robotcar Dataset for three different ref-
erence conditions as a function of the distance threshold d for correct retrieval. The plots
highlight the influence of image domain translation as an initial step for easier cross-domain
image retrieval. We compare our method to GANimation [17] and SPADE [16] by combin-
ing each with three different image retrieval networks from [3] and [23].

retrieval. In Figure 7 we compare the image retrieval accuracy obtained with the help of
our translation to that of GANimation [17] and SPADE [16]. For the retrieval step, we ex-
tract global image features using a VGG-16 [21] network followed by NetVLAD [3] spatial
pooling. This network is initialized with weights trained on the Pittsburg Dataset [24] as de-
scribed by [3] and weights trained on the Oxford RobotCar Dataset [14] as described by [23].
For every query image, we then retrieve its matching reference image via nearest neighbor
search in the feature space. An image is considered correctly retrieved if the true query im-
age coordinates lie within a distance threshold d of the retrieved reference image. As testing
data, we use a region of the Oxford Robotcar Dataset which is geographically disjoint from
the training region of [23]. We report the retrieval results for three different reference con-
ditions: overcast, snow, and sunny. For each reference, the other two conditions are used as
queries. The total number of testing images is 24590. Figure 7 shows, our translation as an
initial step for image retrieval yields consistently better retrieval accuracy.

7 Conclusion
In this paper, we have designed and trained a generative adversarial network based model for
multi-domain image translation, which leverages weakly paired images. Although the prob-
lem of exploiting weakly paired data is new, we demonstrated—by processing a publicly
available benchmark dataset—that the required weakly paired images are easy to obtain. To
evaluate the translation performance under the proposed experimental setup, a new metric
is introduced. Additionally, images translated using the proposed method were used for the
task of image retrieval based localization. Our experimental results demonstrate both quan-
titative and qualitative benefits of using the weakly paired images for translation as well as
the translation followed by retrieval. The proposed model does not require any cyclic archi-
tecture, therefore is superior in terms of the computational efficiency and its simplicity. We
believe that this opens up a new direction for image translation and beyond, where cheaply
acquired weakly paired data can be efficiently utilized to train deep networks.
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[3] Relja Arandjelović, Petr Gronat, Akihiko Torii, Tomas Pajdla, and Josef Sivic. Netvlad:
Cnn architecture for weakly supervised place recognition, 2015.

[4] Qifeng Chen and Vladlen Koltun. Photographic image synthesis with cascaded re-
finement networks. In Proceedings of the IEEE international conference on computer
vision, pages 1511–1520, 2017.

[5] Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, and Jaegul
Choo. Stargan: Unified generative adversarial networks for multi-domain image-to-
image translation. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 8789–8797, 2018.

[6] Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. Stargan v2: Diverse image
synthesis for multiple domains. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2020.

[7] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In
Advances in neural information processing systems, pages 2672–2680, 2014.

[8] Le Hui, Xiang Li, Jiaxin Chen, Hongliang He, and Jian Yang. Unsupervised multi-
domain image translation with domain-specific encoders/decoders. In 2018 24th Inter-
national Conference on Pattern Recognition (ICPR), pages 2044–2049. IEEE, 2018.

[9] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image trans-
lation with conditional adversarial networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 1125–1134, 2017.

[10] Ye Lin, Keren Fu, Shenggui Ling, and Cheng Peng. An efficient multi-domain frame-
work for image-to-image translation. arXiv preprint arXiv:1911.12552, 2019.

[11] Alexander H Liu, Yen-Cheng Liu, Yu-Ying Yeh, and Yu-Chiang Frank Wang. A unified
feature disentangler for multi-domain image translation and manipulation. In Advances
in neural information processing systems, pages 2590–2599, 2018.

[12] Ming-Yu Liu, Thomas Breuel, and Jan Kautz. Unsupervised image-to-image transla-
tion networks. In Advances in neural information processing systems, pages 700–708,
2017.



12 M. ZHANG ET AL.: WEAKLY PAIRED MULTI-DOMAIN IMAGE TRANSLATION

[13] David G. Lowe. Distinctive image features from scale-invariant keypoints. Int. J.
Comput. Vision, 60(2):91–110, November 2004. ISSN 0920-5691. doi: 10.1023/B:
VISI.0000029664.99615.94. URL http://dx.doi.org/10.1023/B:VISI.
0000029664.99615.94.

[14] Will Maddern, Geoff Pascoe, Chris Linegar, and Paul Newman. 1 Year, 1000km: The
Oxford RobotCar Dataset. The International Journal of Robotics Research (IJRR), 36
(1):3–15, 2017. doi: 10.1177/0278364916679498. URL http://dx.doi.org/
10.1177/0278364916679498.

[15] Xudong Mao and Qing Li. Unpaired multi-domain image generation via regularized
conditional gans. arXiv preprint arXiv:1805.02456, 2018.

[16] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. Semantic image syn-
thesis with spatially-adaptive normalization. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 2337–2346, 2019.

[17] Albert Pumarola, Antonio Agudo, Aleix M Martinez, Alberto Sanfeliu, and Francesc
Moreno-Noguer. Ganimation: Anatomically-aware facial animation from a single im-
age. In Proceedings of the European Conference on Computer Vision (ECCV), pages
818–833, 2018.

[18] Andrés Romero, Pablo Arbeláez, Luc Van Gool, and Radu Timofte. Smit: Stochastic
multi-label image-to-image translation, 2018.

[19] Christos Sakaridis, Dengxin Dai, and Luc Van Gool. Guided curriculum model adap-
tation and uncertainty-aware evaluation for semantic nighttime image segmentation. In
Proceedings of the IEEE International Conference on Computer Vision, pages 7374–
7383, 2019.

[20] Yangyun Shen, Runnan Huang, and Wenkai Huang. Gd-stargan: Multi-domain image-
to-image translation in garment design. PloS one, 15(4):e0231719, 2020.

[21] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[22] Hao Tang, Dan Xu, Wei Wang, Yan Yan, and Nicu Sebe. Dual generator generative ad-
versarial networks for multi-domain image-to-image translation. In Asian Conference
on Computer Vision, pages 3–21. Springer, 2018.

[23] Janine Thoma, Danda Pani Paudel, Ajad Chhatkuli, and Luc Van Gool. Geometrically
mappable image features. IEEE Robotics and Automation Letters, 5(2):2062–2069,
2020.

[24] Akihiko Torii, Josef Sivic, Tomas Pajdla, and Masatoshi Okutomi. Visual place recog-
nition with repetitive structures. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 883–890, 2013.

[25] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan
Catanzaro. High-resolution image synthesis and semantic manipulation with condi-
tional gans. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 8798–8807, 2018.

http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1177/0278364916679498
http://dx.doi.org/10.1177/0278364916679498


M. ZHANG ET AL.: WEAKLY PAIRED MULTI-DOMAIN IMAGE TRANSLATION 13

[26] Po-Wei Wu, Yu-Jing Lin, Che-Han Chang, Edward Y Chang, and Shih-Wei Liao. Rel-
gan: Multi-domain image-to-image translation via relative attributes. In Proceedings
of the IEEE International Conference on Computer Vision, pages 5914–5922, 2019.

[27] Zili Yi, Hao Zhang, Ping Tan, and Minglun Gong. Dualgan: Unsupervised dual learn-
ing for image-to-image translation. In Proceedings of the IEEE international confer-
ence on computer vision, pages 2849–2857, 2017.

[28] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The
unreasonable effectiveness of deep features as a perceptual metric. In CVPR, 2018.

[29] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-
image translation using cycle-consistent adversarial networks. In Proceedings of the
IEEE international conference on computer vision, pages 2223–2232, 2017.


