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Figure 1: The proposed method augments a training dataset by generating (repainting) an
arbitrary number of similar instances to the training examples. Shapes are preserved but
texture is diversified. In each case, the top-left corner image is the original example, and the
other three demonstrate repainted versions.

Abstract
Convolutional Neural Networks (CNNs) for visual tasks are believed to learn both

the low-level textures and high-level object attributes, throughout the network depth.
This paper further investigates the ‘texture bias’ in CNNs. To this end, we regenerate
multiple instances of training examples from each original image, through a process we
call ‘repainting’. The repainted examples preserve the shape and structure of the regions
and objects within the scenes, but diversify their texture and color. Our method can
regenerate a same image at different daylight, season, or weather conditions, can have
colorization or de-colorization effects, or even bring back some texture information from
blacked-out areas. The in-place repaint allows us to further use these repainted examples
for improving the generalization of CNNs. Through an extensive set of experiments,
we demonstrate the usefulness of the repainted examples in training, for the tasks of
image classification (ImageNet) and object detection (COCO), over several state-of-the-
art network architectures at different capacities, and across different data availability
regimes. Code is released as supplementary [2].

1 Introduction
Overfitting is a fundamental problem in training deep neural networks (DNNs) [5]. To over-
come the overfitting, there has been a tremendous amount of research which led to many
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successful approaches including: data augmentation, designing efficient architectures, regu-
larization, dropouts [15, 36], early stopping, ensembling, etc. Collectively, these techniques
have resulted in achieving a remarkable performance across many applications. That being
said, the underlying cause of this problem has also been of interest for a long time. In this
paper, we look at this phenomenon through the lens of texture and shape bias [14].

In the case of visual tasks such as object recognition or detection, a common intuition
is that deep models such as DCNNs (Deep Convolutional Neural Networks) learn both low-
level image features such as edges or texture patterns (within the earlier layers) as well as
high-level attributes such as presence and shape of objects (in the deeper layers) [14, 22, 25].
Some works argue (and sometimes provide empirical results) that like in humans, shape
is the single most important factor in CNNs for learning visual tasks [23, 33]. Others ar-
gue otherwise, that texture has a more significant role in CNNs [1, 4, 12, 13]. Authors in
[14] designed a comprehensive study (texture-shape conflict stimuli) to understand this phe-
nomenon. They concluded that CNNs are generally biased towards easier-to-learn texture
features (shortcuts) at the expense of shape attributes (texture bias). [14] further proposed
Shape-ResNet, in which they trained a ResNet model with stylized images and were subse-
quently able to improve the generalization and robustness of the network.

Other than the style transfer method used in [14], there has been a family of style transfer
algorithms employed for different applications [8, 20, 27, 47]. However, these approaches
generally produce artistic effects on images and diverge from natural-looking images. More-
over, the stylized transfer used in [14] is not trained to minimize a down-stream task loss,
but rather is an off-the-shelf one [19].

In this paper, we propose a method to augment the training set, by generating multiple
instances from each training example. To this end, we make use of a generative semantic
synthesis model to generate new instances (in a variational manner), and tie this model to a
down-stream task. In other words, we generate examples that adhere to the objects shapes
of the original image while modifying the texture in a way that helps the down-stream task
(e.g. image classification or object detection). Therefore, our method ‘repaints’ the original
images, by changing their texture/color but preserving the shapes and locations of objects.
In-place repaint makes it suitable for non-classification down-stream tasks such as object
detection. Figure 1 demonstrates example images resulted from our method. We verify our
approach with an extensive set of experiments for the tasks of image classification and object
detection, on several network architectures and dataset sizes.

The main contributions of this paper can be summarized as:

• We propose a method of augmenting training datasets by repainting the examples.
Repainted examples are diverse in texture and color in that they substitute regions,
objects, or backgrounds with randomly drawn new instances learned from the dataset.
Sometimes this results in interesting outcomes such as adding/removing colors, un-
covering new information in blacked-out areas, or shifting day/night time or seasons.

• We utilize the repainted training examples to improve the generalization of CNNs. Due
to the nature of this method, it can be applied to various visual tasks. We demonstrate
results on image classification and object detection as two common use-cases.

• We present a comprehensive set of experiments over several state-of-the-art network
architectures at different capacities, and across different data availability regimes. Re-
sults show a consistent improvement in the generalization of the CNNs.

2 Related works
In this section, we review the related areas to our work, and draw connections between them.
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Image generation: A number of works such as [3] explore directly augmenting the train-
ing data using generative adversarial networks (GANs). These methods train an off-the-shelf
GAN with the available images, and later use it to generate more. In this setting, no strong
supervision between the GAN and the down-stream task is enforced, and these methods are
more useful for situations like medical imaging tasks where data itself is scarce. Other works
including [49] propose class-aware conditioned GANs to balance a dataset for an improved
generalization. Our method conditions the generation to be shape preserving while also
assisting a general-purpose down-stream task.

Semantic image synthesis: These methods generate synthetic images given semantic seg-
mentation masks [30, 31]. The idea is to design a GAN (Generative Adversarial Network
[16]) to generate images that can adhere to semantics. In our method, we make use of the
spatially adaptive normalization [31] in order to preserve the shape structure of objects.

Stylization: It was argued in [14] that ImageNet CNNs are biased towards texture features
since they are easier to learn than shape attributes. This shortcut then resulted in a less
accurate generalization to unseen test data. To address this issue, authors in [14] proposed
Shape-ResNet, in which multiple stylized versions of each training image are generated and
used for training a CNN (e.g. ResNet). The model is then fine-tuned with the original
train set. Since this method is based on style transfer, it preserves the shapes and structures
but applies texture modification according to another image’s style. In a way, it is also
increasing the train set size by augmenting it with the stylized examples. Our findings are
in agreement with the observations of [14] in that reducing the texture bias can improve
the generalization. However, since the stylized examples generated for Shape-ResNet do not
look like typical natural images found in standard datasets such as ImageNet [9] or Microsoft
COCO [26], this can reduce the potential gains (as we see in Section 4). In addition, the
style transfer step is detached from the down-stream task (image classification in case of
[14]), and thus provides no guarantee that the stylized examples can confidently boost the
generalization. Nonetheless, there are a variety of style transfer methods proposed in the
literature [8, 20, 27, 47] which may be used similarly.

Learning to modify input examples: Related to our approach is a line work where the in-
put training images are updated according to some loss term that is related to a down-stream
task [37, 46, 50]. For example, authors in [37] propose to learn to resize input data, in such a
way that can help with down-stream tasks of image classification or quality assessment. Our
method is in some sense similar since we also learn to update the input data, however, it is
different in the sense that we keep the original image size but instead learn to regenerate and
replace (repaint) objects in the image. Therefore, the two methods are orthogonal and can be
combined with each other.

Image augmentation: Image augmentation has a rich literature. Traditionally, global
image-scale operations such as rotate, flip, blur, contrast stretch, etc. were used within aug-
mentation pipelines. Over the past several years, many new augmentation techniques were
proposed. These techniques include MixUp [18], CutOut [10], CutMix [48], AutoAugment
[7], Thumbnail [45], ClassMix [29], etc. Our method is orthogonal to these kinds of image
augmentations and in fact these augmentations can be applied on top of our method. We
provide some results in this regard in Section 4.

3 The proposed repainting method
In this section we first introduce some basic setup, then explain our solution followed by
several remarks and discussions.
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Figure 2: The proposed method employs a VAE-GAN-like architecture [24] that is tied to the
down-stream task. E, G, D, and T denote the encoder, generator, discriminator, and the main
task. S is a module that generates approximate segmentation masks, such as a DeepLab
model [6], or the image-based Felzenszwalb-Huttenlocher (FH) [11] algorithm. There is
no restriction on what the down-stream task can be, except that its input is an image. We
examine image classification and object detection tasks in this paper.

3.1 Some basic setup
Let E, D, G, and T denote the encoder, discriminator, generator, and down-stream task in
our setup, respectively. Also, let S denote a module that generates some form of seman-
tic segmentation mask (details in the next subsection). We incorporate the aforementioned
modules in our design, as shown in Figure 2.

Moreover, we make use of the SPatially Adaptive DEnormalization (SPADE) modules
introduced in [31]. The SPADE module and its corresponding residual block denoted by
SPD-Res enforce the consistency of shapes and structures, and can be formulated as:

fout
i
c = γ

i
c

fin
i
c−µ i

c

σ i
c

+β
i
c, (1)

where fin and fout are the input and output feature maps of shape B×Nc×H×W , B is the
mini-batch size, Nc is the number of channels, H and W denote the height and width of the
activations tensor in (1), µ i

c and σ i
c are mean and standard deviations of input features, i and

c denote the layer and channel indices, and γ and β are learned scale and bias modulation
tensors (with spatial dimensions) that are multiplied and added element-wise to output of a
sync-BN layer to create the output features. It can be observed in (1) that this kind of normal-
ization is in some ways similar to regular batch normalization, but it has spatial dimensions
that are learned, which in turn helps with enforcing shapes and structures.

Figure 3: SPADE and its residual block SPD-Res.

Figure 3 illustrates the inner archi-
tecture of SPADE and its residual block.
Note that γ and β in (1) and Figure 3,
for each layer, are of shape Nc×H×W .
Unlike the standard BatchNorm scale
and bias parameters they depend on the
spatial mask values. In some sense, (1)
is like applying segmentations to the ac-
tivation maps, thereby conditioning the
shapes and structures.
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3.2 Architecture design and loss
Figure 2 shows the flow-diagram of our method. As observed from this figure, there is a simi-
larity (in terms of the overall architecture) to traditional image generation or semantic image
synthesis architectures. The encoder and generator together generate batches of repainted
images. The discriminator is responsible for pushing the generated examples to look ‘real’.
Module S outputs segmentation masks from the input images. Note that the segmentation
masks from this module don’t necessarily have to be very accurate. In our experiments in
Section 4, we provide results based on using masks generated by a DeepLab-v2 [6] model,
as well as masks generated by a completely unsupervised image-based operator of [11], and
show that in both cases we can achieve generalization gains (the visualizations of repainted
images are based on using the DeepLab-v2 masks). Finally, the T module refers to the task
network. For a classification task, it could be any classification CNN e.g. ResNet [17] or
EfficientNet [38] with a softmax layer at the end. Or, for an object detection task, it could
be any detection network such as a YOLO [32] or EfficientDet [39] model. During training,
each image is seen once per epoch, but is repainted slightly differently every time.

The training objective and loss terms follow those of [31] (and thus also pix2pixHD [40]),
however we add a new loss term for training the down-stream task. The overall objective
therefore contains three terms: LGenerator−Encoder to account for the encoder and generator
losses, LDiscriminator to compute the discriminator loss, and finally LTask to denote the task
loss. The LGenerator−Encoder itself accounts for the generator loss (LGenerator), feature match-
ing loss (LFeat. used in [40]), and a KLD loss to account for the variational sampling of the
encoder’s output (LKLD). (2) and (3) summarize the above. We refer the readers to [40] for
further details on the generator and discriminator loss terms.

L= LG +LD +LTask = LGAN +LFeat.+LKLD +LTask. (2)

LGAN(G,D) = E[logD(.)]+E[log(1−D(G(.)))]. (3)

The task loss LTask accounts for task-specific losses. For classification task it will be a
cross-entropy loss, and for object detection it will be a detection loss according to specialized
detection architectures (usually a regression loss to account for bounding boxes, a cross-
entropy loss for objects category assignment, and a confidence score loss).

Training is done iteratively similar to GANs [16], however, we train in iterations for the
terms in (2). To this end, on one iteration the model is run through, real images are run
through D, and then D and T are updated using the discriminator loss and task loss. In the
other iteration the model is run through, and E and G are updated based on the generator
loss and task loss. As a result, the task loss would also be supervising E and G. We observed
in our experiments that the best results were achieved when optimizing two iterations of
discriminator and down-stream task, and one iteration for the generator. More details are
given in Section 4.

3.3 Remarks and discussions
Here we discuss some remarks about our approach.

Consistent shapes, diversified texture: The variational sampling from the encoder’s la-
tent space and the SPADE blocks together result in images generated with a similar structure
and objects shapes to the input, but with a new texture and color style that is randomly
sampled from what the the model has learned from the texture and colors of previous exam-
ples. It is therefore like replacing/repainting each object/region with a new instance learned
from the same distribution. Due to the texture bias phenomenon [14], this can improve the
network’s generalization. Figure 1 and 4 show examples of the generator’s output.
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Figure 4: Repaint examples. The top row shows the original samples, and the bottom row
shows the repainted versions. Notice the texture changes such as: tower lights, boat reflection
and design, beach waves pattern, animal bodies or land coverage, and mountain snow.

Colorization, time shift, uncovering new texture, etc.: We observe an interesting effect
in the repainted images where sometimes they demonstrate effects such as: colorization, de-
colorization, changing the time of the day or seasons, or even bringing back textures which
were blacked out in the original images. Figure 5 demonstrates examples of such effects.

Reuse of bounding boxes: Since the labels for the down-stream tasks (e.g. classes or
bounding boxes) do not change, a repainted image may contain substitute instances of the
same object categories present in the scene. The in-place repaint allows to perform tasks
such as object detection since the locations of ground truth bounding boxes do not change.
Hence, the same set of ground truth labels can be used for the augmented images.

Image generation: The goal of our method is not necessarily to generate visually pleasant
or normal-looking images, but rather is to generate images that are suitable for the down-
stream task. That being said, by including a discriminator loss, and carefully balancing the
iterative training of the generator, discriminator, and task modules, we achieve an acceptable
look on the generated examples.

Architecture: The general architecture and layers of the E, D, and G blocks are inspired
by [31, 40], but customized for our purpose to be attached to down-stream tasks such as
classification or detection. In particular, we have designed these blocks to be somewhat light-
weight, as the main task can have a large burden on the GPU memory during training. For
example, in Section 4 we tested our method with down-stream task of EfficientNet-D3 object
detection that has 25B FLOPs (roughly 64× more operations and 2× more parameters than
EfficientNet-B0 classification model). That being said, the GAN modules can be replaced
with different architectures used in the generative models literature, as long as they enforce
the shape consistency like we do.

Orthogonality with augmentations or regularizations: When training the main task, re-
painting is orthogonal to other kinds of image augmentations, and thus they can be applied at
the same time. In fact, we show in Section 4 that an improved generalization can be achieved
by applying augmentations such as CutMix [48] or regularizations such as DropBlock [15]
together with repainting.

Limitations: An observation we made during our experiments with natural image datasets
such as ImageNet and COCO is that our method is very good at repainting scenes in general,
however, it sometimes has a hard time with finer details such as facial features. Examples
of such failure cases are provided in the supplementary materials [2]. It is also worth noting
that specialized GANs such as the ones used for faces, are trained with face datasets, whereas
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Figure 5: Examples of repainted images where new information is uncovered. a: uncovering
from the dark things such as trees texture, mountain trees, or a building afar. b: colorization.
For each pair, the left-side image is the original, and the right-side one is a repaint.

we used general purpose datasets such as ImageNet or COCO that contain a wide range of
scenes and objects, and may not be very suitable for specialized tasks. That being said,
we expect the image generation to perform well when trained on specialized and controlled
datasets. Moreover, the goal is not to necessarily generate good looking images, but it is to
generate images that help the down-stream task (reflected in the task performance results).
In addition, as mentioned in Section 4.2, after training with repainted images for a while,
at the end we fine-tune with the original dataset. This ensures the task performance will be
protected from infrequent shortfalls of image generation.

4 Experiments
We discuss the experiment results in this section. To this end, we first explain the datasets
and metrics used, followed by the training details and baselines. Then we discuss our results
and ablation studies.

4.1 Datasets and metrics
Our experiments include two down-stream tasks of image classification and object detection.
For classification, we use the ImageNet dataset [9] with 1.28M training and 50K validation
examples. The main metric of performance is top-1 or top-5 classification accuracy (%).

For object detection, we use the Microsoft COCO dataset [26] with 118K training and
5K validation examples. Methods are assessed based on mean Average Precision (mAP)
metric either at a certain IoU (Intersection over Union) threshold such as 0.5, or averaged
over various IoUs e.g. @0.5:0.95.

4.2 Training details
Baselines include training various architecture at different model capacities. For classifi-
cation, we use MobileNet-v2 [35], ResNet50 [17], and the EfficinetNet [38] family of B0,
B1, B2, and B3. For object detection, we include EfficientDet-D0, D1, D2, and D3 [39].
Implementations were in PyTorch v1.6 and included customized code from the following
repositories: timm [43] commit 532e3b4, efficientdet [44] commit 1c9a3d3, and SPADE
[28] commit 1a687ba.
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There are a large number of training experiments done for the two tasks of classification
and detection which increases diversity in the training procedures, but in general we followed
a 200 epoch training strategy. We used the learning rates of 1e−4 and 4e−4 for the generator
and discriminator, respectively, with an Adam optimizer [21] with β1 = 0 and β2 = 0.999.
In addition, for the down-stream task of classification, we used a learning rate of 0.12, with
decays of 90% every 3 epochs, and a rmsprop optimizer [34] with warm-up. Similarly for
the task of object detection, we used a learning rate of 0.06, rmsprop with cosine decay rule,
and warmup. Baseline models were trained for 200 epochs. For our method, we first trained
for 150 epochs, and then performed a 50 epoch fine-tuning of only the task part of the model
with the original dataset. Note that longer training may result in slightly better performance.
In fact, some state-of-the-art (SOTA) ImageNet models are trained for 500 epochs. That
being said, our comparisons are fair and produce accuracies close to those of SOTA models.

Also note that repainting happens on the fly for each training example. In that sense, all
the training images are used in each epoch, and each time a random repaint is applied.

Moreover, each training job was run on a 8-GPU node with V100 GPUs of 32GB mem-
ory, and was repeated 5 times to ensure the consistency of the results.

It is also worth noting that in our experiments we never used any ground truth semantic
segmentation masks. We used approximate masks generated by a DeepLab-v2 model [6],
as well as rough masks generated by the Felzenszwalb-Huttenlocher (FH) [11] method. The
FH algorithm is a classical image-based method and is unsupervised in nature.

4.3 Main results
Table 1 shows the results of image classification experiments. It is observed from Table
1 that, by increasing the diversity of examples during training, repainting consistently im-
proves the classification accuracy across several models with different capacities. In Table 3,
we compare the results of our method with another image-generation based method, Shape-
ResNet [14], as well as several augmentation-based and regularization methods. Note that in
general our method is orthogonal to augmentation-based or regularization-based approaches,
and therefore its performance is expected to improve when combined with such approaches.
This is consistent with our observations in Table 3.

It is also worth noting that applying Repaint without the task-specific loss (separate opti-
mizations, i.e. a trained/frozen generator) can still lead to improvements over the baseline as
it increases data diversity. However, the incorporation of the task loss can further boost the
performance since it also encourages the generation to assist with the down-stream task.

Furthermore, as mentioned in Section 3.3 the proposed method does not rely on a spe-

Architecture # params FLOPs Baseline Repaint w/o task-loss Ours (Repaint)
MobileNetv2 3.4M 0.3B 74.63 74.94 75.15 (+0.52)
ResNet-50 26M 4.1B 77.06 77.64 78.05 (+0.99)
EffNet-B0 5.3M 0.39B 76.66 77 77.24 (+0.58)
EffNet-B1 7.8M 0.70B 78.59 78.92 79.15 (+0.56)
EffNet-B2 9.2M 1.0B 79.24 79.61 79.83 (+0.60)
EffNet-B3 12M 1.8B 80.87 81.2 81.45 (+0.58)

Table 1: Top-1 accuracy for image classification on ImageNet.

Architecture # params FLOPs Baseline Repaint w/o task-loss Ours (Repaint)
EffDet-D0 3.9M 2.5B 33.87 34.36 35.10 (+1.23)
EffDet-D1 6.6M 6B 38.98 39.38 39.97 (+0.99)
EffDet-D2 8.1M 11B 42.25 42.69 43.35 (+1.10)
EffDet-D3 12.0M 25B 45.27 45.98 46.86 (+1.59)

Table 2: mAP performance for object detection on COCO.
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Method Strategy Top-1 (%)
Baseline 77.06
MixUp [18] Augmentation 77.9
CutOut [10] Augmentation 77.1
CutMix [48] Augmentation 78.6
AutoAugment [7] Augmentation 77.6
DropBlock [15] Regularization 78.1
ISDA [41, 42] Latent Augmentation 78.1
Shape-ResNet [14] (rerun) Image Generation 77.42
[31] + task-specific loss Image Generation 78.02
Ours (Repaint) Image Generation 78.05
CutMix+Repaint Combo 79.11
CutMix+DropBlock+Repaint Combo 79.19

Table 3: A comparison of ImageNet top-1 classification accuracy on ResNet-50. Repaint combined
with other augmentations or regularizations can yield a high performance.

cific type of generative network. Different architectures employed in the generative models’
literature can also be used, as long as they enforce the shape consistency. One such example
is [31]. That being said, the original architecture of [31] is relatively large; when attached to
a large task network such as a large detection model, it will consume a large amount of GPU
memory. This enforces a very small batch size which makes the training on large datasets
such as COCO or ImageNet impractical. For the sake of comparisons however, we added re-
sults of [31] plus task-loss on ResNet50 to Table 3. We observe that this benchmark achieves
a comparable top-1 accuracy to Repaint, suggesting that the extra generation capacity did not
necessarily directly translate to a considerably better down-stream top-1.

Table 2 shows the results of object detection experiments. We observe from Table 2 that
object detection training also benefits from repainting by a considerable margin.

In conclusion, the results obtained by our main experiments are inline with the observa-
tions of [14] in that texture bias has an important role in the training of CNN models, and
texture diversification leads to generalization improvements.

4.4 Ablation studies
Next, we perform ablation studies on the proposed method. We first investigate the effect of
segmentation mask quality. To this end, we try DeepLab-v2 and FH masks to consider both
high and low quality masks. Table 4 and Table 5 show the gains over baselines achieved by
our method for classification and detection across many models, over 5 runs. Note that in
Table 4 and 5, the min-max intervals from the 5 runs are computed by measuring the gap
between the best/worst baseline runs and the worst/best repaint runs. We observe from these
tables that improvements are consistent, although slightly lower for the FH masks.

In another ablation study, we investigate the impact of labels availability in lower data
regimes. To this end, we report results when 1% or 10% of training data is used. As observed
in Table 6 and 7, higher gains are achieved when lower portions of data are used. This is
somewhat expected since ImageNet and COCO datasets contain a large number of examples,
and achieving better generalization with 100% of examples is therefore more difficult.

All-in-all, repainting shows a robust and consistent improvement in the generalization
capability of image classification and object detection tasks, and therefore can be considered
as an add-on orthogonal candidate for inclusion in existing training pipelines.
Computational complexity Compared to training only a task network (e.g. a classifica-
tion or detection network), our method requires an additional generative module to repaint
the images. This can be thought of as a learned augmentation, and thus incurs an extra over-
head. Since the GAN part is designed to be relatively light-weight, and the segmentation
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Architecture
Gains with DeepLab-v2
(min,max) over 5 runs

Gains with FH [11]
(min,max) over 5 runs

MobileNetv2 +0.52 (0.38,0.69) +0.44 (0.28,0.60)
ResNet-50 +0.99 (0.71,1.28) +0.79 (0.51,1.03)
EffNet-B0 +0.58 (0.41,0.75) +0.51 (0.34,0.68)
EffNet-B1 +0.56 (0.39,0.72) +0.48 (0.31,0.65)
EffNet-B2 +0.60 (0.42,0.77) +0.50 (0.33,0.67)
EffNet-B3 +0.58 (0.40,0.76) +0.49 (0.29,0.66)
Average +0.77 (0.54,0.99) +0.64 (0.41,0.85)

Table 4: Ablation on magnitude and consistency of performance improvements across weakly-
supervised or unsupervised masks; Results on ImageNet top-1 classification accuracy (%).

Architecture
Gains with DeepLab-v2
(min,max) over 5 runs

Gains with FH [11]
(min,max) over 5 runs

EffDet-D0 +1.23 (1.01,1.46) +1.02 (0.83,1.21)
EffDet-D1 +0.99 (0.84,1.14) +0.78 (0.60,0.96)
EffDet-D2 +1.10 (0.93,1.29) +0.89 (0.71, 1.07)
EffDet-D3 +1.59 (1.31,1.87) +1.17 (0.88,1.46)
Average +1.22 (1.17,1.44) +0.96 (0.75,1.18)

Table 5: Ablation on magnitude and consistency of performance improvements across weakly-
supervised or unsupervised masks; Results on COCO object detection accuracy (mAP %).

Method Top-1 Top-5
1 % 10 % 100 % 1 % 10 % 100 %

Baseline 14.63 57.13 77.06 31.61 79.60 93.57
Ours (Repaint) 18.72 59.55 78.05 35.55 81.13 93.97
Gains +4.09 +2.42 +0.99 +3.94 +1.53 +0.40

Table 6: ResNet-50 classification accuracy vs portion of ImageNet dataset used for training.

Method mAP @0.50:0.95 AP @0.50
1 % 10 % 100 % 1 % 10 % 100 %

Baseline 6.21 22.44 33.87 23.82 39.06 52.36
Ours (Repaint) 10.35 24.73 35.10 27.95 41.58 53.71
Gains +4.14 +2.29 +1.23 +4.13 +2.52 +1.35

Table 7: EfficientDet-D0 object detection accuracy vs portion of COCO dataset used for training.

piece is not being trained, the overall computational complexity is still comfortably man-
ageable. On average, the training time of the image classification and object detection tasks
observed an increase of ≈ 66% and ≈ 53%, respectively. The overhead can be reduced by
further compressing the generative network module, by offline training and freezing it, or by
applying the repainting only on a percentage of the training examples.

5 Conclusion
In this paper, we proposed a method of augmenting a training dataset by variationally re-
painting the training images. The images generated by our method were diverse in texture
and color but all preserved the original shape and structure. We then leveraged the aug-
mented dataset to train models with improved generalization on test data. We demonstrated
the performance of our method on the tasks of image classification (ImageNet) and object
detection (COCO), over several state-of-the-art network architectures at different capacities,
and across different data availability regimes. We hope our work can help facilitate further
research in this direction.
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