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Abstract

Over the last decade, object detection, as a leading application in computer vision,
has been intensively studied, heavily engineered and widely applicable to everyday life.
However, existing object detection algorithms could easily break down under very dim
environments, due to significantly low signal-to-noise ratio (SNR). Prepending a low-
light image enhancement step before detection, as a common practice, increases the
computation cost substantially, yet still does not yield satisfactory results. In this paper,
we systematically investigate object detection in very low light and identify several design
principles that are essential to the low-light detection system. Based upon these criteria,
we design a practical low-light detection system that utilizes a realistic low-light synthetic
pipeline as well as an auxiliary low-light recovery module. The former can transform any
labeled images from existing object detection datasets into their low-light counterparts to
facilitate end-to-end training, while the latter can boost the low-light detection performance
without adding additional computation cost at inference. Furthermore, we capture a
real-world low-light object detection dataset, containing more than two thousand paired
low/normal-light images with instance-level annotations to support this line of work.
Extensive experiments collectively show the promising results of our designed detection
system in very low light, paving the way for real-world object detection in the dark. Our
dataset are publicly available at https://github.com/ying-fu/LODDataset.

1 Introduction
Recent years have witnessed tremendous advancements in generic object detection [4, 39, 48,
50, 54, 62], a representative application in computer vision, which has then led to the boom
of industry-level solutions with applications in a wide range of domains. The object detection
functionality is now widely accessible in daily life, e.g., smartphone cameras, surveillance
systems, and autonomous driving [1, 10, 25, 36, 47, 59].
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(a) (b) (c) (d)
Figure 1: Low-light object detection results using different schemes, including (a) direct detection
on a low-light image; (b) detection on the image enhanced by the state-of-the-art extremely low-light
enhancement algorithm REDI [33]; (c) detection using our proposed system on the amplified noisy
image; and (d) detection on the corresponding long-exposure reference. All the results are given by the
same detection architecture, i.e., CenterNet [63].

Although existing detection systems can produce reliable results in daytime scenarios with
sufficient illuminance, they often fail to accurately detect objects in pretty dim environments,
where detailed contents in captured images are barely discernible. A common practice for
low-light detection is to prepend a low-light enhancement step before detection [12, 40, 60].
In this way, the "buried" scene information is first restored by an enhancement algorithm
and thus is more likely to be recognized by the subsequent detector. However, due to the
scarcity of annotated low-light images, the two modules (i.e., the enhancer and the detector) in
these two-step methods are usually optimized separately with distinct goals. Using enhanced
images as inputs of the detector, as shown in Figure 1, therefore often does not result in
desired object detection performance. Besides, such a cascaded "enhance-then-detect" system
incurs a larger computational burden owing to the additional enhancement step, which hinders
its deployment on resource-constraint devices such as mobile phones.

Since low-light environment is an integral part of our everyday activities, building a robust
low-light object detection system is definitely demanded. Such a system should meet the
following criteria to ensure its practical use: 1) the system should be able to extract hidden
scene information as much as possible, and 2) detect a large number of different objects in the
wild; 3) its computation overhead should be lightweight, for potential real-time applications
on low-budget computing devices.

Crafting a low-light detection system that fulfills these requirements could be quite non-
trivial, owing to the intrinsic difficulties faced under very low-light settings. For example,
due to limited photon count and inescapable noise, the weak signals present in typical 8-bit
quantized JPEG camera outputs, are often severely distorted, and which sometimes even
leads to permanent loss of scene information. Besides, the available low-light images with
bounding-box annotations are rather limited, which substantially restricts the development
of learning-based neural network detectors for low-light object detection. Collecting rich
high-quality labeled training samples that cover a variety of object classes in the dark is
tremendously labor-intensive and expensive.

In this work, we aim to design a practical low-light object detection system in accordance
with the aforementioned requirements. As shown in Figure 2, our crafted system makes full
use of a realistic low-light synthetic pipeline and a “zero-cost” low-light recovery module to
address the data scarcity and the low-light degradation issues respectively. The former consists
of an unprocessing module and a noise injection module, which is capable of converting any
labelled images from off-the-shelf object detection datasets into their low-light counterparts,
thereby significantly alleviating the burden of labor requirements for capturing a massive
amount of real-world training data. The latter could be integrated into a given detector to serve

Citation
Citation
{Lamba and Mitra} 2021

Citation
Citation
{Zhou, Wang, and Kr{ä}henb{ü}hl} 2019

Citation
Citation
{Diamond, Sitzmann, Boyd, Wetzstein, and Heide} 2017

Citation
Citation
{Liu, Wen, Jiao, Liu, Wang, and Huang} 2020

Citation
Citation
{Yang, Yuan, Ren, Liu, Scheirer, Wang, Zhang, Zhong, Xie, Pu, etprotect unhbox voidb@x protect penalty @M  {}al.} 2020



HONG, WEI, CHEN, FU: CRAFTING OBJECT DETECTION IN VERY LOW LIGHT 3

as another output branch for low-light recovery, such that the whole network can be trained
to simultaneously learn about visibility enhancement and object detection. Once trained,
the low-light recovery module is no longer activated at inference, but indeed improves the
detector’s low-light accuracy thanks to the mutual benefits of these two tasks under low light.
To systematically examine the performance of our system under real low-light environments,
we additionally capture and label a low-light object detection (LOD) dataset covering more
than two thousand real low-light scenes. Extensive experiments show the promising results of
our system in very low light, consistently outperforming prior arts in terms of both detection
accuracy and computation cost.

To summarize, our main contributions are as follows:

1. We formulate a realistic low-light synthetic pipeline that can transform annotated images
from existing object detection datasets into their low-light counterparts. It facilitates
end-to-end training meanwhile bypassing the labor-intensive real data collection.

2. We present an auxiliary low-light recovery module to help boost the detector accuracy
under very low illuminance. The proposed module is only activated at the training
phase and therefore does not impose additional computation cost at inference.

3. We collect a real-world low-light object detection dataset, which covers more than
two thousand scenes with precise instance-level annotations, in order to systematically
assess the low-light detection performance of existing schemes.

2 Related Work

Generic object detection. Existing object detectors can be roughly divided into two cate-
gories: two-stage and one-stage. A two-stage detector, e.g., RCNN [17], usually generates
foreground proposals first and then classifies them. In spite of high accuracy, its low in-
ference speed motivates follow-up works, e.g., [16, 22, 50] for acceleration, among which
Faster RCNN [50] has become a solid baseline for successive researches [3, 4, 23, 38, 41].
Differing from two-stage methods, a one-stage detector, e.g., YOLO [49], directly predicts
class probabilities and bounding box offsets from full images with a single feed-forward
CNN, which runs much faster at the cost of localization precision. Many improvements
then have been suggested in the following works by e.g., utilizing multiscale features [42],
addressing sample imbalance problem [39] or exploiting keypoints representation [34, 63], to
further boost the detection accuracy. All these generic object detection methods, however, are
primarily designed for high-visibility inputs. Their performance almost always degenerates
drastically under dark regimes with extremely low visibility.

Low-light image enhancement. Enhancing the visibility of images captured under low light
has attracted many interests in the low-level vision community. Traditional methods rely on
histogram mapping [11, 26, 35] or Retinex-theory-inspired optimization [15, 21] to adjust
illumination adaptively to avoid over- and under-enhancement, but they do not consider the
inherent noise issue raised naturally in low light. Modern learning-based methods employ
convolutional neural networks to learn image brightening and noise suppression jointly from
data [6, 8, 9, 27, 28, 43, 45, 55, 56, 60]. Despite promising results have been obtained by e.g.,
leveraging synthetically darkened data [45], unpaired bright and low-light images [28], short-
and long-exposure image pairs [6] and image-specific curve estimation [20], none of them is
specifically optimized for the downstream object detection in the dark.
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Figure 2: Overview of our designed system. On the basis of a given detector backbone, a low-light
recovery module (LRM) is introduced for visibility enhancement. The whole system is trained with
data generated by a low-light synthetic pipeline, and LRM is only activated during training.

Object detection in the dark. General object detection is a well-developed topic in high-
level vision. However, due to the limited datasets and domain gap between synthetic and real
data, object detection in the dark still faces relatively slow progress. ExDark [44] collects a
low-light image dataset with object-level annotations, but it only contains limited classes and
is too small to train the data-hungry deep learning-based detectors in general. [53] proposes a
method of domain adaptation for merging pretrained models in both low-light enhancement
and detection domains, and reports results of detecting objects from short-exposure low-light
RAW images. Zero-DCE [20] demonstrates its potential benefits to face detection in the dark.
These methods are all two-step and therefore are suboptimal for low-light detection. In this
work, we propose an end-to-end low-light detection system that is optimized directly for the
low-light detection performance, meanwhile circumventing the unwieldy two-step pipeline.

3 Low-light Detection System Design
Figure 2 summarizes our proposed low-light detection system. It augments a common
detection pipeline by a low-light synthetic pipeline and a low-light recovery module to help
address the challenges (i.e., the limited training data and the degraded image feature) of
object detection in very low light. Unlike common detectors that usually execute detection
on 8-bit sRGB–JPEG camera outputs, our system advocates start from RAW, which is an
uncompressed, minimally processed image format representing the response from the camera
sensor directly [31, 46]. Starting from (typically 14-bit) RAW enables the system to extract
signals which are otherwise severely distorted or destroyed at 8-bit quantized sRGB–JPEG
camera outputs due to pretty low SNR 1 [6, 7]. Besides, our system is detector-agnostic,
suggesting that our system design is applicable to various neural network detectors. In the
following, we mainly prototype the proposed system using the CenterNet [63], one of the
most commonly used one-stage detectors with low computation complexity.

3.1 Low-light synthetic pipeline
1We refer interested readers to suppl. material for a more detailed discussion of why we use RAW as input.
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Figure 3: Illustration of our auxiliary low-light recovery module, which is implemented by an
upsampling layer and a low-light enhancement attention submodule.

One of the major bottlenecks of low-light detection is the scarcity of high-quality labeled
training data that are necessary for learning-based neural network detectors. To mitigate this
issue, we formulate a low-light synthetic pipeline to synthesize realistic low-light images
based upon annotated images from existing object detection datasets. As shown in Figure 2,
this pipeline is composed of two operations: an unprocessing operation and a noise injection
operation, which are implemented by the methods in [2] and [58] respectively.

Unprocessing. Given an input sRGB image, the pipeline first "inverts" the on-camera
image signal processing (ISP) to synthesize its RAW format counterpart. This would involve
sequentially canceling the effects of image processing transformations including tone mapping,
gamma correction, color correction, white balance, and demosaicking. Note that the internet
images in the real world are almost processed by intractable unknown ISPs, which renders the
accurate inversion extremely difficult if not impossible. Fortunately, our study suggests that
there is no need to precisely retrieve the original RAW image given the processed sRGB input,
instead, a rough approximation (i.e., the unprocessing operation [2]) could reach sufficiently
good results for training RAW-input detectors.

Noise injection. After the images are unprocessed into RAW, realistic noise is injected
into the "unprocessed" raw images to simulate the noisy images captured under very low
illuminance. In contrast to adopting the widely used Poissonian-Gaussian noise model (a.k.a.
heteroscedastic Gaussian model) [13, 14], we find employing a recently proposed physics-
based noise model [58] could yield more accurate results in simulating the complex real
noise structure in very low light. The noise model in [58] derives from the inherent process
of electronic imaging by considering how photons go through several stages (i.e., electrons,
voltage, and digital number) to accurately characterize the real noise structures. It takes photon
shot noise, read noise, banding pattern noise, and quantization noise into account, which
are modeled by Poisson distribution, long-tailed Tukey-lambda distribution [30], Gaussian
distribution, and uniform distribution respectively.

We should emphasize though we leverage existing tools to build our low-light synthetic
pipeline, the underlying motivation/objectives are entirely different: the methods in [2] and
[58] are originally designed for learned RAW image denoising in low-level vision, in contrast,
we combine and repurpose them for low-light object detection in high-level vision. Our
approach bridges the knowledge from low-level and high-level vision communities, which
sheds light on a new way towards practical object detection in very low light.

3.2 Auxiliary low-light recovery module

Once the data is synthesized from the aforementioned low-light synthetic pipeline, any off-the-
shelf detectors can be employed to detect objects at night via retraining or finetuning on new
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data. Nevertheless, we find the feature extractors (backbone) of such detectors often struggle
to retrieve discriminative features for accurate prediction, since the image content is largely
overwhelmed in the dark, sometimes even human observers cannot recognize anything from
exclusively dark. To restore distinguishable semantic features produced at feature extractor
from low-light images, we propose an auxiliary low-light recovery module (LRM), which
is augmented into the detector backbone as an additional output branch. The system thus
as in Figure 2 has two heads: the original detection head for bounding-box and object class
prediction and the low-light recovery head for visibility enhancement. These two tasks are
then jointly learned through the training phase.

Note that the design motivation of LRM is derived from the spirit of multitask learning
[5, 52], which is a subfield of machine learning in which multiple related tasks are learned
in parallel while using a shared representation for mutual benefits. In our circumstance,
intuitively, the learning of low-light visibility enhancement task would encourage the network
to find a representation robust to the low-light degradation, such that the detection head could
use restored “clean" features for better prediction.

In principle, the LRM can be implemented by any decoder-style network architecture
connected to the detector backbone (i.e., the encoder). Here, we design a simple yet effective
architecture whose key component is a low-light enhancement attention submodule. It
promotes the network to use global information to selectively emphasize informative semantic
responses and suppress less useful ones. Specifically, as shown in Figure 3, the features
from the upsampling layer would be fed into two parallel attention branches, i.e., pixel and
channel attention [24] branches. On the pixel side, we use three cascaded convolutions to
learn pixel-wise attention weights for each pixel of the input feature map. Next, each pixel of
the input feature map is multiplied by the corresponding pixel attention weight to get the final
feature map of the pixel attention branch. On the channel side, the input feature map is first
compressed into a one-dimensional vector by global average pooling, and the channel-wise
attention weights are then generated and multiplied into each input feature channel to obtain
the branch output. The outputs from these two branches are finally aggregated and followed
by a 1×1 convolution to reconstruct high-visibility images.

The LRM is trained by a combination of L1 loss and perceptual loss Lper [29, 57]2, i.e.,

LLRM =
∥∥∥X− X̂

∥∥∥
1
+Lper(X− X̂), (1)

where X denotes clean images, and X̂ indicates recovered images. Together with the classifica-
tion and localization losses attached in the detection head, it provides useful mixed gradients
back-propagated into the backbone, making it a robust representation for low-light prediction.
The overall loss for training our low-light detection system is thus defined by:

Ltotal = λLRMLLRM +λclaLcla +λlocLloc, (2)

where we set λLRM=1 and λcla=λloc=10 to balance loss magnitudes empirically. Once trained,
the LRM is no longer triggered at inference, thus incurring "zero cost" in terms of running
time, but increases the low-light detection accuracy implicitly and appreciably.

2The specifics of the adopted perceptual loss is the same as the one in [57]. Other choices of loss functions for
training LRM are discussed in the suppl. material.
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Figure 4: Example scenes in our LOD dataset. Four image instances (long-exposure normal-light
and short-exposure low-light images in both RAW and sRGB formats) are captured for each scene.

4 Low-light Object Detection (LOD) Dataset
To systematically study the effectiveness of the proposed system, we collect a new Low-light-
Object-Detection (LOD) dataset using a Canon EOS 5D Mark IV camera. LOD is recorded
in both RAW and sRGB-JPEG formats, containing paired short-exposure and corresponding
long-exposure reference images. The camera was mounted on a sturdy tripod and controlled
remotely via a mobile app to avoid vibration. At each data collection point, a long-exposure
reference image at the base ISO was firstly taken, followed by short-exposure images whose
exposure time was deliberately decreased by low-light factors (e.g., ×50) to simulate very
low-light conditions. We choose four ISO levels (800, 1600, 3200, 6400) and six low-light
factors (10, 20, 30, 40, 50, 100) in data capture, resulting in 2230 image pairs in total.

Furthermore, to support low-light object detection applications, we provide precise
instance-level annotations carried out by professional annotators for each collected image,
yielding 9726 labeled instances of 8 common object classes (car, motorbike, bicycle, chair,
diningtable, bottle, tvmonitor, bus) in summary3. Some examples of annotated images in
our dataset are shown in Figure 4. We believe the LOD dataset can not only serve as a
real-world benchmark for method comparisons but also facilitate the research in low-light
object detection domain.

5 Experiments
5.1 Implementation details
For prototyping purposes, our system is instantiated by CenterNet [63] as detector whose
backbone is a modified DLA-34 [61]. The system is trained by synthetic low-light RAW-
RGB4 images generated from COCO [37] dataset using our low-light synthetic pipeline5.
During training, we follow [63] to use a fixed input resolution of 512×512, and use random
flip, random scaling, cropping, and color jittering as data augmentation. We choose Adam [32]
optimizer and train with a batch-size of 32 and learning rate 5e-4 for 40 epochs, with learning
rate dropped by 10× at 10 and 30 epochs, respectively. To make the detector quickly adapt to
low-light settings, we use COCO pretrained model (generic detection model) as initialization.

3The labeling process is conducted on long-exposure reference images, which is then transferred into correspond-
ing aligned short-exposure ones directly.

4We use demosaicked 3-channel RAW-RGB images as inputs instead of the Bayer RAW images to make the
detector compatible to sRGB inputs. In the following, we refer "RAW" and "RAW-RGB" interchangeably.

5We use COCO samples belonging to the same 8 object classes in the LOD dataset.
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Table 1: Quantitative results of different training schemes on our LOD testing set. "UP" and "NI"
indicate unprocessing and noise injection operations in the low-light synthetic pipeline, respectively.

Data Type Training Set Testing Set OPERATION AP AP50 AP75UP NI

REAL LOD RGB-dark LOD RGB-dark - - 37.6 59.0 40.2
LOD RAW-dark LOD RAW-dark - - 44.7 67.9 49.0

SYNTHETIC

LOD RGB-normal LOD RAW-dark

- - 31.7 49.8 33.4√
- 34.5 52.5 36.1

-
√

39.8 62.1 41.8√ √
42.3 66.2 46.0

COCO RGB-normal LOD RAW-dark

- - 23.0 38.5 24.4√
- 25.2 41.1 26.5

-
√

28.8 48.4 31.3√ √
30.7 49.4 34.2

Table 2: Quantitative evaluation of our auxiliary low-light recovery module. The models are trained on
synthetic data from either LOD or COCO using the complete low-light synthetic pipeline.

(a) Evaluation of low-light detection performance.

TRAIN SET METHOD AP AP50 AP75

LOD
Ours w/o LRM 42.3 66.2 46.0

Ours 44.9 71.7 48.2
Ours-cascade 44.4 70.5 46.7

COCO
Ours w/o LRM 30.7 49.4 34.2

Ours 35.6 57.1 42.9
Ours-cascade 34.4 55.3 37.9

(b) Evaluation of computation cost at inference.

METHOD GFLOPs Time(ms)
Ours w/o LRM 26.2 84

Ours 26.2 84
Ours-cascade 53.6 224

The real low-light detection performance is evaluated on the LOD dataset, in which the
total 2230 image pairs are randomly split into a train set of 1830 pairs and a test set of 400
pairs. We note though the LOD is used for training/finetuning in some following experiments,
this mainly serves the purpose of system design validation. To unbiasedly justify the system
performance in real-world low-light environments, we assume the LOD dataset is never seen
by any methods during training, such that the results accurately reflect the practical use in the
real world. As for evaluation metrics, we adopt the average precision over all IOU thresholds
(AP), AP at IOU thresholds 0.5 (AP50) and 0.75 (AP75) as in COCO standard.

5.2 Ablation study
In this section, experiments are conducted to evaluate the RAW-input detection system design,
the low-light synthetic pipeline, as well as the auxiliary low-light recovery module. To this end,
we compare the performance of a given detector (CenterNet) trained with different schemes
utilizing either pure real data or synthetic data. For real data, we use short-exposure low-light
images from our LOD dataset in RAW/sRGB format (denoted by “RAW/RGB-dark"). For
synthetic data, we generate synthetic low-light images from long-exposure normal-light sRGB
(“RGB-normal") images from LOD/COCO dataset. The results of these training schemes are
provided in Table 1.

RAW-RGB v.s. sRGB. Table 1 (row 1 and 2) shows simply using RAW images instead
of sRGB images can significantly improve the detection accuracy (+7.1% AP) in low-light
conditions. It indicates that RAW-input design indeed enables the detector to extract signals
which are otherwise destroyed at the commonly used sRGB inputs due to pretty low SNR.

Low-light synthetic pipeline. Next, we assess the effectiveness of the proposed low-light
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Figure 5: Visual comparison on our LOD dataset. (Please zoom in to see details.)

Figure 6: Visual examples of low-light object detection using our system in the wild (beyond eight
classes in the LOD dataset).

synthetic pipeline. As shown in Table 1 (row 3-6), by invoking unprocessing operation, we
can obtain RAW images from sRGB images for training, this leads to 2.8% AP performance
improvement on LOD RAW-dark testing set. Given noise is a key difference between normal
images and low-light images, we employ noise injection operation to help detectors better deal
with it. This boosts the performance by 8.1% AP. Furthermore, calling these two operations
together can produce realistic low-light RAW images, which increases the detection accuracy
by 10.6% AP. Notice that this result is even comparable to the detector trained with real
low-light data (42.3% v.s. 44.7% in AP). Such trends are consistently observed when adopting
the COCO dataset, which implies the generality of our low-light synthetic pipeline.

Low-light recovery module (LRM). Finally, we test the efficacy of our proposed LRM. As
shown in Table 2, utilizing LRM could introduce up to +3.8% AP gain, which clearly demon-
strates its benefits. We also design a cascade two-step method (Ours-cascade) as a competitive
baseline against our LRM-based approach leveraging low-light domain knowledge. For this
cascade method, a commonly used UNet-style [6, 51] architecture for low-light enhancement
is connected to CenterNet for joint training. The results suggest that the LRM approach
outperforms the cascade approach in terms of both detection accuracy and computation cost,
which further endorses the superiority of our designed system.

5.3 Comparisons against other methods
Here, we compare our approach against existing two-step "enhance-then-detect" methods. We
choose representative traditional (histogram equalization [18]) and learning-based (GLAD-
Net [55], Retinex-Net [56], EnlightenGAN [28], Zero-DCE [20], SID [6], REDI [33]) meth-
ods as enhancers and adopt the same detector (either CenterNet [63] or FCOS [54]) for
fairness. Note some competing methods (except SID [6] and REDI [33]) have no explicit
denoising mechanism, which might not be well-suited for extreme low-light conditions.
For fairer comparisons, we additionally perform low-light denoising by the state-of-the-art
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Table 3: Numerical comparisons on our LOD dataset. The detectors are all trained using COCO
data only in order to assess the low-light detection performance in the uncontrolled real world.

DETECTOR METHOD
AP on different Exposure Ratios

×10 ×20 ×30 ×40 ×50 ×100 Avg

CenterNet [63]

None 23.3 16.7 14.4 14.1 13.4 3.6 14.3
HE [18] + Denoising [19] 32.1 25.7 22.6 20.4 18.2 8.4 21.2

GLADNet [55] + Denoising 28.9 20.7 14.8 12.1 11.9 7.7 16.0
Retinex-Net [56] + Denoising 18.5 12.9 12.7 9.8 7.1 3.6 10.8

EnlightenGAN [28] + Denoising 33.1 26.5 22.7 17.9 16.2 8.1 20.8
Zero-DCE [20] + Denoising 32.5 25.3 23.4 21.5 17.8 8.9 21.6

SID [6] 25.8 20.0 16.4 15.1 13.2 6.7 16.2
REDI [33] 33.6 30.2 26.1 24.6 23.4 14.1 25.4

Ours 38.5 31.7 29.3 27.8 27.1 18.1 28.8

FCOS [54]

None 20.0 15.1 13.2 12.7 12.1 3.8 12.8
HE [18] + Denoising [19] 28.1 21.7 19.8 16.7 16.3 8.8 18.6

GLADNet [55] + Denoising 23.8 17.1 11.8 10.3 9.1 5.1 12.9
Retinex-Net [56] + Denoising 15.8 11.1 10.8 9.5 6.5 3.8 9.6

EnlightenGAN [28] + Denoising 29.4 23.1 21.1 16.5 14.9 7.3 18.7
Zero-DCE [20] + Denoising 28.1 21.2 20.1 18.9 16.1 8.7 18.9

SID [6] 21.8 18.1 15.7 14.3 12.1 6.5 14.8
REDI [33] 30.7 25.4 22.3 19.3 18.1 14.7 21.8

Ours 34.1 29.1 27.5 25.3 24.2 14.8 25.8

self-guided network [19] after the enhancement, before the final detection6. This denoising
module is attributed as a part of the enhancement step in these two-step methods.

Both numerical and visual results are presented in Table 3 and Figure 5 respectively. It
can be seen that our method achieves the best performance under all low-light settings among
all competing methods using either CenterNet or FCOS detector. Obviously, our method
can accurately detect more objects in very low light, e.g., motorbike and bicycle in the third
row of Figure 5, while other competing methods often fail to detect these two object classes.
This not only demonstrates the advantages of our end-to-end system design over two-step
approaches but also supports the versatility of our system for a rich pool of object detectors.

Furthermore, we train our system using the synthetic low-light COCO data covering all
80 object classes and investigate its low-light detection performance in the wild. The visual
results in Figure 6 demonstrate our system can effectively detect varieties of objects in low
light, which is not limited to the eight object classes in our LOD dataset. This stands out as a
major merit that is not available when training on real low-light data from LOD. Thanks to
the low-light synthetic pipeline, our system could easily leverage abundant annotated images
from existing detection datasets for training, thereby supporting the development of a practical
system that is capable of detecting miscellaneous objects in the dark.

6 Conclusion
We have crafted the first end-to-end low-light object detection system that can precisely detect
diverse objects in the dark. We also provide a large-scale real-world low-light object detection
benchmark and demonstrate our system can consistently surpass existing approaches by a
large margin. We hope that our dataset and the experimental findings can stimulate more
works and open new opportunities for future research.

6We find adding such a denoising module generally improves the performance of two-step methods.
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