
RICHTER, SHENK, BYTTNER, WIEDENROTH, HUSS: FEATURE SPACE SATURATION 1

Feature Space Saturation during Training

Mats L. Richter1

matrichter@uni-osnabrueck.de

Justin Shenk2

shenkjustin@gmail.com

Wolf Byttner3

wolf@byttner.org

Anna Wiedenroth1

awiedenroth@uni-osnabrueck.de

Mikael Huss4

mikael.huss@gmail.com

1 Institute of Cognitive Science
University of Osnabrueck
Osnabrueck, Germany

2 VisioLab
Rheinsberger Str. 76/77
Berlin, Germany

3 Rapid Health Ltd
London, UK

4 Peltarion
Holländargatan 17
Stockholm, Sweden

Abstract
We propose layer saturation - a simple, online-computable method for analyzing the

information processing in neural networks. First, we show that a layer’s output can be re-
stricted to an eigenspace of its covariance matrix without performance loss. We propose
a computationally lightweight method that approximates the covariance matrix during
training. From the dimension of its relevant eigenspace we derive layer saturation - the
ratio between the eigenspace dimension and layer width. We show evidence that satu-
ration indicates which layers contribute to network performance. We demonstrate how
to alter layer saturation in a neural network by changing network depth, filter sizes and
input resolution. Finally we show that pathological patterns of saturation are indicative
of parameter inefficiencies caused by a mismatch between input resolution and neural
architecture.

1 Introduction
In recent years various techniques have been proposed for exploring the properties of neural
network layers. Understanding how neural networks process information and how this pro-
cessing may be influenced is vital for designing more efficient and better performing neural
architectures. The works of Zeiler et al. [20], Szegedy et al. [21] and Yosinski et al. [18] are
examples of experimental work that show the boundaries and limits of generalization and
transferability of features. Recent works by Raghu et al. [9] and Alain et al. [1] propose
techniques that allow for a deeper analysis of networks on a layer wise level.

The common problem with these and other techniques for analyzing the properties of
neural networks is their complexity and computational inefficiency, which makes them im-
practical to use in neural architecture development or in more quantitative studies [1, 9, 22].

This work shows, that a simple, on-line computable property like the covariance matrix
of the layer outputs is able to give interesting insights into the dynamics of the inference

c© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Zeiler and Fergus} 2014

Citation
Citation
{Zhang, Bengio, Hardt, Recht, and Vinyals} 2016

Citation
Citation
{Yosinski, Clune, Bengio, and Lipson} 2014

Citation
Citation
{Raghu, Gilmer, Yosinski, and Sohl{-}Dickstein} 2017

Citation
Citation
{Alain and Bengio} 2017

Citation
Citation
{Alain and Bengio} 2017

Citation
Citation
{Raghu, Gilmer, Yosinski, and Sohl{-}Dickstein} 2017

Citation
Citation
{{Zhou}, {Khosla}, {Lapedriza}, {Oliva}, and {Torralba}} 2016

2 RICHTER, SHENK, BYTTNER, WIEDENROTH, HUSS: FEATURE SPACE SATURATION

process. To enable practical application, we provide a technique to efficiently compute the
covariance matrix. We show how to use Principal Component Analysis (PCA) to project
the output of all layers into low-dimensional spaces while not negatively affecting predictive
performance. We refer to these subspaces as relevant eigenspaces.

Based on these findings, we derive saturation as a metric for analyzing the dynamics of
the inference process. Similar to the work of Alain et al. [1], saturation can be thought of as
a level indicator or thermometer, showing the complexity of the processing in the respective
layers. By analyzing the distribution of saturation values within the network, we identify
the “tail pattern” as a pathological symptom of a parameter-inefficient inference process.
Finally, we propose simple, saturation-based strategies for altering the neural architecture to
resolve such parameter inefficiencies.

2 Related work

In this work, we are interested in analyzing convolutional neural network models layer by
layer. The most notable inspiration for this work is SVCCA by Raghu et al. [9] as well as
the follow-up work by Morcos et al. [7], who use singular value decomposition for compar-
ing the learned features of different models and layers. Another inspiration for this paper
is Montavon et al. [6], in which kernel PCA with radial basis functions alongside linear
classifiers are used to perform their analysis. Functionally similar to saturation are logistic
regression probes proposed by Alain et al. [1], which will be utilized in this work as well in
order to relate saturation patterns to parameter-inefficiencies caused by unproductive layers.
Saturation was initially proposed by Shenk [13] and applied to model parameterization by
Shenk et al. [14]. The saturation metric is used by our follow-up work to study the role of the
input resolution in neural network training [10]. Further follow-up publications are basing
proposed design guidelines for neural architectures on insights gained by a saturation-based
analysis [11, 12].

3 Layer eigenspaces

In this section, we will explore the properties of the variance eigenspaces of each layer’s
feature space in order to motivate the derivation of the metric saturation. First, the method-
ology of computing the layer wise variance eigenspaces during training is described. This is
followed by an experimental part, where we demonstrate that the eigendirections of the high-
est variance contain most of the information required to solve the trained classification task.
We will further show that relevant eigenspaces exist and that they contain fewer dimensions
than the original feature spaces of the network. Based on these findings, we will introduce
saturation as a metric for studying the inference dynamics of neural network models.

3.1 Computing variance eigenspaces and relevant eigenspaces

Below is a brief discussion of the method we use to compute variance eigenspaces and rel-
evant eigenspaces in our experiments. We apply PCA on the layer output to determine the
eigenspace of the layer’s features. Then we sum the largest eigenvalues that explain a per-
centage δ of the layer output variance. The space spanned by these eigenvectors is the

Citation
Citation
{Alain and Bengio} 2017

Citation
Citation
{Raghu, Gilmer, Yosinski, and Sohl{-}Dickstein} 2017

Citation
Citation
{Morcos, Raghu, and Bengio} 2018

Citation
Citation
{Montavon, Müller, and Braun} 2010

Citation
Citation
{Alain and Bengio} 2017

Citation
Citation
{Shenk} 2018

Citation
Citation
{Shenk, Richter, Arpteg, and Huss} 2019

Citation
Citation
{Richter, Byttner, Krumnack, Wiedenroth, Schallner, and Shenk} 2021{}

Citation
Citation
{Richter, Malihi, Windler, and Krumnack} 2021{}

Citation
Citation
{

RICHTER, SHENK, BYTTNER, WIEDENROTH, HUSS: FEATURE SPACE SATURATION 3

variance eigenspace. In this way, we find candidate eigenspaces for the layer. This process
is described in section 3.2.

We establish that the layer’s output is contained in the eigenspace as follows. We project
all validation set output vectors into the space and determine whether the network’s valida-
tion performance changes. To do so, we add special projection layers that only change the
output at validation time. This we call a projected network. We then apply Student’s paired t-
test to determine if the network validation performance difference between the projected and
the normal network is statistically significant. We pick the smallest δ such that there is not
a statistically significant difference (p<.01). The details are in section 3.3. We consider the
eigenspaces of projected networks with no statistically significant changes in performance
as an approximation of the relevant eigenspaces.

3.2 Finding layer eigenspaces
A common problem of many analysis tools for neural networks is, that they are resource
intensive to compute. For example, logistic regression probes by Alain and Bengio [1] and
SVCCA by Raghu et al. [9] can require significantly more computation time and RAM than
the training of the model, especially for large datasets and models. For practical application,
this is a significant drawback. Ideally, the analysis can be conducted during training with
little computational overhead to minimize the cycle time of experiments. For this reason,
we propose an on-line algorithm for computing the covariance matrix during the regular for-
ward pass. In this section, we are interested in finding a subspace of the layer output space
to which we can restrict layer output vectors zl,i without changing the network’s validation
performance. We use PCA on the layer output matrix Al := (zl,1, ...,zl,n) of n samples at
training time, thus Al ∈ Rn×w where w is the layer width. To do this efficiently, we compute
the covariance matrix Q(Zl ,Zl), where Zl := ∑

n
i=1(zl,i)/n, using the covariance approxima-

tion algorithm between two random variables X and Y with n samples:

Q(X ,Y) =
∑

n
i=1 xiyi

n
− (∑n

i=1 xi)(∑
n
i=1 yi)

n2 (1)

We make this computation more efficient by exploiting the shape of the layer output matrix
Al : We compute ∑

n
i=1 xiyi for all feature combinations in layer l by calculating the running

squares ∑
B
b=0 AT

l,bAl,b of the batch output matrices Al,b where b∈ {0, ...,B−1} for B batches.

We replace (∑n
i=1 xi)(∑

n
i=1 yi)

n2 by the outer product Āl
⊗

Āl of the sample mean Āl . This is the
running sum of all outputs zl,k, where k ∈ {0, ...,n} at training time, divided by the total
number of training samples n. The final formula for covariance approximation is then:

Q(Zl ,Zl) =
∑

B
b=0 AT

l,bAl,b

n
− (Āl

⊗
Āl) (2)

Since we only store the sum of squares, the running mean and the number of observed
samples, we require constant memory and computation is done batch-wise. The algorithm
requires roughly the same number of computations as the processing of a forward pass of
the respective layer does; thus we compute saturation after every epoch. The variables are
reset at the beginning of each epoch to minimize the bias induced by weight updates during
training. Our algorithm uses a thread-save common value store on a single compute device
or node, which furthermore allows to update the covariance matrix asynchronous when the
network is trained in a distributed manner.

Citation
Citation
{Alain and Bengio} 2017

Citation
Citation
{Raghu, Gilmer, Yosinski, and Sohl{-}Dickstein} 2017

4 RICHTER, SHENK, BYTTNER, WIEDENROTH, HUSS: FEATURE SPACE SATURATION

In convolutional layers, we treat every kernel position as an individual observation.1 The
advantage of this strategy is that no information is lost, while keeping Q at a manageable
size. This strategy was proposed by Raghu et al. [9] after their initial publication and Garg
et al. [3], who use it in their PCA-based pruning strategy for CNNs.

To determine the eigenspace Ek
l such that the projection of output vectors zl,i to Ek

l is as
lossless as possible, we find k := argmax(∑λk

N) ≤ δ where ∑λk is the sum of the largest k
eigenvalues.2 This technique is similar to how Raghu et al. [9] apply singular value decom-
position in SVCCA - that study fixes δ to 99% of the variance. Pruning strategies by Garg
et al. [3] and Chakraborty et al. [2] settle on δ of 99.9% and 99% respectively.

3.3 Exploring the properties of projected networks
Our approximation of the relevant eigenspace is by the nature of PCA a linear approximation.
Since neural networks are non-linear models, it is not guaranteed that a linear subspace
can capture the information relevant for the inference process accurately. Therefore, we
demonstrate experimentally in this section the usefulness of PCA for this application. First,
we study the effects of different values for δ and show that variance eigenspaces contain
more information necessary for the inference process than randomly chosen orthonormal
subspaces of equal dimensionality. We will then demonstrate, on VGG13 and VGG19, that
δ can be chosen such that the variance eigenspaces in all layers of the network are relevant
eigenspaces. To study the effect of different values for δ we introduce PCA-Layers, inserted
after any non-output (fully connected and convolutional) layer l. At training time PCA-
Layers are pass-through layers. At testing time they project the output of the preceding
layer Al into the variance eigenspace Ek

l . This is done by multiplying Al with the projection
matrix, PEk

l
= Ek

l (E
k
l)

T . For convolutional layers, we compute the (1× 1) convolution Al ∗
vec(PEk

l
). The net effect is to turn a dataset problem into a network parameter one; we study

the properties of samples by changing the projection parameters.
First, we study how well the eigenspaces are able to maintain the predictive performance

of the model compared to random orthonormal subspaces of equal dimensionality. We train
20 different variations of VGG-style networks on CIFAR10 [5].3 The relative performance
of a network for a value of δ is the ratio between the test accuracy with enabled and disabled
PCA-Layers. We indirectly control the dimensionality of Ek

l with δ , which is set globally
for the entire network.

The results in Fig. 1 show that the eigenspaces of the layer outputs are able to maintain the
information better than equally sized random orthonormal projections. Relative performance
given lower values of δ also degrades slower than random projections.

Next, we explore the upper bounds of this projection by finding a δ < 1 for a trained
model such that the difference in predictive performance to the model with disabled PCA-
Layers is insignificant. For each network we compare a network’s projected and unprojected
CIFAR10 validation set performance. We use the eigenspace Ek

l computed during training.

1This turns an output-tensor of shape (samples × height × width × filters) into a data matrix of shape (samples
· height · width × filters).

2In order to achieve more accurate results on small networks, we treat the threshold as soft. If max(∑λk) >
δ ≤ max(∑λk)+ 0.02 an additional dimension is added. If dimEk

l = 0, because a single dimension exceeds the
δ -threshold, we set E := {v1}.

3In order to include networks of different width (filter sizes) and depth (number of layer) we trained
VGG[11,13,16,19] as well as variations of all those architectures with filter sizes reduced by a factor of [2,4,8,16].
All models were trained on a batch size of 128 using the Adam optimizer and a learning rate of 0.001 for 30 epochs.

Citation
Citation
{Raghu, Gilmer, Yosinski, and Sohl{-}Dickstein} 2017

Citation
Citation
{Garg, Panda, and Roy} 2018

Citation
Citation
{Raghu, Gilmer, Yosinski, and Sohl{-}Dickstein} 2017

Citation
Citation
{Garg, Panda, and Roy} 2018

Citation
Citation
{Chakraborty, Roy, Garg, Ankit, and Roy} 2019

Citation
Citation
{Krizhevsky, Nair, and Hinton} 2010

RICHTER, SHENK, BYTTNER, WIEDENROTH, HUSS: FEATURE SPACE SATURATION 5

90
.0
%

91
.0
%

92
.0
%

93
.0
%

94
.0
%

95
.0
%

96
.0
%

97
.0
%

98
.0
%

99
.0
%

99
.2
%

99
.4
%

99
.6
%

99
.8
%

99
.9
%

10
0.
0%

δ

0.2

0.4

0.6

0.8

1.0

R
el
at
iv
e
Pe

rf
or
m
an

ce
 (A

cc
ur
ac

y)

mean

90
.0
%

91
.0
%

92
.0
%

93
.0
%

94
.0
%

95
.0
%

96
.0
%

97
.0
%

98
.0
%

99
.0
%

99
.2
%

99
.4
%

99
.6
%

99
.8
%

99
.9
%

10
0.
0%

δ

0.2

0.4

0.6

0.8

1.0

R
el
at
iv
e
Pe

rf
or
m
an

ce
 (A

cc
ur
ac

y)

mean

Figure 1: Projecting the output of all hidden layers into an eigenspace Ek
l that explains δ %

of the variance (left) maintains predictive performance better than projecting the layers into
a random orthonormal subspace of the same size (right).

We test whether a network’s performance changes relative to the unprojected performance.
Applying Student’s two-tailed t-test to VGG13 (Table 1) shows that at δ = 0.996 we cannot

δ µp−p̄ σ t p

0.9999 -0.0004 0.0008 -2.42 0.023
0.9998 -0.0005 0.0009 -2.81 0.010
0.999 -0.0017 0.0016 -5.50 0.000
0.998 -0.0017 0.0022 -3.92 0.001
0.996 -0.0005 0.0030 -0.91 0.371
0.994 0.0037 0.0043 4.45 0.000
0.99 0.0178 0.0136 6.68 0.000

Table 1: Based on n = 26 trained VGG13 models, we find that δ = 0.996 allows us to ap-
proximate the relevant eigenspace in all layers, such that the performance p becomes indis-
tinguishable from the unprojected model. This is based on a t-statistic (student’s two-tailed
t-test), µ 6= 0 (p<.01), selected δ at α = 0.1. µ 6= 0 in italics. µp−p̄ is the average pairwise
distance between the test accuracies of unprojected and projected networks.

distinguish the projected network from the base network at significance p< .1. However, at
δ = 0.999, the projected network outperforms the base network by 0.17% at significance
p< .01. This means we can increase validation performance by restricting layer output to
a subspace known at training time.

VGG13’s validation performance improves in the range δ ∈ [0.998,0.9998], with a max-
imum improvement 0.17%.4 This shows that there are noisy or not generalizing feature
dimensions in the layer output; we use this to develop the concept of layer saturation and
improve network performance further.

We also study saturation behavior in VGG19 (Table 2). At δ = 0.9995, the t-value is
insignificant. We need 1841± 86 of 5860 dimensions to describe the data. Thus, we can
remove two out of three dimensions without changing network performance.

4The full results are available in the supplementary material.

6 RICHTER, SHENK, BYTTNER, WIEDENROTH, HUSS: FEATURE SPACE SATURATION

δ t p µSat σSat ∑l dimEk
l

0.9997 -2.82 0.008 51.2 0.7 2071±93
0.9996 -1.28 0.208 48.8 0.6 1938±88
0.9995 -0.352 0.727 47.1 0.7 1841±86
0.9994 2.18 0.035 45.6 0.7 1766±84
0.9993 2.62 0.012 44.5 0.7 1705±83

Table 2: The table depicts VGG19 t-statistic, as well as the mean and standard deviation
of saturation and the sum of intrinsic dimensions (∑l dimEk

l). It is also possible to find a
relevant eigenspace for VGG19. Based on n = 40 trained models, the relevant eigenspace
of the projected network can be computed by using the depicted values of δ using the same
al pha as in Table 1. Interestingly, from the 5860 dimension in all feature spaces combined,
only up to 2071±93 are used to construct all relevant eigenspaces in the network.

3.4 Saturation
Based on previous results, we are interested in analyzing the sequence of eigenspaces that
the data traverses during the forward pass. For this purpose, we propose layer saturation:

sl =
dimEk

l
dimZl

(3)

Intuitively this layer saturation ratio represents the proportion of spatial dimensions occu-
pied by the information in a layer l. Therefore we can think of saturation as a level indicator
which shows the fraction of useful dimensions in the output space. We can analyze and
compare the inference dynamics of multiple networks by plotting the saturation level of
each network layer.

4 Exploring the Properties of Saturation

4.1 Saturation patterns are stable over different model runs
The first question we want to answer is whether sl is stable enough to observe meaningful
patterns. To investigate, we train VGG16 and ResNet18 100 times using the same setup as
in section 3.3.

Layers0.00

0.25

0.50

0.75

1.00

Sa
tu

ra
tio

n

mean sl min/max sl

Layers0.00

0.25

0.50

0.75

1.00

Sa
tu

ra
tio

n

mean sl min/max sl

Figure 2: Saturation only deviates slightly for VGG16 (left) and ResNet18 (right) between
training using the same setup for 100 training, which allows us to analyze

saturation-patterns with little bias caused by random fluctuations.

From the result in Fig. 2 we observe that for ResNet18 as well as VGG16 the emerging
saturation patterns are stable. In fact, the standard deviation σs of VGG16‘s saturation is
0.281 while the standard deviation of the accuracy-performance σacc from the same model

RICHTER, SHENK, BYTTNER, WIEDENROTH, HUSS: FEATURE SPACE SATURATION 7

is significantly higher at 0.511, while both values are bound in [0, 1]. The same can be
said for ResNet18, where σs = 0.353 and σacc = 0.523. Based on these observations, we
can conclude that saturation is sufficiently stable to allow for the analysis of convolutional
neural networks.

4.2 Saturation and Network Width
We find [11] that models with lower average saturation sµ tend to perform better than archi-
tecturally similar models with higher sµ (see later in Fig. 7). There are two main factors
influencing sµ [11]: Problem difficulty, increasing sµ , and the width of the network, decreas-
ing sµ . The width of a network is the number of filters or units in each layer. Effectively,
more difficult problems require more capacity in each layer and thus more computational
resources to be processed effectively. Therefore, finding a sweet spot for sµ for a given ar-
chitecture and dataset by scaling its width optimizes the efficiency of the model for the given
setup.

Layers
0.0

0.2

0.4

0.6

Sa
tu

ra
tio

n

full width, s =0.121, acc=79.8% 1
2 width, s =0.207, acc=81.5% 1

8 width, s =0.473, acc=77.2%

Figure 3: ResNet18 can be considered overparameterized for the ImageNette-dataset, which
is apparent from the low saturation level (blue line). Halving the number of filters also halves
the computational and memory footprint while slightly improving performance (green line).
Reducing the width of the network too much results in a poor performing, underparame-
terized model (red line). The saturation of all layers (dots) are depicted in the order of the
forward pass from input to output.

To demonstrate this, we train ResNet18 on ImageNette, a 10-class subset of ImageNet,
using an 224× 224 input resolution. To demonstrate over-, under- and well- parameterized
variants of the model, we scale its width by a factor of 1, 1

8 and 1
2 respectively. From the

results in Fig. 3, we can see that ResNet18 with 1
2 width provides the best performance while

requiring half the memory and FLOPS compared to ResNet18 with full width. We attribute
the slightly poorer predictive performance of the full-width-model to overfitting.

From additional experiments on VGG and ResNet-style models, we find that an average
saturation sµ of roughly 20% to 30% delivers the best performance in the tested scenarios,
assuming all networks have roughly the same relative distribution in saturation across layers
and follow the conventional pyramidal structure of modern classifiers [4, 15, 17]. Models
with sµ below this interval provide approximately similar performance at reduced efficiency,
while models with higher sµ will degrade in predictive performance, as figure 3 and the
results of our follow-up work [11] demonstrate.

By adjusting the scaling of the network’s width based on the current sµ , the network can
be optimized in an informed manner. While it is possible to manipulate individual layers
similarly, we advise against it for multiple reason. First, the saturation of individual layers is
also subject to noise induced by some components like (1×1) convolutions, downsampling
and skip connections, which makes clear rules of action hard to quantify. Second, this prac-
tice can theoretically mask true inefficiencies like tail-patterns (see sections 4.3 and 5). For
example, strongly overparameterizing the productive part of the model brings the saturation

Citation
Citation
{Richter, Malihi, Windler, and Krumnack} 2021{}

Citation
Citation
{Richter, Malihi, Windler, and Krumnack} 2021{}

Citation
Citation
{He, Zhang, Ren, and Sun} 2015

Citation
Citation
{Simonyan and Zisserman} 2014

Citation
Citation
{Tan and Le} 2019

Citation
Citation
{Richter, Malihi, Windler, and Krumnack} 2021{}

8 RICHTER, SHENK, BYTTNER, WIEDENROTH, HUSS: FEATURE SPACE SATURATION

of these layers down until tail-patterns in the (less overparameterized) unproductive layers
become hard to locate.

4.3 Saturation patterns provide insight into the distribution of the
inference process across the network

We move on to investigate the emerging saturation patterns when viewing the saturation
levels of the individual layers in order of the forward pass. To accomplish this, we use logistic
regression probes by Alain et al. [1]. Logistic regression probes measure the intermediate
quality of the solution in a layer by training a logistic regression classifier on its output
solving the same task as the model, allowing us to measure solution progress. The size and
complexity of extracted features increases with every consecutive convolutional layer due to
the expansion of the receptive field. We investigate whether this influences saturation and
whether this can be connected to some patterns observed in logistic regression probes.

We train ResNet18 on Cifar10 (deliberately choosing a low-resolution dataset to avoid
side effects caused by the addition of information by increasing the resolution) using three
distinct input resolutions: 32× 32 (Cifar10 native), 224× 224 (ResNet18‘s design resolu-
tion) and 1024× 1024 (intentionally over-sized). We compute the test accuracy of logistic
regression probes and saturation on every convolutional layer.

Layers
0.00

0.25

0.50

0.75

1.00

Sa
tu

ra
tio

n

0.00

0.25

0.50

0.75

1.00

Te
st

 A
cc

ur
ac

y

probe accuracy
saturation
model test acc.: 84.61%

(a) 32×32 (Cifar10 native)

Layers
0.00

0.25

0.50

0.75

1.00

Sa
tu

ra
tio

n

0.00

0.25

0.50

0.75

1.00

Te
st

 A
cc

ur
ac

y

probe accuracy
saturation
model test acc.: 92.55%

(b) 224×224 (model standard)

Layers
0.00

0.25

0.50

0.75

1.00

Sa
tu

ra
tio

n

0.00

0.25

0.50

0.75

1.00

Te
st

 A
cc

ur
ac

y

probe accuracy
saturation
model test acc.: 86.77%

(c) 1024×1024
Figure 4: The input resolution changes how the inference is distributed in the model,
observable from probe accuracy and saturation patterns. Even distribution and best

accuracy is achieved at the design resolution of the model (224×224 pixels).

In Fig. 4 we observe three distinct patterns in saturation and probe performances. At
Cifar10’s native resolution of 32× 32 pixels, we observe a high saturated sequence of lay-
ers followed by a low saturated sequence. Only the high saturated sequence is contributing
qualitatively to the inference process according to the logistic regression probes. This pat-
tern is inverted, when drastically over-sizing the resolution to 1024×1024 pixels. The best
predictive performance and most even distribution of the inference process is achieved when
training ResNet18 on its original design resolution of 224× 224 pixels. According to the
logistic regression probes, we can see that low saturated subsequences of layers are indica-
tive of unproductive layers in the network. We refer to this pattern indicating a parameter
inefficiency as tail pattern. From additional experiments on a variety of models and datasets
(see supplementary material for detailed results) we deduct a definition of a tail pattern:

A tail is a subsequence of at least 3 consecutive layers in a feed-forward neural architec-
ture with an average saturation at least 50% lower relative to the average saturation of the
rest of the network.

This definition is imperfect and does not fit all patterns that we would visually classify

Citation
Citation
{Alain and Bengio} 2017

RICHTER, SHENK, BYTTNER, WIEDENROTH, HUSS: FEATURE SPACE SATURATION 9

as similar to a tail pattern. However, to test the implications of the presence of such patterns,
it is necessary to have a more rigorous definition than purely visual observation.

The experiment of this section demonstrates that we can use the saturation values of
the individual layers to gain insights on how the inference process is distributed among the
networks layers. The insights shown in this work are expanded on upon in our follow-up
works [10, 12], where we explain these inefficiencies experimentally with the expansion of
the receptive field.

5 Optimizing Convolutional Neural Networks with
Saturation

In this section, we focus on the practical application of saturation for optimizing neural
architectures. While, as previously demonstrated, it is possible to remove a tail pattern and
therefore parameter inefficiency by altering the input resolution of the model (see Fig. 4), an
increase in resolution scales quadratic with the memory footprint and the FLOPs required per
forward pass, making it an expensive solution. We therefore present two simple strategies for
altering the neural architecture on a few selected examples as an alternative way of removing
this inefficiency. The first strategy is to bring the receptive field of the feature extractor closer
to the input resolution. To optimize ResNet18 for a 32×32 pixel resolution, we replace the
first two layers, which are sometimes referred to as “stem” by a 3×3 convolution, with stride
size 1. By removing the initial downsampling layers, we reduce the receptive field size of
ResNet18 from 435×435 to 109×109 pixels.

Layers
0.0

0.2

0.4

0.6

0.8

1.0

Sa
tu

ra
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

probe accuracy
saturation
model test acc.: 83.46%

(a) ResNet18

Layers
0.0

0.2

0.4

0.6

0.8

1.0

Sa
tu

ra
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y
probe accuracy
saturation
model test acc.: 94.51%

(b) ResNet18 (no Stem)
Figure 5: Reducing the size of the receptive field (here by removing the two initial

downsampling layers) removes the tail pattern and improves the test accuracy on Cifar10 at
native resolution.

In Fig. 5 we can see an improved version of ResNet18 that was trained on Cifar10 at
32× 32 pixel resolution. The performance of the model drastically increases to over 94%
accuracy and the tail pattern is removed. The computations required for a forward pass of a
single image increase from 0.04 GFLOPS to 0.56 GFLOPS. For comparison, increasing the
input resolution to the original resolution of ResNet18, which is 224×224 pixels, yields the
same result but requires 1.83 GFLOPs per forward pass per image.

Another, more simple possibility to remove the tail pattern is to remove the layers of
the tail-pattern and retrain the model. A quick test on VGG19 (see Fig. 6) demonstrates
that retraining the truncated model reduced the number of parameters from 20,170,826 to
2,363,338, the FLOPS needed per forward pass from 399 MFLOPS to 229 MFLOPS. The
accuracy meanwhile improved from 86.63% to 89.35%.

Citation
Citation
{Richter, Byttner, Krumnack, Wiedenroth, Schallner, and Shenk} 2021{}

Citation
Citation
{

10 RICHTER, SHENK, BYTTNER, WIEDENROTH, HUSS: FEATURE SPACE SATURATION

Layers
0.0

0.2

0.4

0.6

0.8

1.0

Sa
tu

ra
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

probe accuracy
saturation
model test acc.: 86.63%

(a) VGG19

Layers
0.0

0.2

0.4

0.6

0.8

1.0

Sa
tu

ra
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

probe accuracy
saturation
model test acc.: 89.35%

(b) VGG19 (truncated)

Figure 6: Removing the tail layers of VGG19 and retraining the truncated model reduced
the computational and memory footprint, meanwhile improving the performance slightly.

Both models are trained on Cifar10 at native resolution.

Conv1
Conv2

Conv3
Conv4

Conv5
Conv6

Conv7
Conv8

Conv9
Conv10

Conv11
Conv12

Conv13
Lin0

Layers

0.00

0.25

0.50

0.75

1.00

Sa
tu

ra
tio

n

0

1

Te
st

 A
cc

ur
ac

y

tail start

probe accuracy
saturation
model test acc.: 62.74%

(a) VGG16 full width

Conv1
Conv2

Conv3
Conv4

Conv5
Conv6

Conv7
Conv8

Conv9
Conv10

Conv11
Conv12

Conv13
Lin0

Layers

0.00

0.25

0.50

0.75

1.00

Sa
tu

ra
tio

n
0

1

Te
st

 A
cc

ur
ac

y

tail start

probe accuracy
saturation
model test acc.: 42.32%

(b) VGG16 1
8 width

Figure 7: The width of the VGG16 trained on the ImageWoof dataset at 32×32 pixel input
resolution does not change the size of the tail, meaning that inefficiencies caused by

low-saturated tails and under-parameterized layers are independent.

Generally, the inefficiencies of width (too high / low sµ) and depth (tail pattern) can be
considered independent, see Fig. 7. Both models are trained on the ImageWoof-dataset,
another 10-class subset of ImageNet, and the images were downsampled to 32× 32 pixels.
The resulting difference in saturation and predictive performance does not affect the number
of inactive layers caused by the tail pattern. Based on these observations, we conclude that
width and depth can be treated as mostly independent factors when optimizing an architec-
ture for a fixed input resolution, as long as the saturation is distributed similarly. For this
reason, optimizing the depth should be done first to guarantee an even distribution of satu-
ration. Then the width can be scaled to put sµ into the sweet-spot of sµ ∈ (20%,30%) (see
Section 4.2).

6 Conclusion

In this work, we propose a novel, on-line computable metric “saturation” for analyzing neural
networks layer by layer. We base the development of saturation on the results of experiments
that demonstrate the relevance of low-dimensional eigenspaces of the hidden layer output for
the quality of the inference process. We show that saturation yields reliable and reproducible
results. Over a series of experiments, we show that saturation can be used to detect two
independent kinds of parameter-inefficiency in neural network architectures: Tail-patterns
indicating unproductive layers, and over- or underparamterization that can be detected by
the average saturation of the network. Based on these findings, we propose simple strategies
and guidelines to remove those inefficiencies from the neural architecture, gaining predictive
performance and efficiency.

RICHTER, SHENK, BYTTNER, WIEDENROTH, HUSS: FEATURE SPACE SATURATION 11

References
[1] Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using lin-

ear classifier probes. In 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Workshop Track Proceedings. Open-
Review.net, 2017. URL https://openreview.net/forum?id=HJ4-rAVtl.

[2] Indranil Chakraborty, Deboleena Roy, Isha Garg, Aayush Ankit, and Kaushik Roy.
PCA-driven hybrid network design for enabling intelligence at the edge. ArXiv,
abs/1906.01493, 2019.

[3] Isha Garg, Priyadarshini Panda, and Kaushik Roy. A low effort approach to structured
CNN design using PCA. CoRR, abs/1812.06224, 2018. URL http://arxiv.org/
abs/1812.06224.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. CoRR, abs/1512.03385, 2015. URL http://arxiv.org/abs/
1512.03385.

[5] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. CIFAR-10 (Canadian Institute
for Advanced Research). 2010. URL http://www.cs.toronto.edu/~kriz/
cifar.html.

[6] Grégoire Montavon, Klaus-Robert Müller, and Mikio L. Braun. Layer-wise
analysis of deep networks with gaussian kernels. In J. D. Lafferty, C. K. I.
Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta, editors, Advances in
Neural Information Processing Systems 23, pages 1678–1686. Curran Associates,
Inc., 2010. URL http://papers.nips.cc/paper/4061-layer-wise-
analysis-of-deep-networks-with-gaussian-kernels.pdf.

[7] Ari Morcos, Maithra Raghu, and Samy Bengio. Insights on representational sim-
ilarity in neural networks with canonical correlation. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in
Neural Information Processing Systems 31, pages 5732–5741. Curran Associates,
Inc., 2018. URL http://papers.nips.cc/paper/7815-insights-
on-representational-similarity-in-neural-networks-with-
canonical-correlation.pdf.

[8] Quynh Nguyen, Mahesh Chandra Mukkamala, and Matthias Hein. Neural networks
should be wide enough to learn disconnected decision regions. CoRR, abs/1803.00094,
2018.

[9] Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. SVCCA:
singular vector canonical correlation analysis for deep learning dynamics and inter-
pretability. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wal-
lach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors, Advances in
Neural Information Processing Systems 30: Annual Conference on Neural Informa-
tion Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages
6076–6085, 2017. URL https://proceedings.neurips.cc/paper/2017/
hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html.

https://openreview.net/forum?id=HJ4-rAVtl
http://arxiv.org/abs/1812.06224
http://arxiv.org/abs/1812.06224
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html
http://papers.nips.cc/paper/4061-layer-wise-analysis-of-deep-networks-with-gaussian-kernels.pdf
http://papers.nips.cc/paper/4061-layer-wise-analysis-of-deep-networks-with-gaussian-kernels.pdf
http://papers.nips.cc/paper/7815-insights-on-representational-similarity-in-neural-networks-with-canonical-correlation.pdf
http://papers.nips.cc/paper/7815-insights-on-representational-similarity-in-neural-networks-with-canonical-correlation.pdf
http://papers.nips.cc/paper/7815-insights-on-representational-similarity-in-neural-networks-with-canonical-correlation.pdf
https://proceedings.neurips.cc/paper/2017/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html

12 RICHTER, SHENK, BYTTNER, WIEDENROTH, HUSS: FEATURE SPACE SATURATION

[10] Mats L. Richter, Wolf Byttner, Ulf Krumnack, Anna Wiedenroth, Ludwig Schallner,
and Justin Shenk. (Input) Size Matters for CNN Classifiers. In Igor Farkaš, Paolo
Masulli, Sebastian Otte, and Stefan Wermter, editors, Artificial Neural Networks and
Machine Learning – ICANN 2021, pages 133–144, Cham, 2021. Springer International
Publishing. ISBN 978-3-030-86340-1.

[11] Mats L. Richter, Leila Malihi, Anne-Kathrin Patricia Windler, and Ulf Krumnack. Ex-
ploring the properties and evolution of neural network eigenspaces during training,
2021. URL https://arxiv.org/abs/2106.09526.

[12] Mats L. Richter, Julius Schöning, Anna Wiedenroth, and Ulf Krumnack. Should You
Go Deeper? Optimizing Convolutional Neural Network Architectures without Training
by Receptive Field Analysis. In International Conference on Machine Learning and
Applications (ICMLA). IEEE, 2021 (in print). URL https://arxiv.org/abs/
2106.12307.

[13] Justin Shenk. Spectral Decomposition for Live Guidance of Neural Network Architec-
ture Design. Unpublished master’s thesis, University of Osnabrück, 2018.

[14] Justin Shenk, Mats L. Richter, Anders Arpteg, and Mikael Huss. Spectral analysis of
latent representations. CoRR, abs/1907.08589, 2019. URL http://arxiv.org/
abs/1907.08589.

[15] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. CoRR, abs/1409.1556, 2014. URL http://arxiv.org/
abs/1409.1556.

[16] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbig-
niew Wojna. Rethinking the inception architecture for computer vision. CoRR,
abs/1512.00567, 2015. URL http://arxiv.org/abs/1512.00567.

[17] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolu-
tional neural networks. CoRR, abs/1905.11946, 2019. URL http://arxiv.org/
abs/1905.11946.

[18] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transfer-
able are features in deep neural networks? In Z. Ghahramani, M. Welling,
C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances in Neu-
ral Information Processing Systems 27, pages 3320–3328. Curran Associates, Inc.,
2014. URL http://papers.nips.cc/paper/5347-how-transferable-
are-features-in-deep-neural-networks.pdf.

[19] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. CoRR,
abs/1605.07146, 2016.

[20] Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolutional net-
works. In David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars, editors,
Computer Vision – ECCV 2014, pages 818–833, Cham, 2014. Springer International
Publishing. ISBN 978-3-319-10590-1.

https://arxiv.org/abs/2106.09526
https://arxiv.org/abs/2106.12307
https://arxiv.org/abs/2106.12307
http://arxiv.org/abs/1907.08589
http://arxiv.org/abs/1907.08589
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1905.11946
http://arxiv.org/abs/1905.11946
http://papers.nips.cc/paper/5347-how-transferable-are-features-in-deep-neural-networks.pdf
http://papers.nips.cc/paper/5347-how-transferable-are-features-in-deep-neural-networks.pdf

RICHTER, SHENK, BYTTNER, WIEDENROTH, HUSS: FEATURE SPACE SATURATION 13

[21] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Un-
derstanding deep learning requires rethinking generalization. CoRR, abs/1611.03530,
2016. URL http://arxiv.org/abs/1611.03530.

[22] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Learning deep features
for discriminative localization. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 2921–2929, 2016.

http://arxiv.org/abs/1611.03530

