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Abstract

Generative Adversarial Networks (GANs) have been breaking their own records in
terms of the quality of the synthesized images, which could be so high as to make it im-
possible to distinguish generated images from real ones by human eyes. This has raised
threats to security and privacy-sensitive applications, and thus it is important to be able
to tell if an image is generated by GANs, and better yet, by which GAN. The task is
in a sense similar to digital image forensics for establishing image authenticity, but the
literature has inconclusive reports as to whether GANs leave unique fingerprints in the
generated images. In this paper, we attempt to develop a comprehensive understanding
towards answering this question. We propose a model to extract fingerprints that can be
viewed largely as GAN-specific. We further identify a few key components that con-
tribute to defining the fingerprint of the generated images. Using experiments based on
state-of-the-art GAN models and different datasets, we evaluate the performance of our
model and verify the major conclusions of our analysis.

1 Introduction
With advancements in generative adversarial networks, photo-realistic image generation and
manipulation has seen exponential growth. The state-of-the-art generative models ([15, 16,
36]) have made it fairly easy to generate realistic visual contents that exhibit little perceiv-
able artifacts. As these networks are gaining popularity, there is a growing concern of their
misuse. For example, they may be used to misguide the public in an election campaign
by faking a video of a politician or even to fool an autonomous vehicle into taking actions
with catastrophic consequences. And indeed there have been many recent reports of misuse
of GANs ([10, 11, 28]). Because of the potential high-impact misuse of such techniques,
research on analyzing GAN-generated contents has been drawing increasing attention.

One line of research is on detecting fake imagery generated by GANs, posing as a binary
classification problem. On this regard, some leading approaches focused on specific problem
domains like deepfakes via face-swapping ([1, 2, 14]). In the meantime, there are also ap-
proaches that were tuned to, and thus work only for, specific GAN architectures, e.g., ([27]).
Another line of research attempts to answer a more fundamental question: whether GANs
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leave unique traces in the generated images, analogous to digital fingerprints used in forensic
image analysis (where an imaging device is believed to leave a unique and stable mark on the
acquired data, due to, e.g., unique sensor noise patterns and/or peculiar in-camera processing
units). Although prior research ([23, 33, 35]) has alluded to the existence of such GAN fin-
gerprints, research on this regard is still scarce and existing works appear to be inconclusive,
sometimes reporting conflicting answers to the question. Furthermore, even if there might
be some "GAN fingerprints" that are associated with the generated images, questions like
how to extract them, how reliable they are, and how they depend on various components of
the learning process remain largely unexplored.

In this work, we attempt to develop a comprehensive understanding towards answering
the above questions. The abundant choices of GAN models make it less attractive to em-
ploy an architecture-specific approach. Also, similarities (in architecture and/or learning
algorithm) among GAN models suggests that there may be some clustering structure of the
potential fingerprints. Furthermore, rich visual contents that may be generated by GANs sug-
gest that GAN fingerprints, if they exist, should present themselves in more abstract forms
than image-level features.

For these considerations, we propose to employ a hierarchical Bayesian approach to
GAN fingerprint modeling: different level latent representations are used for capturing dif-
ferent level features for the fingerprints. For implementation, we propose to embed this
hierarchical modeling inside an architecture similar to variational autoencoder (VAE), lead-
ing to a deep model termed BFR-VAE. Through extensive experiments using several popular
GAN models, we demonstrate that the proposed model is able to extract GAN fingerprints
that are largely model-specific. We will also show how the model is used for analyzing major
factors that contribute to defining the fingerprints and thus unveiling interesting insights for
understanding the problem.

2 Related Work
The interesting idea of GAN was first proposed in ([13]), where a generator G and a discrim-
inator D are trained simultaneously in an adversarial manner. Many variants ([7, 17]) and
relevant tasks ([12, 29]) have been explored since then. Recently, detecting GAN-generated
imagery has been researched extensively ([24, 25]). For example, properties of facial land-
marks are utilized for fake face detection ([20, 24, 25]). Deep networks ([22, 31]) are also
being employed for this task. Though they yield high accuracy for the GANs they have been
trained on, the performance may decrease sharply if tested on images from different GAN
architectures. Other relevant efforts include those attempting to associate an image to one of
the given GAN models. For example, ([3]) proposed an extended attribution problem using
generator inversion in a white-box setting for identifying the source GAN model that was
used to create the synthetic image.

Recent literature also reported that GANs produce distinct artifacts in the generated im-
ages, which is why most detection methods fail to generalize over a large number of GAN
models. This drove researchers in the direction of finding if GAN-generated images have
unique digital fingerprints just like real images do due to the imaging process. [23] used fin-
gerprint extraction similar to PRNU (photo-response non-uniformity) pattern and revealed
that every GAN architecture leaves some peculiar fingerprints in the generated images. How-
ever, the approach suggests that different random initializations could lead to different fin-
gerprints, making it questionable to link a fingerprint uniquely to an architecture.

In [35], a method was proposed to train an external classifier on top of a GAN to extract
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Figure 1: (a) Overview of BFR-VAE. The red dashed line block z represents the latent space.
The two latent layers are represented by orange and red in z. (b) The size of output feature
maps for each layer with () showing the number of duplicate blocks. The sampling process
is shown as the black dashed line blocks. The input is the GAN images. (c) Bayesian view
model structure.

the fingerprint that is supposedly unique to the underlying GAN. This approach also attempts
decouple the GAN fingerprint from the image fingerprint. Another more recent work [33]
reported an interpretable GAN fingerprint using yet another GAN-like framework. Another
parallel line of research is finding the causes of artifacts in the generated images and fixing
them like in [18]. Small changes to the network architecture are made to eliminate aliasing
artifacts which produced high visual quality images, equivariant to sub-pixel translations
like rotation etc. It remains to be explored whether such aliasing artifacts may be linked
model-defining properties of a GAN model, if they may be eliminated.

While having some success in distinguishing real versus GAN-generated images, these
works fall short of conclusively answering the question of what defines GAN fingerprints.
For example, if the fingerprint-attributing model is explicitly based on an external classifier,
it casts some doubt on whether the extracted fingerprint is indeed inherent to the underlying
GAN. Also, if the uniqueness of the fingerprint depends on unrealistic assumptions like
knowing the initialization in GAN training, the fingerprint would have little practical use.

Our approach aims at overcoming the common limitations of the existing methods. By
employing an end-to-end learning approach with embedded hierarchical Bayesian modeling
in a latent space of the fingerprints, we intend to support not only indexing a GAN (in relation
to existing ones) but also modeling distinct new instances of the same GAN.

3 Learning to Extract GAN Fingerprints
To facilitate the discussion and presentation of our research on answering the questions re-
lated to GAN fingerprints as articulated previously, we pose the following clearly defined
task: Given several groups of GAN-generated images, with each group being from a distinct
GAN model/architecture, to extract a representation that is unique to each group. If the task
is feasible and such a representation exists, it is called the fingerprint of the underlying GAN.

As mentioned above, our key idea is to model the (potential) GAN fingerprint using
a hierarchical Bayesian approach in a latent space, allowing distribution-based abstraction
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above image-level features. This allows the probabilistic association of an image sample
to each distribution (fingerprint), i.e., achieving soft membership assignment, which helps
avoid overfitting under limited training samples. Purely from a Bayesian modeling point
of view, this idea would be akin to topic modeling that can be solved by well-established
approaches like Latent Dirichlet Allocation (LDA) ([6]). However, the feature space for
the fingerprints needs to be first defined and then representations in such a space can be
extracted, before we can apply such an approach, which essentially goes back to the original
problem of extracting and defining fingerprints, making it not a real solution. To this end, we
propose a learning-based approach whereby the hierarchical Bayesian modeling is defined
in the latent space and embedded in a deep model so that both the representation and the
hierarchical modeling of the representation are learned in an end-to-end fashion.

3.1 Bayesian Fingerprint-Reading VAE Overview
We term our approach Bayesian Fingerprint-Reading Variational AutoEncoder (BFR-VAE),
whose structure is schematically illustrated in Figure 1. Through explicit hierarchical Bayesian
modeling of the (potential) fingerprint in a latent space, BFR-VAE is different from other re-
cent VAE variants like NVAE [32], FactorVAE [19] or TCVAE [8], in that the key objective
of these techniques is still for better generative performance. Empirical studies also show a
vanilla VAE lacks the capacity for GAN attribution (more details in the supplemental).

BFR-VAE has the following benefits: 1) It is an end-to-end learning framework and thus
avoiding the difficult task of defining fingerprint features; 2) With a hierarchical Bayesian
structure, the higher-level abstraction of the potential fingerprint features is more likely to
capture model-specific information; 3) Besides distinguishing different fingerprints, it can
identify potential correlations among them (in terms of distributions).

The following notations will be used in the subsequent discussion: the given GAN image
is x; the potential GAN fingerprint is represented by (the parameters of) a Gaussian distri-
bution N(µi,σi), and the hyper-parameters that govern the GAN fingerprints are represented
by a Gamma distribution Ga(αt ,βt) and a Gaussian distribution N(µt ,nt).

3.2 Learning in BFR-VAE
To better understand the process of extracting the fingerprint, we now look at the BFR-
VAE from a Bayesian point of view (Figure 1(c)). Recall that for a typical topic-modelling
model that is used for analyzing a collection of documents, two hierarchical distributions
are employed. The higher-level distribution is a prior that determines the topic proportion
whereas the lower-level distribution is a document-word distribution that decides the words
appearing in the document. When learning the model, the prior (higher-level distribution)
together with the likelihood (lower-level distribution) leads to the posterior which is the
observation (the words). Then the posterior will become the prior for the updates in the next
iteration. Moreover, the conjugate distributions used in the two levels simplify the iterative
updates.

Analogous to topic modelling, we treat the fingerprint as the lower-level distribution
which regulates the features for recovering the images. The potential components that govern
the fingerprint are considered as the higher-level distribution. By the same token, conjugate
distributions are used.

The latent space z and the decoder D can be viewed as the generating process of a sam-
ple/image x′, namely p(x′|z) : First, we draw a sample (µ ′i ,σ

′
i ) for GAN fingerprint from the

prior distributions Ga(αt ,βt) and N(µt ,nt), which are learned from the encoder E. Then,
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a sample drawn from N(µ ′i ,σ
′
i ) forms the input elatent for the decoder. Lastly, the decoder

constructs the new sample x′. The process can be expressed as:

p(x′|z) = p(D(elatent |z)) = D(
∫

N(elatent |µ ′i ,σ ′i )N(µ ′i |µt ,ntσ
′
i )Ga(σ ′i |αt ,βt)dµ

′
i dσ

′
i ) (1)

Considering the input x and the latent space z which generates x, we would like to com-
pute p(z|x) = p(x|z)p(z)/p(x) to infer the characteristics of z. However, directly computing
p(x) is intractable. Thus we use an approximate posterior probability q(z|x), namely, the
encoder E in BFR-VAE, as a surrogate for p(z|x). q(z|x) can be expressed as:

q(z|x) = q(µi,σi|x) ∝

∫
Ga(σi|E(x))N(µi|σi,E(x))dx (2)

To make q(z|x) similar to p(z|x), the KL divergence is applied and our goal is to minimize
the following objective function Le:

Le = KL(q(z|x))||p(z|x)) ∝−(Eq(z|x)logp(z|x)−KL(q(z|x)||p(x)))
∝ MSE(x,x′)+KL(q(z|x)||p(x))

(3)

Thus, the learning process of BFR-VAE can be considered as inferring the sample x′ from
the given sample x with the goal to maximize p(x′|x) since the corresponding samples/images
all come from the same fingerprint distribution. Therefore, it is equivalent to maximizing
p(x′|z) + p(z|x), as p(x′|z) is a constant once z is determined. Hence, only maximizing
p(z|x) is required and it eventually leads to minimizing Eq. (3).

We further impose a triplet loss ([30]) on the latent layer such that the samples from
the same GAN have parameters (µ ′i ,σ

′
i ) as close as possible and as distant as possible for

samples from different GANs. Consider 3 adversarial samples x1,x2,x3 where the first two
belong to the same GAN and the last one is from other GANs. Then, the loss will be:

Lt =
p∈{µ ′i ,σ

′
i }

∑
p
||p1− p2||22−||p1− p3||22 (4)

where p1,2,3 represents the parameters in layer (µ ′,σ ′) for sample x1,2,3.
Accordingly, BFR-VAE is trained end-to-end with the loss L = λ1Le +λ2Lt to be mini-

mized (λ1,2 are the weights for each loss component). With GAN images as inputs, the po-
tential GAN fingerprint is represented by samples drawn from layer Ga(αt ,βt) and N(µt ,nt).
We also study the importance and effect of each loss component on fingerprint extraction.
Please refer to supplemental for ablation study results.

4 Simulation-Based Experiments
As GAN fingerprints (if they exist) from real data may be too subtle to be visually inspected,
we first evaluate our method by using a simple (i.e., assuming additive fingerprints) but
illustrative simulation, where we explicitly introduce two-dimensional sine waves as the
underlying "fingerprints". We use 3,000 celebA ([21]) images with a resolution of 128×128
as the base images and evenly split them into 3 sets. Each set has 800 and 200 training and
test images, respectively. Figure 2 shows the fingerprints and a few simulated images. Also,
a Gaussian noise with L2 norm being 0.1 is added to the fingerprints before adding them to
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Figure 2: The additive "fingerprints" are sine waves with different orientations. The finger-
prints with a L2 norm being 0.2 are added to the celebA images.

Figure 3: Visualizing the GAN fingerprint extracted in the simulation. Blue, green and red
curves represent the first, the second and the third sets, respectively.

each image, which acts as data augmentation and simulate fingerprint variations. BFR-VAE
is trained on the training set, where the optimizer is Adam with a learning rate of 6e−4.

Next, we extract the fingerprint (µ ′i ,σ
′
i ) (two 256× 1× 1 tensors) for both the training

and test data. Without loss of generality, we take µ ′i for illustration. First, the mean of
µ ′i is calculated. As shown in Figure 3 (a) and (b), it is clear that, statically, each set has
a unique pattern (represented by the peaks in each curve) and the pattern is shared among
the training and test images. Note that, when visualizing the latent representation of any
single image (Figure 3 (c)), it would be unclear to tell which part of the µ ′i vector has a
dominant contribution to the underlying fingerprint. This is the nature of a distribution-based
representation (but the likelihood of any single sample may still be assessed under a learned
distribution). To further verify if the peak corresponds to the fingerprint, we modify the value
of µ ′i of a single image in two ways: 1) removing the peak by setting the value of the peak
index of the mean curve (marked in black dashed line) to the average of all other indexes;
and 2) maintaining the peak but altering other values by replacing the rest 255 dimensions
by the average. As such, both methods lead to a new vector, then a sample drawn from it is
used as the input for the decoder to generate new images.

Figure 4 depicts the resulted images. In each box (different colors correspond to the
curves in Figure 3) , the left image (Original) is generated from the unmodified latent vec-
tor whereas the second (Peak2Mean) and third (Peak&Mean) ones are the images generated
from the vectors modified using the two methods mentioned above, respectively. Compared
with the Original, the Peak2Mean image eliminates the underlying "fingerprint" to a large
extent (e.g., the background does not show obvious periodic waves) whereas the Peak&Mean
image basically maintains the fingerprint. It is worth mentioning that, in both cases, the im-
ages are slightly distorted and blurred, which indicates that each dimension of the µi vector



: 7

Figure 4: The images generated from the modified "fingerprints".

Figure 5: Visualizing the distribution of the extracted fingerprint in 1-D for different GANs.
Same color denotes the same GAN while different line patterns represent different initial-
izations of a GAN. (a) BFR-VAE trained and tested on 4 GANs, each with 2 initializations
(celebA) (b) BFR-VAE trained on 2 GANs, each 2 initializations and tested on images gen-
erated by 7 unseen initializations of each GAN. (c) BFR-VAE trained on 2 GANs with 2
initializations (LSUN).

contains some image information (our model does not attempt to disentangle the "finger-
print" from the image content). Nevertheless, these simulation experiments show that the
proposed BFR-VAE model can indeed identify the underlying fingerprint efficiently.

5 Experiments with Real Datasets
In this section, we evaluate BFR-VAE using real datasets under various settings. First, we
describe the experimental setup followed by the experiment results that evaluate our model
for extracting reliable fingerprints under different configurations. These experiments also
show how different factors affect the GAN fingerprints. We also include comparison with
baselines and experiments regarding single images in the supplemental.

5.1 Experimental Setup
We describe the GAN models, datasets and evaluation criteria used for our experiments here.

GANs used: We use ProGAN [15], Spectral Normalization GAN (SNGAN) [26], Maxi-
mum Mean Discrepancy GAN (MMDGAN) [5], CramerGAN [4], StyleGAN [16] and Star-
GAN [9] to evaluate our approach because 1) they are state-of-the-art networks; 2) each of
them represents difference in either network architecture or their loss functions. To present
the results, we denote different GAN models and initialization seeds as GANx, where GAN
is the type of GAN and x is the initialization seed used.

Datasets: We use CelebA ([21]) and LSUN ([34]) bedroom scene dataset, since they
are widely used for GAN-related benchmarks and significantly different from each other.
For CelebA, we use a total of 182,637 generated images (162,770 for training and the rest
for testing). For LSUN, 200,000 and 20,000 images are used in training and testing, re-
spectively. We follow the experiment configurations described in [35], including the image
resolution, GAN training protocol, etc. To show that the GAN imagery used have a good
quality, we present the Fréchet Inception Distance (FID) score for the generated images in
the supplemental.
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GAN model Pro0 Pro8 SN0 SN8
Pro0 0 / 1e02 8.92e-02 / 1e2 27.52 / 22.37 27.55 / 22.36
Pro8 8.92e-02 / 1e02 0 / 1e2 27.39 / 22.56 27.38 / 22.55
SN0 27.52 / 22.37 27.39 / 22.56 0 / 1e02 3.70e-02 / 1e02
SN8 27.55 / 22.36 27.38 / 22.55 3.70e-02 / 1e02 0 / 1e02

MMD0 30.37 / 20.56 30.38 / 20.60 31.01 / 20.41 31.05 / 20.43
MMD8 32.76 / 16.37 32.72 / 16.40 33.02 / 16.40 33.08 / 16.42

Cramer0 34.62 / 14.90 34.60 / 14.96 34.22 / 15.52 34.33 / 15.45
Cramer8 34.95 / 14.97 34.93 / 15.04 34.64 / 15.54 34.74 / 15.47

Pro4 8.02 / 80.18 8.01 / 80.22 27.52 / 30.52 27.56 / 30.51
SN4 28.92 / 27.39 28.79 / 27.57 7.03 / 86.61 7.08 / 86.58
Style 17.42 / 51.87 17.35 / 52.04 10.51 / 74.42 10.59 / 74.49
Star 21.20 / 42.25 21.07 / 42.41 10.42 / 74.38 10.46 / 74.37

GAN model MMD0 MMD8 Cramer0 Cramer8
Pro0 30.37 / 20.56 32.76 / 16.37 34.62 / 14.90 34.95 / 14.97
Pro8 30.38 / 20.60 32.72 / 16.40 34.60 / 14.96 34.93 / 15.04
SN0 31.01 / 20.41 33.02 / 16.40 34.22 / 15.52 34.64 / 15.54
SN8 31.05 / 20.43 33.08 / 16.42 34.33 / 15.54 34.74 / 15.47

MMD0 0 / 1e02 0.59 / 98.97 27.54 / 23.19 27.80 / 23.08
MMD8 0.59 / 98.97 0 / 1e02 29.56 / 18.90 29.29 / 20.00

Cramer0 27.54 / 23.19 29.56 / 18.90 0 / 1e02 0.38 / 99.30
Cramer8 27.80 / 23.08 29.29 / 20.00 0.38 / 99.30 0 / 1e02

Pro4 14.68 / 69.69 16.77 / 65.41 20.86 / 45.24 21.15 / 45.64
SN4 23.00 / 41.97 25.07 / 36.77 16.15 / 58.55 16.57 / 58.70
Style 17.80 / 62.93 19.80 / 58.52 19.76 / 52.39 19.96 / 53.35
Star 16.82 / 64.36 18.71 / 60.31 18.13 / 55.21 18.32 / 56.41

Table 1: JSD/correlation between extracted fingerprints for images generated using differ-
ent GANs. BFR-VAE is trained on celebA images generated by ProGANx (Prox), SNGANx
(SNx) MMDGANx (MMDx) and CramerGANx (Cramerx) where x={0,8} is the initializa-
tion seed used for training and x = 4 is the unseen initialization seed. *Note all the values
have 1e-02 as a multiplication factor. The most similar fingerprints (excluding itself) are in
bold and the closest fingerprints across different GANs are underscored.

Evaluation criteria: We use both Jensen Shannon-Divergence (JSD) and correlation co-
efficient between two distributions (representing two fingerprints) as the evaluation criteria.
Both JSD and correlation coefficient lie in the range of 0 to 1. For JSD, 0 and 1 represent the
same and disparate distributions respectively. On the other hand, for correlation coefficient,
0 and 1 represent two independent and correlated distributions respectively. As an illustra-
tion, we also provide Figure 5 which contains visualization of the fingerprint distributions in
1-D, in which the dimensions are reduced using principal component analysis (PCA).

5.2 Experimental Results
We analyze the extracted GAN fingerprints under different conditions like different GAN
models, initializations, datasets and image transformations and discuss the impact of these
factors on the fingerprint.

Different GANs: We train BFR-VAE using GAN celebA images generated from four
GAN models (i.e., ProGAN, SNGAN, MMDGAN, and CramerGAN) and consider two dif-
ferent initializations for each GAN. Figure 5 (a) illustrates the GAN fingerprints in 1-D. We
observe that different GANs have distinct distributions that are almost independent of initial-
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izations. This indicates that each GAN has its own unique "fingerprint" and the initialization
has minimum impact. Moreover, we calculate the JSD and correlation coefficient between
GANs, as shown in Table 1. We notice that the same GAN with different initializations re-
sults in less JSD value and higher correlation coefficient than the case of different GANs,
which suggests the same conclusion.

Another test was conducted on two sets of CelebA data generated from ProGAN and
SNGAN with initializations that were never used in training. The results are presented in
Table 1. The unseen ProGAN initialization shows higher correlation to seen ProGAN than
other GANs. Similar trend is observed for unseen SNGAN as well.

Furthermore, we explore whether BFR-VAE can identify unseen GANs with fingerprints
extracted from unseen GANs (i.e. StyleGAN and StarGAN). Table 1 depicts low simi-
larity between unseen GANs and seen GANs, which indicates BFR-VAE can distinguish
new/unseen GANs.

Pro0 Pro8 SN0 SN8
Pro2 4.54 / 91.41 4.54 / 91.44 27.42 / 29.03 27.51 / 29.02
Pro3 9.24 / 77.34 9.27 / 77.37 28.44 / 29.36 28.49 / 29.34
Pro4 8.02 / 80.18 8.01 / 80.22 27.52 / 30.52 27.56 / 30.51
Pro5 13.70 / 61.16 13.69 / 61.20 29.26 / 27.94 29.30 / 27.92
Pro6 6.40 / 85.19 6.39 / 85.22 27.40 / 30.66 27.46 / 30.64
Pro7 6.79 / 85.26 6.81 / 85.29 27.68 / 30.15 27.71 / 30.13
Pro9 12.40 / 65.66 12.40 / 65.69 28.80 / 28.41 28.85 / 28.40
SN2 28.20 / 28.80 28.05 / 28.99 6.20 / 88.26 6.26 / 88.23
SN3 27.91 / 29.10 27.76 / 29.29 6.03 / 88.58 6.10 / 88.56
SN4 28.92 / 27.39 28.79 / 27.57 7.03 / 86.61 7.08 / 86.58
SN5 27.99 / 29.12 27.85 / 29.31 6.09 / 88.45 6.11 / 88.42
SN6 28.39 / 28.38 28.21 / 28.57 6.50 / 87.72 6.57 / 87.70
SN7 28.50 / 28.46 28.35 / 28.64 6.57 / 87.84 6.49 / 87.81
SN9 28.49 / 28.41 28.32 / 28.60 6.50 / 87.83 6.57 / 87.80

Table 2: JSD/correlation between extracted fingerprints for images generated using dif-
ferent GANs. BFR-VAE is trained with celebA images generated by ProGANx (Prox)
and SNGANx (SNx) where x={0,8} is the initialization seed used for training and
x={2,3,4,5,6,7,9} is the unseen initialization seed. *Note all the values have 1e-02 as a
multiplication factor. The most similar fingerprints (excluding itself) are in bold and the
closest fingerprints across different GANs are underscored.

Different Initializations: The above experiments mainly focus on seen data. To fur-
ther investigate the impact of unseen initializations, we train BFR-VAE using ProGAN
and SNGAN with only 2 initializations and test on other 7 different initializations. The
solid/dashed black and blue lines in Figure 5 (b) represent the ProGAN and SNGAN ini-
tializations used in the training respectively whereas the red and green represent the unseen
initializations for ProGAN and SNGAN, respectively. We notice that 1) the initializations
used in training are almost overlapping with each other, and 2) the unseen initializations are
closer to the ones from the same GAN model (i.e., red and green curves are close to black
and blue ones, respectively). The JSD value and correlation coefficient are presented in Table
2. It shows high similarity exists for the same GAN and low similarity for different GANs.

Different Datasets: Here, we show how BFR-VAE performs on other dataset, namely,
LSUN. We follow the similar training protocol as for celebA - train using images from Pro-
GAN and SNGAN with two different initializations. Figure 5 (c) depicts the distributions
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Pro SN MMD Cramer
Pro(noise) 5e-2 / 99.98 27.35 / 22.83 30.58 / 19.49 34.15 / 15.63
SN(noise) 27.09 / 23.12 5e-2 / 99.99 31.29 / 19.30 33.90 / 16.13

MMD(noise) 30.84 / 19.39 31.81 / 18.58 0.10 / 99.98 27.97 / 22.00
Cramer(noise) 34.26 / 15.72 34.16 / 15.87 28.20 / 22.09 5e-2 / 99.99

Pro(blur) 14.85 / 60.92 14.89 / 61.07 14.63 / 60.41 15.32 /58.50
SN(blur) 14.17 / 62.69 13.69 / 64.63 13.84 / 62.50 14.54 / 60.53

MMD(blur) 19.23 / 60.06 19.42 / 60.08 17.27 / 64.41 17.58 / 62.44
Cramer(blur) 16.79 / 64.03 17.40 / 62.30 17.87 / 58.39 16.10 /63.60

Pro(JPEG) 11.78 / 70.92 17.52 / 51.85 14.83 / 58.77 15.52 / 57.90
SN(JPEG) 16.63 / 54.48 9.27 / 81.24 16.01 / 55.21 16.62 / 54.60

MMD(JPEG) 19.82 / 56.75 21.78 / 51.26 14.82 / 71.02 17.50 / 62.35
Cramer(JPEG) 17.07 / 62.36 19.60 / 54.68 17.38 / 57.81 14.40 / 68.80

Table 3: JSD/correlation between extracted fingerprints for GAN images with different
types of transformations. The image transformation applied is indicated in (). Largely speak-
ing, the images from the same GAN have lower JSD and higher correlation than those be-
longing to different GANs. *Note all the values have 1e-02 as a multiplication factor. The
most similar fingerprints are highlighted.

of the fingerprints for this setting, which are distinguishable. However, if we use the trained
BFR-VAE to test on an unseen dataset (e.g., trained on LSUN and test on celebA or vice
versa), it cannot discriminate different GAN models. This implies the datasets can signifi-
cantly affect the fingerprint.

Different Image Transformations: To investigate whether the fingerprints extracted by
BFR-VAE are robust to image transformations, we apply standard Gaussian noise with a L2
norm of 0.1, Gaussian blur with a kernel size of 5 and JPEG compression with a quality factor
of 75 to celebA images respectively, and evaluate the extracted fingerprints with distorted
images as input. The BFR-VAE model used is trained with the original images generated
by 4 GANs of 2 initialization seeds. The average performance of both initialization seeds
is reported in Table 3, although images transformation indeed deviate the fingerprints from
the original ones, the fingerprints of the same GAN exhibit stronger correlation and less JSD
than that of different GANs. This indicates that the fingerprint extracted by BFR-VAE is
robust to common image transformations.

6 Conclusion
We presented a novel architecture BFR-VAE, which embeds hierarchical Bayesian modeling
into a VAE, for modeling and extracting GAN-specific fingerprints. With various state-of-
the-art GAN models, we evaluated our approach under realistic settings with both simulation
and real datasets to demonstrate its effectiveness. Through our experiments, we may con-
clude that the GANs indeed appear to leave unique fingerprints that are independent of the
initialization (as opposed to what reported in the literature). Also, we found that the GAN
fingerprints extracted by our model are dependent on the dataset used in training. Using our
model, we also analyzed several key factors defining the GAN fingerprints.
Acknowledgement: The work was supported in part by a grant from ONR. Any opinions
expressed in this material are those of the authors and do not necessarily reflect the views of
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