
DAMIAN KALIROFF, GUY GILBOA: PHIT-NET 1

PhIT-Net: Photo-consistent Image Transform
for Robust Illumination Invariant Matching

Damian Kaliroff
dkaliroff@technion.ac.il

Guy Gilboa
guy.gilboa@ee.technion.ac.il

Technion - Israel Institute of Technology
Haifa, Israel

Abstract

We propose a new and completely data-driven approach for generating a photo-
consistent image transform. We show that simple classical algorithms which operate in
the transform domain become extremely resilient to illumination changes. This consid-
erably improves matching accuracy, outperforming the use of state-of-the-art invariant
representations as well as new matching methods based on deep features. The trans-
form is obtained by training a neural network with a specialized triplet loss, designed
to emphasize actual scene changes while attenuating illumination changes. The trans-
form yields an illumination invariant representation, structured as an image map, which
is highly flexible and can be easily used for various tasks.

1 Introduction
Image processing and computer vision (CV) tasks often benefit from representations which
are invariant to certain image changes. Photo-consistency is a highly desired property, essen-
tial for tasks based on color and contrast cues, such as matching, registration and recognition.
Traditionally, illumination invariant representations were designed in a model-based manner.
Lately, with the rise of deep learning, new data-driven algorithms are proposed to solve the
problem. However, the physical assumptions and the models used for the data-driven ap-
proaches appear to limit their performance. We thus seek a very general, unconstrained,
learning approach.

In this paper we propose a new paradigm for generating an illumination invariant image
map. It is an unconstrained representation, generated in a self-supervised manner, com-
pletely data-driven, without using limiting inaccurate assumptions, such as the Lambertian
model. We impose mild scale-consistency and geometrical constraints. The surprising repre-
sentation derived by the training process provides new insights on invariant representations
for matching. It can be used as a pre-processing stage for a wide variety of classical and
learning-based algorithms, making them considerably more robust to lighting conditions.

To accomplish this, we design a deep neural network, referred to as PhIT-Net (Photo-
consistent Image Transform Network). It is trained in a self-supervised manner, using mul-
tiple sets of images of the same scene under different illuminations. This is illustrated in Fig.
1. We validate our proposed transform by various means. First, we show that images of the
same scene, illuminated differently, are indeed represented in a very similar manner. This is
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Figure 1: PhIT-Net learns a transformation using patch triplets taken from image pairs under
different illumination conditions. In inference time the transformation creates an invariant
representation from a single input image. The architecture is based on U-Net.

compared to other representations which seek illumination invariance. Next, we investigate
the usability of our approach. Quantitative experiments are performed for patch matching
and for rigid registration. Results are compared to state-of-the-art photo-consistent represen-
tations and to novel algorithms based on deep features. In both cases, we show our approach
consistently yields superior results.

2 Related Work
There are two main branches of photo-consistent representations. The first approach attempts
to estimate a physical quantity, the albedo (or reflectance) of objects in the image. Since
the albedo is not affected by illumination and shading, it is inherently photo-consistent. A
second branch is based on photo-consistent transforms, which serve to improve computer
vision tasks, such as matching or registration. Our approach belongs to the latter.
Seeking the elusive albedo. Finding an intrinsic image representation is a long standing
problem in computer vision. In [1, 20] the Retinex theory was introduced, followed by
numerous algorithms, such as [8, 12, 18, 26, 28], with the aim of estimating reflectance and
shading from a single image. Following the model by Barrow et al. [1], which assumes
a Lambertian world, an image I is decomposed by I = A · S, where A is albedo and S is
shading. When this decomposition is based on a single image, it is referred to as SIID (Single
Image Intrinsic Decomposition) [3, 21, 24]. Obtaining the albedo with SIID techniques is
a hard ill-posed problem. Recent self-supervised deep learning algorithms attempt to learn
this decomposition using extensive image data. In [21], Lettry et al. created a synthetic
dataset of scenes with images under different illumination and trained a Siamese network
[5] to decompose images into albedo and shading. In [22], Li and Snavely learn an albedo-
shading decomposition by using natural photos in a dataset referred to as “BigTime” of
indoor and outdoor scenes, each having several images with different lighting conditions.
Recently, in [23] a dataset composed of Google street time-lapses is used to build an intrinsic
decomposition approach. This method can work with time-lapses also at test time. They
demonstrate their approach for the task of artificial scene relighting. Both [21] and [22]
evaluate their results against ground truth intrinsic datasets, e.g. [3, 14]. The applicability of
their albedo estimation for improving the performance of computer vision tasks is not tested.
We use the BigTime dataset to develop our proposed photo-consistent transform.
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Figure 2: The invariant representation finv is generated by applying a transform F to an image
fk. Ideally, all images fk, k = i, j, .., emerging from the same intrinsic image fint , by different
transformations Rθk (image conditions), are mapped to the same invariant representation.

Seeking photo-consistency. Computer vision algorithms for matching, registration and
optical-flow often assume a degree of object photo-consistency. In practice, however, il-
lumination changes and shading yield an inconsistent representation in the raw color-space.
This can be dealt with by either designing much more complex algorithms or by applying
a pre-processing transform to the images, which is specifically targeted to increase photo-
consistency. The latter approach has often shown to yield robust results, keeping the main
CV algorithm simple and fast. We adopt this approach in our work.

In [15, 27] the census transform is applied to images, and serves as input for optical-
flow computation, improving the robustness to illumination changes. In [13] and recently in
[35], wavelet based pre-processing methods are used to remove the illumination component
in face images to improve face recognition algorithms. For many recognition tasks, certain
locations should be detected under different lighting conditions. Following the model of
Finlayson et al. [10, 11] the authors of [25] and [31] propose single-channel illumination
invariant representations of color images to improve place recognition, visual localization
and classification algorithms.

We observed that strong illumination changes do not admit the albedo-shading assump-
tions of the SIID model. Our experiments indicate that albedo estimations are not very
robust. We thus direct our efforts to finding an unconstrained photoconsisent map to be used
by computer vision algorithms in varying lighting environments.

3 Unconstrained Invariant Representations
In this section we formalize the concept of an invariant representation which is unconstrained
by a physical model. Let Rθ be some image transformation with a set of parameters θ . The
transformation represents different conditions in which the image was acquired. It can model
different attributes, such as illumination changes, noise, fog or atmospheric disturbances. Let
fint be an intrinsic image representation. An image instance fi is obtained by applying the
transformation Rθi , with specific parameters θi to the intrinsic image,

fi = Rθi( fint). (1)

For the intrinsic representation problem, the aim is to estimate fint , given a single or multiple
instances fi in a blind manner, that is - without knowing θi. This is a difficult ill-posed
problem. As an example, for the SIID problem, I = fi, fint = A, θi = S is some specific
shading component and Rθ ( f ) = θ · f .
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In our approach, we aim only at obtaining an invariant representation. Thus, we do
not seek to estimate θi and fint . Instead, we would like to obtain a transform applied to an
image instance, which is invariant to Rθ . This transform is denoted as F(·), and its purpose
is depicted in Fig. 2. In the ideal case, all image instances fi, created by Rθi applied to a
specific intrinsic image fint , are mapped by F(·) to the same invariant image, denoted as finv.
Moreover, if two intrinsic scenes can be distinguished d( fint ,gint)> ε , where d(·, ·) is some
metric, so do the respective mappings d(F( fi),F(gi))> δ .

We now formulate the requirements for approximating this concept. Let f = { f1, .., fN}
be a set of N instances of the same scene fint , taken under different conditions, where fi is
defined by Eq. (1). Let g be defined in a similar manner with respect to a different scene gint .
Then F admits the following properties:

D(F( fi),F( f j))≤ ε, (2)

∀i, j = 1, ...,N, where D(·, ·) is some distance and ε is a small constant. In addition,

D(F( fi),F(g j))≥ c ·D( fi,g j), (3)

∀i, j = 1, ...,N, where c� ε is some positive constant. A transform F admitting the above
properties yields an unconstrained representation (not limited by formation models), approx-
imately invariant under the transformation Rθ ,

finv,i = F( fi), (4)

where finv,i ≈ finv, j, ∀i, j = 1, ...,N. This transform minimizes the difference of images de-
picting the same scene (created from the same intrinsic image), and emphasizes differences
between images from different scenes.

We introduce an additional requirement, which states that the properties above approxi-
mately hold for any part of the image. More formally, let us define a cropping operation of
the image cropX , where X = (x1,x2,y1,y2) defines the cropping coordinates. We would like

cropX ( finv,i)≈ cropX ( finv, j), ∀i, j = 1, ...,N. (5)

Moreover, to preserve the geometrical structure, it is desired that the crop operation also
approximately commutes with F , that is

cropX (F( f ))≈ F(cropX ( f )). (6)

The combination of both requirements, Eqs. (5) and (6), can be written as,

cropX (F( fi))≈ F(cropX ( f j)), ∀i, j = 1, ...,N. (7)

In order for Eq. (6) to be meaningful, f and F( f ) should have the same spatial dimen-
sions. We refer to such a spatial representation as a map. For an input image of n pixels with
ki channels, the output is a map of n pixels with ko channels, where ko is a free parameter. We
thus have F : Rn×ki → Rn×ko . In order to obtain the transform F we do not need to directly
model Rθ . We assume to have a training set comprised of M sets fm, m = 1, ...,M, each
comprised of N instances of the same scene f m

int transformed by Rθ m
i

. We train a network that
takes as input an instance f m

i and produces an output F( f m
i ), using a triplet network model

[17, 19], following Eqs. (2) and (3). Additional losses are required to obtain a well-behaved,
geometrically-consistent, sharp representation with several channels, as detailed above. This
general methodology can be applied to develop representations invariant to different nui-
sance attributes. In this work, we develop a photo-consistent transform by applying this
approach, obtaining an illumination invariant representation.
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4 Application of Proposed Framework
We apply the framework presented in Section 3 for the problem of designing a photo-
consistent transform. In this context, the transformations Rθ model different illumination
conditions and our aim is to find F(·), such that it admits Eqs. (2)-(6). We use a neural net-
work to compute F . We attempt to decrease the distance in the representation space between
two corresponding patches of the same region in the scene, acquired at different lighting con-
ditions. The training and inference procedures are illustrated schematically in Fig. 1. Our
code is publicly available on GitHub https://github.com/dkaliroff/phitnet.

CNN Architecture. The CNN architecture of PhIT-Net is designed as an encoder-decoder
U-net network [29]. The encoder and decoder are constructed using the same convolutional
inception-like layers [33]. After the last decoder block, there is a 3x3 convolution layer to
generate the final representation. The number of convolutions in this layer is determined by
the number of channels in the final representation (three in our model).

Training Process. We train our network using a triplet network training scheme [17, 19].
In this scheme three instances of the same network are trained with shared weights. The
input to the model is called a patch triplet. Each triplet is extracted from a pair of aligned
images I1, I2, of the same scene, under different illumination conditions. For training, we
use patches of size 64×64 pixels. The triplet is composed of an anchor patch (A), a positive
patch (P) and a negative patch (N). The patches are defined as follows:

Anchor Patch (A). A random patch extracted from I1, with a standard deviation above some
threshold σp. We chose σp = 25 for the entire dataset (pixel values are in the range [0,255]).

Positive Patch (P). A patch extracted from I2, with the same coordinates as the Anchor,
such that both patches depict the same scene (the RGB difference should stem mainly from
illumination differences). In the representation space we would like (A) and (P) to be similar.

Negative Patch (N). A patch extracted from I2 with shifted coordinates, relative to the positive
patch. The shift is of 8 pixels, with respect to the anchor, with randomly chosen direction.
The overlap induces a challenging and meaningful learning process.

Inference. At inference, a full input image is first passed through a single instance of the
network, yielding floating point values in an arbitrary range. In order to reach an 8-bit image-
format, as in the original images, we normalize the values over all channels linearly such that
the minimum is mapped to 0 and the maximum to 255.

Training and Test Data. We use two different sets for outdoor and indoor settings. The
main dataset is the outdoors dataset. It is composed of images from the BigTime dataset
(See Fig. 3). We also train and evaluate our model on a set of indoor images. More details
about the datasets and evaluation on the additional indoors dataset are provided in the sup-
plementary material. The training is based on square patches of 64×64 pixels. The training
set is composed of 240K triplets, extracted from 600 image pairs of 10 outdoor scenes. The
evaluation was done using 100 image pairs selected from 17 additional outdoor scenes not
used in training.

Loss Functions

The main loss function for the training process is the triplet loss [16, 36]. It aims at min-
imizing the distance between (A) and (P), while maximizing (up to a margin) the distance
between (A) and (N). In order to reach a meaningful representation additional losses are
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Figure 3: BigTime [22] dataset. Each scene is acquired under several lighting conditions.

required. These enable us to achieve some desired properties of the representation, such as
scale consistency and channel variability. Let ( fa, fp, fn) be a triplet of image patches corre-
sponding to (Anchor, Positive, Negative), respectively. Let F(·) be the output of PhIT-Net.
Let Di(·, ·) be a distance function. The total loss function is defined as a weighted sum of the
following loss functions:
Triplet Loss (Inter-Loss):

LT ( fa, fp, fn) = max{0,Dcorr(F( fa),F( fp))−Dcorr(F( fa),F( fn))+M}, (8)

where M is the triplet-loss margin (we use M = 0.1). Since patch affinity is often defined by
correlation, we used the correlation distance function,

Dcorr(x1,x2) = 1− x1 · x2

‖x1‖2 · ‖x2‖2
. (9)

Intra-Loss:
LI( fa, fp) = Dcorr( fa, fp)+‖ fa− fp‖2

2. (10)

This loss promotes low A-P distance (in addition to the triplet loss), as suggested by [6]. Our
experiments verify that adding this loss to the main triplet loss indeed improves performance.
It also allows to minimize an additional distance function, not used in the main triplet loss.
Scale Consistency Loss:

LSC( fa) = Dscale(F(G( fa,ρ)),G(F( fa),ρ)), (11)

where G is "Up-Sample and Crop" and represents a bilinear up-sampling by a random factor
ρ ∈ (1,2] followed by a crop to the size of the original patch. The goal of this function,
following Eq. (6), is to make the representation close to commutative with respect to these
operations, as real images are. We use Dscale = Dcorr.
Multi-Channel (MC) Similarity Loss: Let I = F( f ) be a multi-channel representation of
K channels, I = (I1, .. IK). The multi-channel loss is,

LMC(I) = ∑
i

∑
j 6=i

(1−Dcorr(Ii, I j))
2. (12)

We want the multi-channel representation to have significant and different information in
each channel. Thus, we penalize channel similarity.
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Figure 4: Basic shapes and Brodatz [32] textures and their corresponding transform.

Original

image

Li-Snavely

Ours

Image 1 Image 2 Difference Diff. Thresh.

Figure 5: Actual scene differences (the car in this example) can be clearly detected under
our transform, while illumination differences are attenuated.

5 Evaluation
We first examine the nature of the representation and its basic properties. As a sanity check,
we verify that two images of the same scene under different illuminations are similar in the
representation space. We then demonstrate the usability of our representation and show it im-
proves the results of common computer vision tasks. Two tasks are examined quantitatively:
patch matching and rigid registration.

Insights on the New Representation

Textures, Shapes and Color-Coding. In Fig. 4 we show the results of the proposed trans-
form applied on basic shapes and textures. First, piecewise-constant shapes are examined. It
is evident that edges are clearly defined. We observe that a certain color-coding is created.
In flat regions the color provides information on the direction and distance of a nearby dom-
inant edge, in a similar manner to the Chamfer distance transform [2]. We interpret this as
means to disambiguate better flat regions with little variance. This property can assist match-
ing algorithms. In addition, we examine textures with varying intensity. A highly uniform
textural output is obtained in the representation space. Note that such textures do not appear
in the training set. This demonstrates the generalization strength of PhIT-Net.
Visual Photo-consistency. In Fig. 5 we show that actual scene changes (the car) can be
clearly seen, while illumination differences are attenuated. We compare this change de-
tection experiment to the original images and to the representation of [22]. In Fig. 8 two
examples of image pairs from the same scene under different illumination conditions are
shown. All image channels in all representations are in the range [0,255]. Our representa-
tion has the lowest difference compared to other invariant representations (since the range
is similar, no scaling is performed on the difference images). In order to demonstrate that
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Figure 6: Visual comparison of invariant representation methods. A scene is shown under
different illumination conditions. The difference (ideally zero) affirms that our representation
is highly stable under illumination changes (zero is gray). Enlarged crops of the marked red-
square are shown on the right.

(a) (b) (c) (d) (e)

Figure 7: Ablation. (a) Original image, (b) Full model representation, (c) No Scale consis-
tency loss, (d) No Multi-channel similarity loss, (e) With Rotation invariance loss.
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Figure 8: Visual comparison of invariant representation methods. For each scene, the rep-
resentation of two images under different illumination conditions is shown. The difference
(ideally zero) affirms that our representation is highly stable under illumination changes.
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Reference Image Target Image Original Li-Snavely[22] QATM[7] Ours

Figure 9: Patch matching of challenging scenes. Reference image on left (green frame). The
frames marking the algorithms’ results are overlaid on the target image. Heatmaps of each
algorithm (right) indicate high (red) to low (blue) matching scores.

an unconstrained model can be beneficial compared to the standard intrinsic decomposition
(albedo-shading) we show in Fig. 6 an example of an indoor scene from the Middlebury
dataset [30]. It can be seen that our representation handles well strong shades on the wall as
well as shiny metal, which violates the Lambertian model.
Ablation study. We performed an ablation study exploring different options of loss functions
for the training of our network and also a representation with different channels in its output.
We show in Fig. 7 an example of modifying the loss function and refer the readers to the
supplementary material for a full ablation study with quantitative and qualitative results.

5.1 Quantitative Evaluation
We test our representation using two common computer vision tasks, and compare it with
two unsupervised data-driven SIID methods, Li-Snavely [22] and Lettry [21], an analytic
grayscale representation, Maddern, [25] and also with the Original image. In all cases the
different representations are used as a pre-processing stage.
Patch Matching. In this task a template patch is selected from a reference image and the aim
is to find its location in a target image. Both images are of the same scene but with different
illumination conditions. We used the standard template matching function of OpenCV [4],
matchTemplate, with the normalized cross correlation method. From each reference image,
10 square patches are randomly selected from significant areas in the image, by setting a
minimum standard deviation of 25 (image range is [0,255]). This is done for three different
patch sizes (32, 64 and 128 pixels). We compare our results to others invariant representation
(using the same matching algorithm) and also to state-of-the-art dedicated template matching
algorithms: QATM [7] and DDIS [34]. The latter are novel algorithms, based on deep
features.

In Fig. 9 some matching results are shown, along with correlation-based heatmaps,
which correspond to the closest match. Whereas the algorithms are generally robust to mi-
nor illumination changes, in these challenging cases, only our proposed transform succeeds.
In Fig. 10 results of extensive quantitative experiments are shown. Accuracy is measured
by intersection over union (IoU). Plots show the IoU-ROC curves and the area under the
curve (AUC) scores for all algorithms. On the right of Fig. 10 a summary of the AUC score
is given for all patch sizes. Our representation consistently achieves the highest score for
all patch sizes. We conclude that using classical patch-matching algorithms jointly with our
proposed transform (as pre-processing) surpasses not only other invariant transforms but also
state-of-the-art end-to-end dedicated matching methods.
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Patch Size: 32

QATM              AUC=0.568
DDIS              AUC=0.461
Original image    AUC=0.676
Lettry            AUC=0.733
Li-Snavely        AUC=0.712
Maddern           AUC=0.386
Ours              AUC=0.781

(a)

Method
Patch size 32 64 128

QATM 0.568 0.761 0.853
DDIS 0.461 0.820 0.892

Original image 0.676 0.752 0.835
Lettry 0.733 0.805 0.853

Li-Snavely 0.712 0.806 0.888
Maddern 0.386 0.554 0.734

Ours 0.781 0.888 0.930
(b)

Figure 10: Patch matching results. (a) IoU-ROC curves and AUC scores, patch size 32.
(b) AUC scores for all patch sizes. Experiment on 100 scenes, 10 patches in each scene.

𝑰𝟏

𝑻(𝑰𝟐) 𝑭(𝑻(𝑰𝟐))

𝑭(𝑰𝟏)

PhIT-Net

PhIT-Net

(a)

Method
Angle 2 10 18 26

Ground Truth 35.99 34.74 32.75 31.99
Original image 19.85 21.22 21.79 20.97

Lettry 21.13 21.20 17.98 15.26
Li-Snavely 26.51 28.22 27.86 27.22
Maddern 22.80 24.21 22.56 19.49

Ours 28.71 30.10 30.04 29.53

(b)

Figure 11: (a) Illustration of the registration test. Top left – Reference image (I1); bottom
left – Target image (I2) transformed by a rigid transformation T (·); right – the respective
photo-consistent transform. (b) PSNR results of the registration test.

Registration. The rigid registration test is performed based on two images (reference and
target) of the same scene under different illumination. An affine transformation is applied
to the target image (see an example in Fig. 11(a)). The goal of the registration algorithm is
to estimate the reverse affine transformation matrix which aligns the transformed target and
reference images. It is expected that an illumination invariant representation can improve
the algorithm’s accuracy. Registration is performed by ECC registration [9], based on cross
correlation, as implemented in the OpenCV library. In Fig. 11 (right) the results for various
angles are shown. The accuracy is measured by applying the estimated inverse transfor-
mation on the (transformed) target and computing the PSNR (with respect to the original
target). Note that there are some minor errors also when the inverse transformation is known
precisely (referred in the table as “Ground Truth“), due to numerical errors in applying the
affine transformation. Our representation achieves the highest average PSNR.

6 Conclusion
A photo-consistent image transform is proposed, based on a data-driven invariant frame-
work. The desired invariance property is learnt, while retaining geometrical coherence. We
show that general and simple axioms yield state-of-the-art results, without resorting to over-
simplified model constraints. Excellent matching and registration results are obtained by
combining fast classical algorithms with our representation, also in extreme lighting varia-
tions. This idea can be generalized to design new representations, that are invariant to other
types of nuisance image changes.
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