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Abstract

Estimating a 3D human pose has proven to be a challenging task, primarily because
of the complexity of the human body joints, occlusions, and variability in lighting condi-
tions. In this paper, we introduce a higher-order graph convolutional framework with ini-
tial residual connections for 2D-to-3D pose estimation. Using multi-hop neighborhoods
for node feature aggregation, our model is able to capture the long-range dependencies
between body joints. Moreover, our approach leverages residual connections, which are
integrated by design in our network architecture, ensuring that the learned feature repre-
sentations retain important information from the initial features of the input layer as the
network depth increases. Experiments and ablations studies conducted on two standard
benchmarks demonstrate the effectiveness of our model, achieving superior performance
over strong baseline methods for 3D human pose estimation.

1 Introduction
The task of 3D human pose estimation is a fundamental problem in computer vision, robotics,
and computer graphics. It refers to the process of predicting the positions of a person’s joints
(also known as keypoints or landmarks) in images or videos. Application domains of 3D
human pose estimation are abundant, and range from activity recognition, surveillance and
healthcare to games and sports.

Tremendous progress has been made in estimating 3D human pose from images or videos
thanks to the rapid development of deep neural network solutions, which have been shown
to achieve improved performance over classical approaches that use hand-crafted features.
Most existing 3D pose estimation methods use an end-to-end pipeline [20] or a two-stage
pipeline [24, 30]. The former employs a deep neural network to regress 3D keypoints from
images in an end-to-end fashion, whereas the latter is comprised of two main stages, which
are usually decoupled from each other. Two-stage approaches for 3D pose estimation have
shown great promise [9, 10, 22, 25, 26, 27, 29, 35, 38], outperforming end-to-end models.
This better performance is largely attributed to the fact that two-stage methods benefit from
intermediate supervision provided, in part, by robust 2D pose detectors [26]. Martinez el
al. [22] design a simple fully connected network with residual connections for estimating 3D
poses from 2D joint detections, outperforming systems trained end-to-end from raw pixels.
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In recent years, there has been a surge of interest in the adoption of graph convolu-
tion networks (GCNs) for 3D pose estimation [3, 37, 39], achieving state-of-the-art perfor-
mance. Much of this interest stems from the fact that a 2D human skeleton can naturally
be represented as a graph whose nodes are body joints and edges are connections between
neighboring joints. Zhao et al. [37] propose SemGCN, a semantic graph convolutional net-
work, which learns to capture semantic information encoded in a given graph (i.e. local
and global relations between nodes), yielding improved performance in 3D pose estimation
while using a much smaller number of parameters. While GCN is powerful for learning on
graph-structured data, it suffers, however, from the oversmoothing problem [19], where the
learned node representations become indistinguishable due to repeated graph convolutions
as the network depth increases. Several attempts have been made toward remedying this is-
sue of oversmoothing [4, 15, 33, 36]. Another issue with GCN is that its aggregation scheme
uses one-hop neighbors, and hence lacks the ability to capture long-range dependencies.
This issue can be mitigated by skipping connections during feature aggregation using, for
example, the jumping knowledge networks [33] or by concatenating feature representations
of multi-hop neighbors via sparsified neighborhood mixing (MixHop) [1], which leverages a
graph convolutional layer that mixes powers of the adjacency matrix. Building on MixHop,
Zou et al. [39] propose a high-order GCN for 3D pose estimation, with the goal of capturing
long-range dependencies between body joints.

To address the above issues, we introduce a higher-order graph convolutional framework
for 3D pose estimation via implicit fairing on graphs [8]. We follow the two-stage paradigm
by employing a state-of-art 2D pose detector, followed by a lifting network for predicting
the 3D pose locations from the 2D predictions. The aggregation scheme of the proposed
approach leverages residual connections to help alleviate the oversmoothing problem, and
uses multi-hop neighborhoods to capture long-range dependencies between body joints. The
main contributions of this work can be summarized as follows:

• We derive an implicit fairing network (IF-Net) with initial residual connection by iter-
atively solving the implicit fairing equation on graphs via Jacobi method.

• We propose a higher-order implicit fairing network (HOIF-Net) for 3D human pose
estimation by concatenating feature representations from multi-hop neighborhoods,
with the aim to capture long-range dependencies.

• We demonstrate through experiments and ablation studies that our proposed model
achieves state-of-the-art performance in comparison with strong baselines.

2 Related work
Graph Convolution Networks. GCNs have recently become the de facto model for learn-
ing representations on graphs. However, GCNs are prone to oversmooting as the network
depth increases, and also fail to capture important dependencies between distant nodes.
To circumvent these limitations, a plethora of GCN variants have been proposed, includ-
ing jumping knowledge networks (JK-Nets) [33], graph convolutional networks with initial
residual connection and identity mapping (GCNII) [4], and higher-order graph convolutional
architectures via MixHop [1]. The latter learns neighborhood mixing relationships by repeat-
edly mixing feature representations of neighbors at various distances through powers of the
graph adjacency matrix, while requiring no additional memory or computational complexity.
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3D Human Pose Estimation. Most approaches to 3D human pose estimation can gener-
ally be classified into two main categories, namely single-stage and two-stage models, with
the former using an end-to-end pipeline to predict 3D poses from images; and the latter using
a two-stage pipeline, in which 2D joint locations are first extracted using a 2D pose detector
and then a lifting network is employed to regress 3D poses from 2D detections. Our ap-
proach falls under the category of two-stage models [3, 6, 9, 10, 21, 22, 25, 26, 27, 29, 35,
37, 38, 39]. Zou et al. [39] design a high-order GCN model for 3D pose estimation based
on MixHop in a bid to capture long-range dependencies between distant body joints using a
network architecture comprised of a residual block repeated several times similar to the net-
work design of Martinez et al. [22]. However, the model inherits the oversmoothing issue of
GCNs, where repeated graph convolutions make learned node embeddings indistinguishable;
thereby, resulting in performance drop. By contrast, our proposed network architecture has
residual connections integrated by design, and hence is able to alleviate the oversmoothing
problem. This is in line with existing approaches such as jumping knowledge networks [33]
and graph convolutional networks with initial residual and identity mapping [4]. In addition,
we use a scaled, learnable weight matrix with a layer-dependent scale factor in an effort to
ensure that the weight decay adaptively increases as more layers are added [4].

3 Preliminaries and Problem Statement
Basic Notions. Consider a graph G = (V,E), where V = {1, . . . ,N} is the set of N nodes
(e.g., body joints) and E ⊆ V ×V is the set of edges (e.g., connections between two body
joints). Let A be an N×N adjacency matrix whose (i, j)-th entry is equal to the weight of
the edge between neighboring nodes i and j, and 0 otherwise. We denote by Ã = A+ I the
adjacency matrix with self-added loops, where I is the identity matrix. We also denote by
X = (x1, ...,xN)

ᵀ an N×F feature matrix of node attributes, where xi is an F-dimensional
row vector for node i. We define the normalized Laplacian matrix as follows:

L = I− D̃−
1
2 ÃD̃−

1
2 , (1)

where D̃ = diag(Ã1) is the diagonal degree matrix, and 1 is an N-dimensional vector of all
ones. The Laplacian matrix admits an eigendecomposition given by L = UΛUᵀ, where U is
an orthonormal matrix whose columns constitute an orthonormal basis of eigenvectors and
Λ is a diagonal matrix comprised of the corresponding eigenvalues.

Graph Convolutional Networks (GCNs). Given an input feature matrix H(`) ∈ RN×F̀ of
the `-th layer with F̀ feature maps, the output feature matrix H(`+1) of GCN is obtained by
applying the following layer-wise propagation rule:

H(`+1) = σ(D̃−
1
2 ÃD̃−

1
2 H(`)W(`)), `= 0, . . . ,L−1, (2)

which is basically a node embedding transformation that projects H(`) into a trainable weight
matrix W(`) ∈RF̀ ×F̀ +1 with F̀ +1 feature maps, followed by an activation function σ(·) such
as ReLU(·) = max(0, ·). The input of the first layer is the initial feature matrix H(0) = X.

Jacobi Method. The Jacobi method [28] is an iterative approach for solving a matrix equa-
tion Mx = b, where the square matrix M has no zeros along its main diagonal, by first
decomposing M into a diagonal component and an off-diagonal component, i.e.

M = diag(M)+off(M). (3)
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Then, the solution of the matrix equation Mx = b is obtained iteratively as follows:

x(t+1) = diag(M)−1(b−off(M)x(t)), (4)

where x(t) and x(t+1) are the t-th and (t +1)-th iterations of x, respectively.

Problem Statement. Let Dl = {(xi,yi)}N
i=1 be a training set of 2D joint positions X =

(x1, . . . ,xN)
ᵀ ∈ RN×2 and their associated 3D joint positions Y = (y1, . . . ,yN)

ᵀ ∈ RN×3.
The goal of 3D human pose estimation is to learn the parameters w of a regression model
f : X→ Y by minimizing the following loss function

w∗ = argmin
w

1
N

N

∑
i=1
L( f (xi),yi). (5)

Since the 3D human pose estimation task is a regression problem, we train the model to
minimize the mean squared error as a loss function.

4 Proposed Method

4.1 Implicit Fairing on Graphs
Applying a spectral graph filter with transfer function h on the graph signal X yields a filtered
graph signal H given by

H = h(L)X = Uh(Λ)UᵀX. (6)

Spectral graph filters are usually approximated using Chebyshev polynomials [7, 12, 31] or
rational polynomials [17, 32]. The implicit fairing method, which uses implicit integration of
a diffusion process for graph filtering, has shown to allow for both efficiency and stability [8].
The implicit fairing filter is an infinite impulse response filter whose transfer function is given
by hs(λ ) = 1/(1+ sλ ), where s is a positive parameter. Substituting h with hs in Eq. (6), we
obtain

H = (I+ sL)−1X, (7)

where I+ sL is a symmetric positive definite matrix (all its eigenvalues are positive), and
hence admits an inverse. Therefore, performing graph filtering with implicit fairing is equiv-
alent to solving the following sparse linear system:

(I+ sL)H = X. (8)

4.2 Iterative Solution
The implicit fairing equation (8) can be solved iteratively using Jacobi’s method, which uses
matrix splitting. We can split the matrix I+ sL into the sum of a diagonal matrix and an
off-diagonal matrix as follows:

I+ sL = diag(I+ sL)+off(I+ sL), (9)

where
diag(I+ sL) = (1+ s)I and off(I+ sL) =−sD̃−

1
2 ÃD̃−

1
2 .
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Hence, the iterative solution of the implicit fairing equation is given by

H(t+1) =−(diag(I+ sL))−1 off(I+ sL)H(t)+(diag(I+ sL))−1X

= (s/(1+ s))D̃−
1
2 ÃD̃−

1
2 H(t)+(1/(1+ s))X,

(10)

which can be rewritten as

H(t+1) = (1−α)D̃−
1
2 ÃD̃−

1
2 H(t)+αX, (11)

where the hyperparameter α = 1/(1+ s) ∈ (0,1), and H(t) is the t-th iteration of H.

4.3 Implicit Fairing Network
Inspired by the Jacobi iterative solution (11) of the implicit fairing equation, we propose a
multi-layer implicit fairing network (IF-Net) with the following layer-wise propagation rule:

H(`+1) = σ(((1−α)SH(`)+αX)W̃(`)), (12)

where S = D̃−
1
2 ÃD̃−

1
2 is the normalized adjacency matrix with self-added loops, and W̃(`) =

β`W(`) is a scaled, learnable weight matrix with a layer-dependent scale factor defined as
β` = log(1+ β/(1+ `)), which ensures that the decay of the weight matrix increases in
tandem with the network depth [4].

4.4 Higher-Order Implicit Fairing Network
Using the feature diffusion rule of GCN is tantamount to applying a weighted sum of the fea-
tures of neighboring nodes normalized by their degrees, which essentially performs Lapla-
cian smoothing on the graph [19], and hence leads to oversmoothing. Also, the aggregation
scheme of GCN uses 1-hop neighbors, and hence lacks the ability to capture long-range de-
pendencies. To circumvent these issues, we define a higher-order implicit fairing network
(HOIF-Net) with the following layer-wise propagation rule:

H(`+1) = σ(
K
‖

k=1
H̃(`)

k W̃(`)
k ), (13)

where
H̃(`)

k = (1−α)SkH(`)+αX, (14)

and Sk is the k-th power of the normalized adjacency matrix with self-added loops. Each
(i, j)-th entry of Sk counts the number of walks of length k between nodes i and j. For ex-
ample, the (i, j)-th entry of S2 gives the number of common neighbors of nodes i and j. The
learnable weight matrix W̃(`)

k is associated to the the node feature representation H̃(`)
k , and ‖

denotes concatenation. For each k-hop neighborhood, the node feature representation H̃(`)
k

given by Eq. (14) is a weighted sum of the transformed feature matrix SkH(`) for the `-layer
and the initial feature matrix X. Intuitively, the transformation SkH(`) yields a smooth hidden
representation, and hence encourages similar predictions among k-hop neighboring nodes.
The weighting factor α represents the weight assigned to the initial feature information that
needs to be carried over, as the number of layers increase. Figure 1 shows an illustration
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of the layer-wise propagation rule of HOIF-Net when K = 3. Long-range dependencies be-
tween body joints are captured by high-order graph convolutions, which take into account
distant neighbors when updating the learned node features. Note that HOIF-Net uses residual
connections between the initial feature matrix and each hidden layer. Residual connections
not only allow the model to carry over information from the initial node attributes, but also
help facilitate training of multi-layer networks.
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Figure 1: Illustration of HOIF-Net feature concatenation for K = 3.

Model Architecture. The architecture of our proposed model for 3D human pose estima-
tion is illustrated in Figure 2. The input consists of 2D keypoints generated via a 2D pose
detector. The generated output of the proposed model consists of predicted 3D pose coordi-
nates. We use higher-order graph convolutional layers defined by the layer-wise propagation
rule of HOIF-Net to capture long-range structural information between body joints.
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Figure 2: Overview of the proposed network architecture for 3D pose estimation. Our model
takes 2D pose coordinates (17 joints) as input and generates 3D pose predictions (17 joints)
as output. We use ten higher-order graph convolutional layers, each of which is followed by
batch normalization and ReLU activation function, except the last convolutional layer.

Model Prediction. The output of the last higher-order graph convolutional layer of HOIF-
Net contains the final output node embeddings, which are given by

Ŷ = (ŷ1, . . . , ŷN)
ᵀ ∈ RN×3, (15)

where ŷi is a three-dimensional raw vector of predicted 3D pose coordinates.

Model Training. The parameters (i.e. weight matrices for different layers) of the proposed
HOIF-Net model for 3D human pose estimation are learned by minimizing the loss function

L=
1
N

N

∑
i=1
‖yi− ŷi‖2

2, (16)
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which is the mean squared error between the 3D ground truth poses yi and estimated 3D
joint poses ŷi over a training set consisting of N human poses.

5 Experiments

5.1 Experimental Setup

Datasets. We perform quantitative and qualitative evaluations on two standard, large-scale
benchmark datasets: Human 3.6M and MPI-INF-3DHP. The Human 3.6M dataset [14] con-
tains 3.6 million 3D human poses for 11 professional actors and corresponding images cap-
tured by a high-speed motion capture system with four different cameras. Each actor per-
forms 15 actions (scenarios), including directions, discussion, eating, greeting, talking on
the phone and so on. For data preprocessing, we apply standard normalization to the 2D and
3D poses before feeding the data to the model in line with previous work [22, 39]. For the
MPI-INF-3DHP dataset [23], there are 8 actors performing 8 activities each. These activities
range from walking and sitting to complex exercise poses and dynamic actions.

Evaluation Protocols and Metrics. For the Human 3.6M benchmark, there are two com-
monly used evaluation protocols, referred to as Protocol #1 and Protocol #2. Both protocols
use 5 subjects (S1, S5, S6, S7, S8) for training and 2 subjects (S9, S11) for testing. Under
Protocol #1, we report the mean per joint position error (MPJPE), which computes the av-
erage Euclidean distance between the predicted 3D joint positions and ground truth after the
alignment of the root joint (central hip). Under Protocol #2, we report the Procrustes-aligned
mean per joint position error (PA-MPJPE), where MPJPE is computed after rigid alignment
of the prediction with respect to the ground truth. Both error metrics are measured in mil-
limeters, and lower values indicate better performance. For MPI-INF-3DHP, we adopt two
commonly-used evaluation metrics, namely Percentage of Correct Keypoints (PCK) under
150mm and the Area Under the Curve (AUC), following previous works [11, 25, 35]. Higher
values of PCK and AUC indicate better performance.

Implementation Details. We train our model for 50 epochs using the Adam optimizer
with a learning rate of 0.001. We set the decay factor to 0.96 per 100,000 steps, and the
batch size to 64. We also set the hyperparameters α and β to 0.2 and 0.5, respectively, via
grid search with cross-validation on the training set. To extract 2D keypoints from input
images and following common practices in previous work [26, 39], we employ the cascaded
pyramid network (CPN) [5], which uses bounding boxes obtained by Mask R-CNN [13].
For K-hop feature concatenation, we set the value of K to 3, as illustrated in Figure 1.

5.2 Results and Analysis

Quantitative Results. In Tables 1 and 2, we summarize the performance comparison re-
sults of our HOIF-Net model and various state-of-the-art methods for 3D pose estimation.
As can be seen, our model performs the best in most of the actions and also on average under
both Protocol #1 and Protocol #2, indicating that HOIF-Net is very competitive. Under Pro-
tocol #1, Table 1 shows that HOIF-Net performs better than high-order GCN [39] on 14 out
of 15 actions, yielding an error reduction of approximately 1.44% on average over high-order
GCN. Moreover, our model outperforms semGCN [37] by a relative improvement of 4.86%
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on average. Under Protocol #2, Table 2 shows that our model performs better than high-
order GCN with 1.83% error reduction on average, and also achieves better performance on
11 out of 15 actions.

Table 1: Performance comparison of our model and baseline methods using MPJPE (in
millimeters) between the ground truth and estimated pose on Human3.6M under Protocol
#1. The last column report the average errors, and boldface numbers indicate the best 3D
pose estimation performance.

Action

Method Dire.Disc. Eat GreetPhonePhotoPosePurch. Sit SitD. SmokeWaitWalkD.WalkWalkT.Avg.

Martinez et al. [22] 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9
Sun et al. [30] 52.8 54.8 54.2 54.3 61.8 67.2 53.1 53.6 71.7 86.7 61.5 53.4 61.6 47.1 53.4 59.1
Yang et al. [35] 51.5 58.9 50.4 57.0 62.1 65.4 49.8 52.7 69.2 85.2 57.4 58.4 43.6 60.1 47.7 58.6
Fang et al. [9] 50.1 54.3 57.0 57.1 66.6 73.3 53.4 55.7 72.8 88.6 60.3 57.7 62.7 47.5 50.6 60.4
Hossain & Little [27] 48.4 50.7 57.2 55.2 63.1 72.6 53.0 51.7 66.1 80.9 59.0 57.3 62.4 46.6 49.6 58.3
Pavlakos et al. [25] 48.5 54.4 54.4 52.0 59.4 65.3 49.9 52.9 65.8 71.1 56.6 52.9 60.9 44.7 47.8 56.2
Sharma et al. [29] 48.6 54.5 54.2 55.7 62.2 72.0 50.5 54.3 70.0 78.3 58.1 55.4 61.4 45.2 49.7 58.0
Zhao et al. [37] 47.3 60.7 51.4 60.5 61.1 49.9 47.3 68.1 86.2 55.0 67.8 61.0 42.1 60.6 45.3 57.6
Li et al. [18] (BH) 62.0 69.7 64.3 73.6 75.1 84.8 68.7 75.0 81.2104.3 70.2 72.0 75.0 67.0 69.0 73.9
Banik et al. [2] 51.0 55.3 54.0 54.6 62.4 76.0 51.6 52.7 79.3 87.1 58.4 56.0 61.8 48.1 44.1 59.5
Xu et al. [34] 47.1 52.8 54.2 54.9 63.8 72.5 51.7 54.3 70.9 85.0 58.7 54.9 59.7 43.8 47.1 58.1
Zou et al. [39] 49.0 54.5 52.3 53.6 59.2 71.6 49.6 49.8 66.0 75.5 55.1 53.8 58.5 40.9 45.4 55.6

Ours 47.0 53.7 50.9 52.4 57.8 71.3 50.2 49.1 63.5 76.3 54.1 51.6 56.5 41.7 45.3 54.8

Table 2: Performance comparison of our model and baseline methods using PA-MPJPE
between the ground truth and estimated pose on Human3.6M under Protocol #2.

Action

Method Dire.Disc. Eat GreetPhonePhotoPosePurch. Sit SitD.SmokeWaitWalkD.WalkWalkT.Avg.

Pavlakos et al. [24] 47.5 50.5 48.3 49.3 50.7 55.2 46.1 48.0 61.1 78.1 51.1 48.3 52.9 41.5 46.4 51.9
Zhou et al. [38] 47.9 48.8 52.7 55.0 56.8 49.0 45.5 60.8 81.1 53.7 65.5 51.6 50.4 54.8 55.9 55.3
Martinez et al. [22] 39.5 43.2 46.4 47.0 51.0 56.0 41.4 40.6 56.5 69.4 49.2 45.0 49.5 38.0 43.1 47.7
Sun et al. [30] 42.1 44.3 45.0 45.4 51.5 53.0 43.2 41.3 59.3 73.3 51.0 44.0 48.0 38.3 44.8 48.3
Fang et al. [9] 38.2 41.7 43.7 44.9 48.5 55.3 40.2 38.2 54.5 64.4 47.2 44.3 47.3 36.7 41.7 45.7
Hossain & Little [27] 35.7 39.3 44.6 43.0 47.2 54.0 38.3 37.5 51.6 61.3 46.5 41.4 47.3 34.2 39.4 44.1
Lee et al. [16] 38.0 39.3 46.3 44.4 49.0 55.1 40.2 41.1 53.2 68.9 51.0 39.1 33.9 56.4 38.5 46.2
Li et al. [18] (BH) 38.5 41.7 39.6 45.2 45.8 46.5 37.8 42.7 52.4 62.9 45.3 40.9 45.3 38.6 38.4 44.3
Banik et al. [2] 38.4 43.1 42.9 44.0 47.8 56.0 39.3 39.8 61.8 67.1 46.1 43.4 48.4 40.7 35.1 46.4
Xu et al. [34] 36.7 39.5 41.5 42.6 46.9 53.5 38.2 36.5 52.1 61.5 45.0 42.7 45.2 35.3 40.2 43.8
Zou et al. [39] 38.6 42.8 41.8 43.4 44.6 52.9 37.5 38.6 53.3 60.0 44.4 40.9 46.9 32.2 37.9 43.7

Ours 36.9 42.1 40.3 42.1 43.7 52.7 37.9 37.7 51.5 60.3 43.9 39.4 45.4 31.9 37.8 42.9

Table 3 reports the quantitative comparison results of HOIF-Net and baseline methods
on the MPI-INF-3DHP dataset. As can be seen, our method achieves the best performance
on all evaluation metrics.

Qualitative Results. Figure 3 shows the qualitative results obtained by our model for var-
ious actions. Notice that the predictions made by HOIF-Net match perfectly the ground
truth, indicating the effectiveness of our proposed approach in tackling the 2D-to-3D pose
estimation problem.
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Table 3: Performance comparison of our model and baseline methods on the MPI-INF-3DHP
dataset using PCK and AUC as evaluation metrics. Higher values in boldface indicate the
best performance.

Method PCK AUC

Yang et al. [35] 69.0 32.0
Pavlakos et al. [25] 71.9 35.3
Habibie et al. [11] 70.4 36.0

Ours 72.8 36.5

Input Prediction Ground Truth Input Prediction Ground Truth

Figure 3: Qualitative results obtained by our model on the Human3.6M test set.

5.3 Ablation study

In our ablation experiments, we use the 2D ground truth as input to our model. We start by
investigating the effect of the hyperparameters α and β on model performance. We conduct
a sensitivity analysis to investigate how the performance of our model changes as we vary
these two hyperparameters. In Figure 4 (left), we analyze the effect of α by plotting the
error values vs. α for both protocols, where α varies from 0.1 to 0.5, and β is set to 1.
We can see that our model achieves the lowest error values of MPJPE and PA-MPJPE when
α = 0.12 and α = 0.1, respectively. In Figure 4 (right), we plot the error values vs. β for
both protocols by varying the value of β from 0.1 to 1.5, and setting the value of α to 0.1.
Notice that the best performance is generally achieved when β = 0.7

We also evaluate our method against SemGCN (Zhao et al. [37]) and high-order GCN
(Zou et al. [39]), which are state-of-the-art GCN-based methods for 2D-to-3D pose estima-
tion, and we report the results in Table 4. As can be seen, our approach outperforms both
semGCN and High-order GCN under Protocols #1 and #2. Under Protocol #1, our HOIF-Net
model outperforms semGCN and high-order GCN by 4.02 mm and 1.4 mm, corresponding
to error reductions of 9.54% and 3.54%, respectively. Under Protocol #2, HOIF-Net out-
performs semGCN and high-order GCN by 3.79 mm and 1.33 mm, corresponding to error
reductions of 11.3% and 4.28%, respectively. In addition, our model offers comparable per-
formance as high-order GCN, while using a much smaller number of filters (64 compared to
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Figure 4: Parameter sensitivity analysis.

96) and also the number of learned parameters is reduced by more than half.

Table 4: Performance comparison of our model and GCN-based methods.

Method Filters Parameters MPJPE PA-MPJPE

SemGCN [37] 96 0.43M 42.14 33.53
High-order GCN [39] 96 1.20M 39.52 31.07

Ours 96 1.20M 38.12 29.74
Ours 64 0.54M 39.78 31.26

Figure 5 shows that the performance of the proposed HOIF-Net model on the Human3.6M
dataset remains relatively stable as we increase the number of higher-order graph convolu-
tional layers, demonstrating the robustness of our method against oversmoothing.
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Figure 5: HOIF-Net’s performance with increasing higher-order graph convolutional layers
on the Human3.6M dataset.

6 Conclusion
In this paper, we proposed a higher-order implicit fairing network with initial residual con-
nections for 3D human pose estimation, with the aim to alleviate the oversmoothing problem
in graph convolutional networks, and also to capture long-range dependencies between body
joints by enabling the model to aggregate multi-hop neighbors through feature concatena-
tion. Empirical experiments and ablation studies showcase the merits of our model and
demonstrate its competitive performance in comparison with state-of-the-art methods for 3D
human pose estimation. For future work, we plan to apply the proposed framework to other
downstream tasks such as semi-supervised node/graph classification and link prediction.
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