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Abstract

Video inpainting has become an increasingly matured forensics technique and has
caused visual misinformation on social media. Yet the countermeasures to detect in-
painted regions in videos have received little attention, leaving such threats out of con-
trol. To pioneer a mitigation solution, we introduce VIDNet, the first study of learning-
based video inpainting detection, which contains a two-stream encoder-decoder archi-
tecture with attention module. To reveal artifacts encoded in compression, VIDNet
additionally takes in Error Level Analysis frames to augment RGB frames, producing
multimodal features at different levels with an encoder. Exploring spatial and tempo-
ral relationships, these features are further decoded by a Convolutional LSTM to pre-
dict masks of inpainted regions. In addition, when detecting whether a pixel is in-
painted or not, we present a quad-directional local attention module that borrows in-
formation from its surrounding pixels from four directions. Extensive experiments val-
idate the significant advantages of VIDNet over alternative inpainting detection base-
lines, as well as its generalization on unseen videos. We have released our code in
https://github.com/pengzhoull08/VIDNet.

1 Introduction

Fake news [2] and deepfake [1] issues arise recently due to the abuse of advanced image or
video manipulation techniques, and the remedy for it has become an increasing necessity.
Among those techniques, video inpainting, which completes corrupted or missing regions in
a video sequence, has achieved impressive progress over the years [4, 12, 16, 17, 25, 26, 38,
39, 40]. The ability to produce realistic videos that can be used in applications like video
restoration, virtual reality, efc., while appealing, brings significant security concerns at the
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Figure 1: Problem introduction. Given an inpainted video (second column), we localize
the inpainted region both spatially and temporally.

same time since these techniques can also be used maliciously. By removing objects that
could serve as evidence, malicious inpainting can result in serious legal and social implica-
tions including swaying a jury, accelerating the spread of misinformation on social platforms,
etc. To fight against the ubiquitous fake inpainted videos, our goal in this work is to develop
a framework for detecting inpainted videos constructed with state-of-the-art methods (see
Fig. 1 for a conceptual overview).

Although there are recent studies on detecting tampered regions in images [7, 13, 37,
48], very limited effort has been devoted to video inpainting detection. For image-based
manipulation detection, existing approaches either focus on spliced regions or “deepfake”-
style face replacement instead of object removal based on inpainting. Additionally, most of
them are designed specifically for images [18, 36] only and suffer from poor performance
on videos. Learning robust video representations can help mitigate issues with single image
detection.

In light of this, we introduce VIDNet, a video inpainting detection network, which is
an encoder-decoder architecture with a quad-directional local attention module to predict
inpainted regions in videos (as is shown in Fig. 2). In particular, at each time step, VID-
Net’s encoder takes as input the current RGB frame, truncated from a pretrained VGG net-
work [30]. Since videos are compressed based on discrete cosine transforms (DCT) and
frames extracted are usually stored in JPEG format, we leverage ELA [35] images as an ad-
ditional input to the encoder to reveal artifacts like compression inconsistency (as is shown
in Fig. 3). We extract features from both ELA and RGB images with the encoder, produc-
ing five different multimodal features at different scales, that are further used jointly to train
our inpainting detector. In addition, given a missing region to fill in, inpainting methods
leverage information from surrounding pixels of the region to make the region coherent spa-
tially. Motivated by this, for RGB features from the last layer of the encoder, we introduce a
quad-directional local attention module to attend to the neighbors of a pixel, allowing us to
explicitly model spatial dependencies among different pixels during detection.

Finally, with multimodal features encoded at different scales, we leverage a four-layer
Convolutional LSTM, serving as a decoder for inpainting detection. More specifically, the
ConvLSTM at a certain layer not only takes in features from a previous time step but also
features upsampled from a coarse level (e.g., a lower decoding layer). In this way both spa-
tial relationships across different scales and temporal dynamics over time are leveraged to
produce inpainted masks over time. The framework is trained end-to-end with backpropa-
gation. We conduct experiments on the DAVIS 2016 [27] Dataset and the Free-form Video
Inpainting Dataset [4]. VIDNet successfully detects inpainted regions under all different set-
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Figure 2: Framework overview. Given an RGB frame in a video, we first derive its corre-
sponding ELA frame and compute multimodal features at different scales. We also introduce
a quad-directional local attention module (striped) to the last encoded RGB features (colored
blue) to explore spatial relationships from four directions. These encoded features are further
input into a multi-layer ConvLSTM (colored green) to produce masks of inpainted regions.

tings and outperforms by clear margins competing methods. We also show that VIDNet can
be generalized to detect out-of-domain inpainted videos that are unseen during training.

Our contributions are summarized as follows: 1) To the best of our knowledge, this is
the first work to formalize the problem of learning-based video inpainting detection. 2) We
present an end-to-end framework for video inpainting detection, which leverages multimodal
features and models spatial and temporal relationships in videos. 3) We introduce a quad-
directional local attention module to explicitly determine if a pixel is inpainted or not by
attending to its neighbours.

2 Related Work

Video Inpainting. With the advance of recent image inpainting approaches [10, 11, 14, 19,
21, 26, 38, 40, 47], more recent studies have investigated video inpainting. There are two
lines of work — patch based and learning based approaches. For patch based approaches,
PatchMatch [3] is a prominent approach which searches for similar patches in the surround-
ing region iteratively to complete the inpainted region. To achieve better quality, Huang et
al. [12] explore an optimization based method to match patches and utilize information in-
cluding color and flow as regularization. On the other hand, learning based approaches have
been explored recently. Wang [31] propose a 3D encoder-decoder structure for video in-
paining. Afterwards, Xu et al. [39] leverages optical flow information to guide inpainting in
videos in both forward and backward passes. Similarly, Kim ez al. [16] estimate the proceed-
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ing flow as additional constraint while completing the missing regions. To maintain more
frame pixels, Oh et al. [25] use gated convolution to inpaint video frames gradually from the
reference frame. Lee ef al. [17] copy and paste future frames to complete missing details in
the current frame. In contrast, our approach detects regions inpainted by these approaches.

Manipulation Detection. There are also approaches focusing on manipulation detec-
tion. Most of them mainly tackle deep generation [24, 32, 41, 42, 43] or splicing based
manipulation [6, 7, 8, 33, 34, 44] and use clues specific to them. In particular, Zhou et
al. [48] use both RGB and local noise to detect potential regions. Salloum et al. [29] rely on
boundary artifacts to reveal manipulated regions in a multi-task learning fashion and Zhou et
al. [49] improve its generalization ability with a generative model. Huh ef al. [13] use meta-
data to find inconsistent patches and Wu et al. [37] treat it as anomaly detection to learn
features in a self-supervised manner. Note that video inpainting is different from splicing or
copy-move manipulation techniques. Its goal is to achieve perceptual consistency with the
background, where these anomaly detection based approaches would probably fail.

More related to our work are methods for image inpainting detection. [36] is a classical
approach that searches for similar patches matched by zero-connectivity. However, high
false alarm rates limit their applications in real scenarios. More recently, Zhu ef al. [50] use
CNN s to localize inpainting patches within images. Li ez al. [18] explore High Pass Filtering
(HPF) as the initialization of CNNs for the purpose of distinguishing high frequency noise of
natural images from inpainted ones. However, the generalization and robustness is limited as
these HPFs are learned given specific inpainting methods. In contrast, we combine both RGB
information and ELA features as inputs to VIDNet, and show that our approach generalizes
to different inpainting methods. Also, detecting video inpainting requires modeling temporal
information which is obviously not considered by image inpainting detection methods.

3 Approach

VIDNet, Video Inpainting Detection Network, is an encoder-decoder architecture (See Fig. 2
for an overview the framework) operating on multimodal features to detect inpainted regions.
In addition to RGB video frames, VIDNet utilizes Error Level Analysis frames (Sec. 3.1) to
identify artifacts incurred during the inpainting process. Motivated by the fact that inpainting
methods typically borrow information from neighbouring pixels of the region to be inpainted,
we introduce a multi-head local attention module (Sec. 3.2) which uses adjacent pixels to
discover inpainting traces. Finally, we model the temporal relations among different frames
with a ConvLSTM (Sec. 3.3). In the following, we describe the components of the model.

3.1 Multimodal Features

Learning a mapping directly from an inpainted RGB frame to a mask that encloses the re-
moved object is challenging, since the RGB space is intentionally modified by replacing
regions with their surrounding pixels to appear realistic. To mitigate this issue, we addi-
tionally augment RGB information with error level analysis features [35] that are designed
to reveal regions with inconsistent compression artifacts in compressed JPEG images. Note
although videos are usually compressed in MPEG formats, extracted frames are often times
stored in the format of JPEG. More formally, an ELA image is defined as:

IELA: ‘I_IJPGL (1)
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Figure 3: ELA frame example. From Figure 4: The quad-directional local at-
the top to the bottom: the inpainted RGB tention module. Given RGB features
frame, its corresponding ELA frame, and from the last layer of the encoder, we de-
the ground-truth inpainting mask. The Tive attention maps with convolution and
inpainting artifacts, e.g., the dog, person sigmoid layers. To detect whether a pixel
and ship, stand out in ELA space while 18 inpainted or not, the module attends to
not easily seen in the RGB space. its neighbors from four directions.

where IFMA is the ELA image, I denotes the original image and I'’S denotes the recom-

pressed JPEG image from the original image. | - | denotes absolute value.

Fig. 3 illustrates the corresponding ELA images of sampled inpainted frames. Although
ELA images have been used in forensics applications [44, 45], they tend to create false
alarms when other artifacts like e.g., sharp boundaries, are present in the images, which
requires ad-hoc judgement to determine whether a region is tampered. So, instead of only
using ELA frames, we augment them with RGB frames as inputs to our encoder (See results
in Sec. 4).

In particular, both the RGB and ELA frames are input to a two-stream encoder. Each
stream, based on a VGG encoder, transforms the input image to high-level representations
with five layers, yielding 5 feature representations at different scales. At each scale, we
normalize the corresponding RGB and ELA features, respectively with ¢, normalization,
and then apply one convolutional layer to absorb both features into a unified representation:

f=c(F([f | 4)) (1<5), (2)

where [|] denotes feature concatenation, f; denotes the feature at /-th layer. ffGB, f}:‘LA denote
the ¢, normalized RGB and ELA features at layer /, respectively. F represents the convolu-
tional layer and ¢ denotes the activation function. The fused representation at each level is
further used for decoding. For [ = 5, we simply use RGB features as we find that high-level
ELA features are not helpful.

3.2 Quad-Directional Local Attention

Inpainting methods aim to replace a region with pixels from its surrounding areas for pho-
torealistic visual effect. Therefore, when determining whether a pixel is inpainted or not,
it is important to examine its surrounding pixels. Inspired by recursive filtering techniques
that model pixel relations from four directions for edge-preserving smoothing, we introduce
a quad-directional local attention module to explore spatial relations among adjacent pixels.
Rather than preserve region smoothness and coherence, we design our module to attend to
the inconsistency in adjacent features and regions, and thus reveal inpainting artifacts.

As shown in Fig. 4, we learn four attention maps for four directions, left-to-right, right-
to-left, top-to-bottom, bottom-to-top, to determine how much information to leverage from
the pixels in the corresponding direction based on each map. More specifically, we use F_,,
F_, F; and F| to denote functions that derive attention maps for the left-to-right, right-to-left,
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top-to-bottom and bottom-to-top four directions. In the following, we consider the left-to-
right direction for simplicity. Given features fs from the last layer of the RGB stream, we
first transform the features with F_, to have the same dimension as fs, and then compute an
attention map A_,:

A, :G(F*)(fs;wﬁ))a 3)

where W_, denotes the weights for the convolutional kernel, and o is the sigmoid function
to ensure the attentional weights at each pixel are in the range of [0, 1]. Then, for each pixel
in the feature map, we obtain information from the surrounding pixels as:

fs[k] = (1 — AL [k])fs [k] + A [k]fs [k — 1], “

where k denotes the location of the pixel. Since we are considering attention from the left-
to-right direction, k — 1 indicates the pixel to the left of k. The current value of pixel k is
updated with information from its neighboring pixel, the contribution of which is based on
the attention map A_,. As a result, we attend to a small local region to compute the refined
representation. We can derive f5._, fs and f5 similarly, and thus we have four different
refined representations.

Note that the quad-directional attention module is similar in spirit to recursive filtering.
However, in standard recursive filtering, a weight matrix, in the form of an edge map [5] or
a weighted map [20], is used as the map A to guide the filtering to restore images or smooth
feature maps. In contrast, our filtering can be considered as a form of self-attention—we de-
rive attention maps by modeling similarities in a local region with convolutions conditioned
on input features and the resulting maps are in turn used to refine features, allowing pixels
to borrow information by attending to its adjacent pixels. In addition, the motivation of our
approach can be seen as the “reverse” process of recursive filtering—in recursive filtering,
information from surrounding pixels is diffused to make local regions coherent, whereas we
wish to detect inconsistent pixels by attending to a neighboring region.

Furthermore, we compute four refined directional feature maps in a parallel way condi-
tioned on the same feature map. An alternative is to generate a single feature representation
by sequentially performing attention in four directions, i.e., f5_, is used as inputs to generate
fs., and so on and so forth, as in [5]. However, we find in Sec. 4 that the parallel multi-head
approach offers better results, possibly due to the disentanglement of different directions.

3.3 ConvLSTM Decoder

Temporal information like inconsistency in the inpainted region over time is an important cue
for video inpainting detection. To explore temporal relationships among adjacent frames,
we use multiple ConvLSTM decoding layers to take features from the encoders and pro-
duce predicted detection results, which enables message passing from previous frames. (See
Fig. 2) More specifically, the decoder contains four ConvLSTM layers to process features
from different spatial scales. At each time step, taking into account both spatial and temporal
information, we concatenate the skipped connected feature of the current frame and the up-
sampled feature from a lower level, as the inputs to the current ConvLSTM layer. Formally,
for the 7-th time step, the i-th (2 <= i <= 4) ConvLSTM computes the hidden states and cell
contents for the ¢ + 1-th time step as:

hit! et = ConvLSTM;(gl b}, c)), 5)
g = [Uh_)|f_;], 6)
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VI* OoP* CP Vi OP* CP* VI oP CP*

Methods IoU/F1 IoU/F1 IoU/F1 ‘ IoU/F1 IoU/F1 IoU/F1 IoU/F1 IoU/F1 IoU/F1

NOI [23] 0.08/0.14  0.09/0.14  0.07/0.13 | 0.08/0.14 0.09/0.14  0.07/0.13 | 0.08/0.14  0.09/0.14  0.07/0.13
CFA [8] 0.10/0.14  0.08/0.14  0.08/0.12 | 0.10/0.14  0.08/0.14  0.08/0.12 | 0.10/0.14  0.08/0.14  0.08/0.12
COSNet [22] 0.40/0.48  0.31/0.38  0.36/0.45 | 0.28/0.37 0.27/0.35  0.38/0.46 | 0.46/0.55 0.14/0.26  0.44/0.53
HPF [18] 0.46/0.57 0.49/0.62  0.46/0.58 | 0.34/0.44 0.41/0.51 0.68/0.77 | 0.55/0.67 0.19/0.29  0.69/0.80
HPF [18] + LSTM 0.50/0.61  0.39/0.51  0.52/0.63 | 0.26/0.36  0.38/0.44  0.68/0.78 | 0.53/0.64  0.20/0.30  0.70/0.81
GSR-Net [49] 0.57/0.68  0.50/0.63  0.51/0.63 | 0.30/0.43  0.74/0.80  0.80/0.85 | 0.59/0.70  0.22/0.33  0.70/0.77

GSR-Net [49] + LSTM  0.55/0.67  0.51/0.64  0.53/0.64 | 0.33/0.45 0.60/0.72  0.74/0.83 | 0.58/0.70  0.21/0.32  0.71/0.81
Ours RGB (baseline) 0.55/0.67  0.46/0.58  0.49/0.63 | 0.31/0.42 0.71/0.77 0.78/0.86 | 0.58/0.69  0.20/0.31  0.70/0.82
VIDNet-BN (ours) 0.62/0.73  0.75/0.83  0.67/0.78 | 0.30/0.42 0.80/0.86 0.84/0.92 | 0.58/0.70 0.23/0.32  0.75/0.85
VIDNet-IN (ours) 0.59/0.70  0.59/0.71  0.57/0.69 | 0.39/0.49 0.74/0.82 0.81/0.87 | 0.59/0.71  0.25/0.34  0.76/0.85

Table 1: Mean [oU and F; score comparison on inpainted DAVIS. The model is trained
on VI and OP inpainting, OP and CP inpainting, and VI and CP inpainting respectively
(denoted as ‘*’).

where h! and ¢/ denote the hidden states and cell states for the i-th ConvLSTM, respectively,
and U denotes the function for bilinearly upsampling, which maps the outputs from a lower-
level ConvLSTM with smaller feature maps to have the same dimension as the current one.
In addition, f’67i is the skip connected feature of the frame ¢ from the encoder.

When i = 1, ConvLSTM;takes features from the last layer of the encoder as inputs. Re-
call that we obtain four refined features based on f5 with our quad-directional local attention
module to identify pixels that are inconsistent with its neighbours from four directions. Thus,
we choose one of the four features (e.g., f5_,) as inputs to the ConvLSTM; layer. We then
follow the order of f5_,, f5._, fs; and f5 to obtain all the four directional features.

At each time step, we compute g5 with Eqn. 6 to produce a prediction p’ for each QDLA
direction via one convolutional layer. Finally, to explore non-linear relations among these
four directional outputs, we fuse them with one additional convolutional layer to form the
final prediction.

During training, we divide each video into N clips with equal clip length. To encourage
more intersection with the binary ground truth mask, we use IoU score [28] as our loss
function which is formulated as:

L(p,y)=1- LY ,
Lp+y-poy)+e

where p and y denote the prediction and the binary ground truth mask, respectively. € denotes
a small number to avoid zero division and © represents element-wise multiplication. The
loss is updated once the ConvLSTM decoder goes through a single video clip to collect
temporal information. By exploring spatial and temporal information recurrently, predictions
of inpainted regions become more accurate.

)

4 Experiment

We compare VIDNet with approaches on manipulation/image inpainting detection in this
section to show the advantages of our approach on video inpainting detection both quantita-
tively and qualitatively.

Dataset and Evaluation Metrics. Since DAVIS 2016 [27] is the most common bench-
mark for video inpainting, which consists of 30 videos for training and 20 videos for testing,
we evaluate our approach on it for inpainting detection. We generate inpainted videos using
SOTA video inpainting approaches — VI [16], OP [25] and CP [17], with the ground truth
object mask as reference. To show both the performance and generalization, we choose two
out of the three inpainted DAVIS for training and testing, leaving one for additional testing.
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Methods FVIIoU/F1

Methods VI* opP* CpP

HPF [18] 0.718 0.640 0.845 EII?AI [333] 883; ; 81(2);

GSR-Net [49] 0.762 0.758 0.834 (8] : :

Ours RGB (baseline) 0.722  0.688 0.721 HPF[18] 0.205/0.285

Ours ELA 0711 0.733  0.850 HPF [18]+ LSTM 0.177/70.271

VIDNet-IN (ours) 0.778 0.768 0.884 GSR-Net [49] 0.195/0.288
Table 2: Sanity check for inpainting GSR-Net [49] + LSTM  0.188/0.281
classification AUC comparison. The re- Ours RGB (baseline) 0.156/0.223
sults are tested on the three inpainting al- VIDNet-IN (ours) 0.25770.367
gorithms, and all the model are trained on Table 3: Mean IoU and F1 score com-
VI and OP inpainted DAVIS. parison on FVI dataset. All models are

trained on VI and OP inpainted DAVIS.

The training/testing split follows DAVIS default setting. We report the F; score and mean
Intersection of Union (IoU) to the ground truth mask as evaluation metrics.

We compare our method with both video segmentation methods such as COSNet [22]
and manipulation detection methods including NOI [23], CFA [8], HPF [18], GSR-Net [49]
and LSTM version of HPF [18] and GSR-Net [49].

Ours RGB (baseline): Our baseline approach that feeds as input RGB frame only. No
QDLA module is applied.

VIDNet-BN (ours). Our batch normalization [15] version.

VIDNet-IN (ours): We report this as our main results, which replaces the batch normal-
ization in encoder by instance normalization.

Sanity Check. Following [13], we first check the ability of our learned model to dis-
tinguish between original and inpainted video frames. We compare models trained on VI
and OP for simplicity. We add the original uninpainted videos to test sets for evaluation,
and average the prediction score for every frame as frame-level score. Afterwards, we report
the AUC classification performance in Tab. 2. (Inpainted frames are labeled positive) The
comparison between Ours RGB and Ours ELA shows that the ELA features provide more
useful clues than the RGB features to distinguish inpainted frames from original ones. With
ELA and QDLA features, our model achieves better performance than other methods for all
the three inpainting algorithms, validating the advantages of our learned features to classify
between inpainted and original videos.

Main Results. Tab. 1 highlights our advantages over other methods. Video segmentation
method COSNet captures the flow difference between adjacent frames to segment objects. In
contrast, manipulation detection methods are learned to find tamper artifacts and thus yields
better performance. Note that without carefully modeling temporal information and consider
multiple modalities, adding LSTM doesn’t benefit image-based methods like HPF and GSR-
Net a lot. In contrast, our approach is designed to detect both spatial and temporal artifacts in
two modalities, and thus achieves better performance. Additionally, we show clear improve-
ment over our baseline, indicating the effectiveness of our proposed ELA feature and QDLA
module. Comparing across different inpainting algorithms, the performance degrades on the
untrained algorithms, indicating a domain shift between trained and untrained inpainting al-
gorithms. However, benefiting from diverse features and more focus on proximity regions,
our method still results in better generalization compared with other approaches. Finally, the
results indicate that our BN version generally has better performance on the in-domain train-
ing inpainting algorithms while IN version shows better generalization on the cross-domain
one. Therefore, we provide both results as a trade off.
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VI* OoP* Ccp
Methods IoU /F1 IoU /F1 IoU /F1
Ours ELA 0.460/0.578 0.509/0.631 0.417/0.546
Ours RGB (baseline)  0.552/0.671 0.456/0.580 0.493/0.625
Ours w/o QDLA 0.559/0.682 0.557/0.681 0.512/0.644

Ours frame-by-frame  0.558/0.683  0.566/0.688 0.532/0.664

VIDNet-IN (ours) 0.585/0.704 0.588/0.707 0.565/0.685
Table 4: Ablation analysis. The model is trained on VI and OP inpainting algorithms (de-
noted as “*’).

Ablation Analysis. We analyze the importance of each key component in our framework
and the details are as follows:

Ours ELA: The baseline architecture which only feeds ELA frame as input.

Ours w/o QDLA: Our model that inputs both RGB and ELA frames. No QDLA module
is applied.

Ours frame-by-frame: Instead of training with video clip length of 3, we train our full
model frame-by-frame.

Tab. 4 displays the comparison results. Compared to baseline, ELA features alone
achieve worse performance, which is different from the results in Tab. 2. This is because
ELA frames also contain other artifacts like sharp boundaries even though it reveals infor-
mative inpainting clues. In contrast, RGB feature is better to capture the boundary details and
thus yields more accurate localization. Not surprisingly, with both RGB and ELA features,
the network is able to learn more inpainting clues and perform better. Adding the QDLA
module introduces feature adjacency relationships and thus leads to further improvement.
In addition, the comparison between Ours frame-by-frame and our final model verifies the
importance of temporal information in video inpainting detection.

Results on Free-form Video Inpainting Dataset. To further test the performance on
different dataset, additional evaluation is provided on Free-form Video Inpainting dataset
(FVI). FVI dataset [4] provides 100 test videos, which mostly targets multi-instance object
removal. We directly apply their approach, which leverages 3D gated convolution encoder-
decoder architecture for video inpainting, to generate the 100 inpainted videos. We directly
test the models trained on VI and OP inpainted DAVIS.

Tab. 3 displays the comparison results. Since both the dataset and inpainting approach are
different, the performance degrades due to the domain shift. However, compared to other ap-
proaches, our method still achieves better generalization by a large margin. Also, compared
with our baseline model which only uses RGB features, our approach shows clear improve-
ment. This further validates the effectiveness to combine both RGB and ELA features and
introduce spatial and temporal information.

Generalization to Different Inpainting Types. To test the model generalization and
dependency on inpainting methods, we directly test our model trained on VI and OP on
more SOTA flow-based [9] and transformer-based [46] inpainting methods. The results are
shown in Tab. 5. Due to the different inpainting mechanisms, we can observe a performance
degradation there. However, our model still shows better generalization.

Analysis on Inpainting Ratio. We divide the test samples into 5 groups according to
the ratio between inpainting area and the image size and compare the average F1 score in
each group in Tab. 6. Performances are worse in both large and small inpainting areas. Small
inpainting areas are difficult to predict because the compression inconsistency and inpainting
artifacts are hard to detect. For large areas, the model might predicts partial region and lead
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Inpainting ratio ~ VI* oP* (0)

FGVC [9] STTN [46]

Methods ToU/F1 ToU/F1 0-0.1 0.666  0.664 0596
HPF + LSTM 0.10/0.154  0.14/0.184 0.1-0.2 0.831 0848 0.775
GSR-Net+LSTM  0.170/0.261  0.383 /0.509 0.2-0.3 0.675 0.763  0.793
Ours 0.201/0.301  0.410/0.540 0.3-0.4 0383 0.537 0.540
Table 5: Mean IoU and F1 score 0.4-0.5 0.154 0242 0.262
comparison on DAVIS dataset with Table 6: Analysis on inpainting ra-
different inpainting algorithms. tio. The average pixel-level evaluation
All models are trained on VI and OP F1 score under different inpainting ratios.
inpainted DAVIS. The model is trained on VI and OP in-
painted DAVIS. (denoted as **°)

—_— - - =

Input
frame

HPF
GSR-Net ju

Ours

= [ IFEIFIFIRFEEN
truth
Pl . . il . ol .
Figure 5: Qualitative visualization on DAVIS. The first row shows the inpainted video frame.

The second to fourth row indicates the final predictions from different methods. The fifth
row is the ground truth.

to low F1 score; Also, there are limited training samples (less than 10%) for large inpainting
ratio and better performance is expected with more largely inpained data.

Qualitative Results. Fig. 5 illustrates the visualization of our predictions versus others
under the same setting. Visually, it is clear that our approach is able to obtain a closer
prediction to the ground truth than other methods. Specifically, HPF only transfers RGB
into noise domain, making it easier to produce false alarm. GSR-Net makes decision based
on boundary artifacts, which is not always the strongest artifacts generated by inpainting.
In contrast, our prediction utilizes multimodel features and QDLA module, our prediction
maintains spatial consistency.

S Conclusions and Application

We introduce learning based video inpainting detection in this paper. To reveal more inpaint-
ing artifacts from different domains, we propose to concatenate both RGB and ELA features.
Additionally, we encourage learning from adjacent features in a self-attended manner by in-
troducing a QDLA module. With both the adjacent spatial and temporal information, we
make the final prediction through a ConvLSTM based decoder. Our experiments validate
the effectiveness of our approach both in-domain and cross-domain. VID methods could be
applied as a forensic tool (e.g, in Photoshop) to reveal the fake videos on the internet. Thus,
we believe that detecting video inpainting is an important direction for future research.
Acknowledgement We acknowledge support from Facebook AI. Prof. Abhinav Shrivasta
also received funding support from the DARPA MediFor program under cooperative agree-
ment FA87501620191, “Physical and Semantic Integrity Measures for Media Forensics".
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