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Abstract

Leveraging temporal synchronization and association within sight and sound is an
essential step towards robust localization of sounding objects. To this end, we propose
a space-time memory network for sounding object localization in videos. It can simul-
taneously learn spatio-temporal attention over both uni-modal and cross-modal repre-
sentations from audio and visual modalities. We show and analyze both quantitatively
and qualitatively the effectiveness of incorporating spatio-temporal learning in localizing
audio-visual objects. We demonstrate that our approach generalizes over various com-
plex audio-visual scenes and outperforms recent state-of-the-art methods. Code and data
can be found at https://sites.google.com/view/bmvc2021stm.

1 Introduction

Neurological evidence suggests that human understandings of scenes predominantly rely on
the integration of visual and auditory cues [3]. As humans, we form attention mechanisms
to sounding sources by leveraging the temporal, cross-modal alignments between vision
and sound, where understandings of the past tell us where and what to attend to next. For
computational models, although there have been several developed sound source spatial lo-
calization frameworks [21, 22, 27], how much we gain from explicitly leveraging temporal
correspondence that exists naturally in both videos and audios is yet to be explored.

However, considerations of temporal coherence are required to facilitate consistent un-
derstandings in complex scenes. Imagine a person playing a guitar in front of a wall of
not-in-use guitars. In order to figure out which guitar is sounding and obtain stable localiza-
tion results, we must take multiple timesteps into account. Hence, it is worthwhile to explore
if learning temporal cues could benefit the localization of sounding objects in videos.

To localize visual objects associated with specific sound sources, most of the previous
works capture audio-visual spatial correspondence using similarities between audio and vi-
sual modalities [2, 15, 21], cross-modal attention mechanisms [25, 27], and sounding class
activation mapping [22]. Nevertheless, these methods often identify sounding objects for
static images, and audio-visual temporal coherence in videos is commonly ignored.
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Figure 1: Our space-time memory network learns to attend to objects that currently sound by
leveraging the temporal, cross-modal correspondence within sight and sound from the past.
Here, given the frames of the two objects in motion and the sound of the horse walking, our
model outputs stable and accurate localization results.

Consequently, the essential question we must answer is how to design an efficient multi-
modal deep neural network architecture that exploits the temporal coherence in visual frames
and the corresponding audio segments. In this paper, we propose a spatio-temporal attention-
based memory module, that can learn rich reference information from uni-modal as well as
cross-modal (audio-visual) representations. With temporal memory updates, our approach
is more robust against appearance and acoustic changes than the previous methods. It yields
more temporally consistent localization results and can handle the absence of audio-visual
events. In particular, to demonstrate the values of multi-modal temporal learning in sounding
object localization, we resort to an easily affordable, weakly-supervised task in classifying
the audio-visual event category of a given video segment.

Herein, our main contributions are: (1) we propose a novel space-time memory network
that learns representations of sounding objects to promote robust localization performance,
as illustrated in Figure 1; (2) we validate the effectiveness of temporal learning in localiz-
ing sounding objects both quantitatively and qualitatively based on numerical benchmarks
and visual interpretations; (3) we demonstrate that our approach generalizes over various
complex audio-visual events and outperforms recent state-of-the-art methods.

2 Related Work

2.1 Sounding Object Localization

Sounding object localization refers to the task of localizing visual objects/scenes associated
with specific sounds in videos. Early works resorted to mutual information [13] and canon-
ical correlation analysis [18] to perform localization and segmentation on sounding pix-
els. Recent efforts have learned deep audio-visual models to localize sounding pixels, using
audio-visual embedding similarities [2, 15, 21], cross-modal attention mechanisms [25, 27],
vision-to-sound knowledge transfer [6], sounding class activation mapping [16, 22], and
sounding object visual grounding [30]. While these methods work well on a single sound
source in the simple audio-visual scenes, they lack temporal knowledge and predict audible
regions solely based on the association of the current video frame with the corresponding
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audio segment. Most recently, Afouras et al. [1] compute audio-visual cross-modal attention
to spatially localize sounding regions. Moreover, they incorporate temporal learning into the
visual modality, where they propose to use optical flow that is separately learned to aggregate
information over time and group sound sources into audio-visual objects. Their model also
relies on speech-oriented tasks and scenes, assuming objects (speakers) of fixed size. By
contrast, not only does our spatio-temporal attention mechanism consider both uni-modal
and cross-modal representations, but it is also learned in an end-to-end manner. Hence, dif-
ferent from the previous methods, with learnable space-time memory modules, our model
can effectively leverage multi-modal contexts for localizing sounding objects and thus is
capable of handling diverse and complex audio-visual objects.

2.2 Audio-Visual Video Understanding

The community has attracted an increasing amount of interest in recent years since synchro-
nized audio-visual scenes are widely available in videos. In addition to localizing sound
sources, a wide range of tasks have been proposed, including audio-visual sound separa-
tion [7, 9, 26, 34, 35], audio-visual action recognition [10, 17, 19, 30], audio-visual event
localization [27, 33], audio-visual video captioning [23, 28, 32], embodied audio-visual nav-
igation [4, 8], audio-visual sound recognition [5], and audio-visual video parsing [29]. Our
framework demonstrates that temporal learning facilitates better audio-visual understanding,
which explicitly and subsequently benefits the localization performance.

3 Proposed Method

Our framework (see Figure 2) consists of three modules: audio and visual feature extraction,
memory construction and propagation, and sounding object localization. Given a video, it
learns to attend to objects that sound in video frames. The spatio-temporal attention mech-
anisms are designed to leverage both uni-modal and cross-modal representations. It is sup-
ported by the idea of accumulating the past evidence into memory, which is then aggregated
and propagated onto the current timestep. Through the task of audio-visual event classifica-
tion, our model facilitates audio-visual understanding by learning spatio-temporal attention
mechanisms that locate sounding objects.

3.1 Audio-Visual Feature Extraction

Consider T audio-visual pairs {X!,X’}" | as inputs, where X! € RE>W>3 x1 ¢ RM*Nx1 ge.
note the frame and its corresponding audio log-mel spectrogram at timestep ¢ respectively.
Let H,W,M N denote the height, width, frequency, and time. For a given pair, we employ
two convolutional encoders to project uni-modal features into C-dimensional joint audio-
visual subspace for spatial-temporal attention in memory. Let 4, w and m,n denote the corre-
sponding spatial dimensions of the feature maps. We obtain visual feature map x, € RlxwxC
and audio feature map x!, € R"™*"<C_ This is reflected by steps 1 to 2 in Figure 2.

3.2 Audio-Visual Memory Accumulation and Propagation

To efficiently accumulate and aggregate the temporal audio-visual evidence, we propose
to build memory modules for audio and visual representations both separately and jointly,
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Figure 2: Overview of the Space-Time Memory Network: (1-2) extracts audio and visual
features from inputs. (3) constructs one cross-modal memory module and two uni-modal
memory modules. (4) first propagates the uni-modal memory, then computes cross-modal
attention, and propagates the cross-modal memory. (5) computes spatial attention from the
memory-propagated audio features to the memory-propagated audio-visual features. The
outputs is an attention map that localizes sounding objects, which is used for downstream
audio-visual event classification during training.

which we collectively refer to as the Spatio-Temporal Memory Layer. Here, we introduce
the attention mechanisms in space and time, then describe how they form the memory layer.
Cross-Modal Spatial Attention /. We measure the similarity between the extracted uni-
modal features x}, and x!, at the given timestep 7. We denote the cross-modal spatial attention
function as f(x,, x,) = o, such that f : R™*"xC 5 RixwxC_ RhxW For each position (i, j)
in x, the attention weight can be computed by:

exp(x, (i, /)9 () ")
Y jexp(ad (i, ))o(x)T)

Here, we adopt dot product as a generic choice to compute the spatial similarity and ¢(-) is a
global pooling operation over the spatial dimension of its input. We compute the cross-modal
audio-visual features x/,, € R>wXC by multiplying the learned spatial attention map with
every channel ¢ € {1,...,C} in the visual feature map. Specifically, ., (i, j,c) = o, (i, ]) *
X, (i, j,c). For every pixel in a given frame X!, we have thus found its affinity with the aligned
audio input X! via cross-modal spatial attention f on the feature level.

Multi-Modal Temporal Attention g. Our memory formulation is generic and can be adapted
to both uni-modal and cross-modal representations. Consider the modality m € {a,v,av} and
the previous timestep k € {1,...,K}. We seek to measure the importance of xX, with respect
to x!, from the current timestep. We denote the multi-modal temporal attention function as

ey

0ty (1) =

g 2k = ﬁ,lf,’ where h,,, w,, denote the spatial dimensions of the feature maps of modality
m, such that g : Rm>*WmxC s RhnxwnxC R
We adopt the generic multi-head scaled dot-product attention from Vaswani et al. [31],
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where we view x, as queries and x£, as keys and values. For each of the L attention heads,
we globally pool the input feature maps into feature vectors, and compute the set of atten-
tion weights over K timesteps. Concretely, the multi-modal temporal attention function is
formulated as:

Bi' = ZA JW ()W) o)

1 uer: T
where A(Iguery, lkey) = softmax(~ \kk@ ) denotes the attention function, C corresponds to the

key

number of dimensions for keys and queries, and W,“"”, W' are the learnable projections.

Having computed the set of attention weights, we propagate the memory to the current

timestep 7 to obtain X/, = B’ *x!, +YX | ﬁ,lf;t s xk . Hence, the multi-modal temporal atten-
tion takes into account the importance of the past & to the present 7.
Spatio-Temporal Memory Layer. We now describe the algorithm that combines the two
proposed attention mechanisms in space and time. Our memory layer first leverages the
uni-modal association in time by applying the temporal attention g to x’, x!, respectively.
It then considers the cross-modal association in space by applying the spatial attention f to
X% . Finally, the memory layer derives the cross-modal association in time by applying the
temporal attention g to &,,. This is reflected by steps 3 to 4 in Figure 2 and Algorithm 1.

Algorithm 1 Spatio-Temporal Memory Layer Pseudocode

1: procedure MEMORYLAYERFORWARD( o { (K K KK )

2 it = TemporalAttention(x,, {xk } k:l) > Uni-Modal Temporal Attention
3 &, = TemporalAttention(xi,, {xk}§_)) > Uni-Modal Temporal Attention
4: i, = SpatialAttention (i, x') > Cross-Modal Spatial Attention
5 i, = TemporalAttentlon( s () > Cross-Modal Temporal Attention
6 return i, %

7. end procedure

3.3 Localizing sounding objects

To extract audio-visual objects from various audio-visual events, we cannot impose an as-
sumption on the sizes of the objects. We propose two post-processing approaches, using
contour detection and pre-trained object-proposal-networks, respectively.

Given outputs i, i, from the memory layer, we compute the cross-modal spatial at-
tention map &, = f (i, i), which we view as the final sounding object localization map.
This is reflected by step 5 in Figure 2. We generate bounding boxes by applying Otsu’s
threshold [20] and contour detection to the normalized spatial attention map. Alternatively,
the attention map ¢, can also be incorporated into robust object instances generated by out-
of-the-box object proposal methods. Given frame X/, we extract N object instances using a
region-proposal-network (RPN). We convert them into binary masks {mn}n 1» with 1 indi-
cating the instance and O otherw1se. We calculate the individual score of each box S, as the
weighted sum between m), and &, or S}, = ¥.; ;mj, (i, j) * &}, (i, j), and apply non-maximum

suppression (NMS) to filter overlapping boxes.
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3.4 Learning Spatio-Temporal Attention Mechanisms

We utilize the easily affordable, weakly-supervised classification task on audio-visual event
categories to learn the proposed spatio-temporal attention mechanisms. We fuse the outputs
from the memory layer, including the uni-modal audio feature vector &, and the cross-modal
audio-visual feature map i/, to obtain a joint representation. In particular, we sum i, over
its spatial dimensions, since it is already weighted by the spatial attention f, and concatenate
the result with &,. This gives us the final output of our network at timestep #, denoted as
O' € R*. Concretely, O" = [¥; &, (i, j):4%], where [...;...] denotes concatenation. This
joint audio-visual representation is used to estimate the audio-visual event category for the
given video segment using a multilayer-perceptron (MLP) and the cross-entropy loss.

4 Experiments

4.1 Datasets

To carefully and temporally evaluate the localization performance, we emphasize three as-
pects when tailoring dataset: the scope of the sounding object categories covered, the scale
of the testing examples contained, and the number of frames per video densely annotated.
Therefore, we use AVE dataset [27] for scope and AudioSet-Instrument dataset [11] for
scale. For both datasets, we densely annotated frames in the test videos.

AVE: Audio-Visual Event Dataset. AVE dataset [27] consists of 4143 10-second video
clips that are labeled with the audio-visual event, covering 28 categories. Although the
dataset is also temporally labeled with audio-visual event boundaries, to demonstrate the
effectiveness of our weakly-supervised learning framework, we include the whole length of
every video. We adopt the original data split, including 3339 videos for training, 402 for
validation, and 402 for testing.

AudioSet-Instrument. AudioSet-Instrument dataset is a subset of AudioSet [11] that con-
sists of 101076 10-second video clips, spanning across 15 instrument categories. It contains
challenging video clips, where many are of poor quality with multiple sound sources. We
use 100221/424/424 for training/validation/testing.

Annotations. We annotated test sets in AVE and AudioSet-Instrument, where we created
bounding boxes for sounding objects in the duration of the audio-visual event. For repro-
ducibility, we will release the annotations with source code.

4.2 Implementation Details

Data Preprocessing. During training, we randomly sample one second and extract its cor-
responding audio-visual pair {(X!,X?)}L |, where T denotes the number of frames, as well
as the number of audio segments, we sample per second. In practice, we use T = 4. During
the evaluation, 7 corresponds to the number of frames that are annotated in the given video.
Final input frames are of spatial dimensions 256 x 256. During training, this is achieved by
resizing the image by a scale of 1.1 and randomly crop it to the desired size. During the eval-
uation, every frame is directly resized to the target dimensions. Audio inputs are re-sampled
to 16 kHz mono and its corresponding spectrogram is computed through Short-Time Fourier
Transform with a Hann window size of 25ms and a hop length of 10ms. For every input
frame, we use the output spectrogram of its temporally-aligned audio segment.
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Figure 3: Qualitative Visualizations: We show localization results from the two datasets.
Top four rows contain results from the AVE dataset. Bottom four rows contain results from
the Audioset-Instrument dataset. Bounding boxes are extracted from the cross-modal spatial
attention maps, using Otsu’s threshold and contour detection.

Encoder. We use ResNet-152 [12] to extract 2048-D per-frame visual features and VGGish
[14] to extract 512-D per-segment audio features, they are then each projected to a 256-D
joint feature space by a stack of 1x1 convolutions with ReLU non-linearity.

Memory Module. We use Multi-head scaled dot product attention with 256-D embedding
dimension and 1 head.

Sounding Object Extraction. To localize objects that sound from the cross-modal spatial
attention map, we use bilinear interpolation to resize to 256 x 256. We then normalize the
attention map by subtracting the minimum and dividing by the maximum, resulting in a
lower bound of 0 and an upper bound of 1. We use Otsu’s threshold and contour detection
to extract bounding boxes for experimental comparison and ablation study. For the RPN-
based extraction method demonstrated in Figure 7, we used a Faster R-CNN model with a
ResNet-50-FPN backbone [12, 24], pretrained on COCO train2017.

Hyperparameters. In our experiments, we use batch size 128 and 30 epochs. Our frame-
work is trained with Adam optimizer with the initial learning rate of 10~ on four NVIDIA
1080Ti GPU.

Evaluation Metrics. To evaluate the localization performance of our framework, we employ
Intersection over Union (IoU) for the box-level localization performance and Consensus
Intersection over Union (cloU) proposed in [25] for the pixel-level localization performance.
We now expand on details of cloU calculations. Given an annotated frame, we convert the
ground truth bounding boxes {b j}lj\’:l into a binary ground truth map g, where 1 indicates
that a pixel is sounding and 0 otherwise. Given predicted location map «, we define cloU

under threshold 7 as: cloU(T) = #ﬁm. Here, i is the pixel index of the map.
18l e, T)—

A(7) = {ila; > T} denotes the set of pixels with attention intensity higher than the threshold,
and G = {i|g; > 0} represents the set of pixels annotated as positive. We use 0.5 as the cloU
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(e) Our model

Figure 4: Experimental Comparison: We qualitatively compare the localization perfor-
mance of our framework with two recent methods by Tian et al. [27] and Qian et al. [22].

threshold in our experiments.

4.3 Results

In Figure 3, we illustrate sounding object localization results on AVE and Audioset-Instrument
datasets. We observe that our model is capable of correctly discovering sounding regions for
a wide range of sound sources in challenging unconstrained videos.

Experimental Comparison. To further validate the effectiveness of our space-time memory
network, we compare it with three recent methods: Owens and Efros [21], Tian et al. [27],
Qian et al. [22], and Hu et al. [16]'. We demonstrate the quantitative results in Table 1 and
the qualitative results in Figure 4°. We find that our framework outperforms the compared
approaches on AVE and Audioset-Instrument datasets both quantitatively and qualitatively,
which substantiates the benefits of the proposed space-time memory network in localizing
dynamic audio-visual objects.

Ablation Study. To evaluate the effectiveness of our proposed memory module, we conduct

! Afouras et al. [1] was not compared since their framework is trained on speech-oriented downstream tasks and
imposes an assumption on the size of the sounding object.
2More results can be found in our supplementary material.
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Method AVE Audioset-Instrument
cloU@0.5 IoU@0.5 cloU@0.5 IoU®@0.5
Tian et al. [27] 11.73 18.81 25.11 33.20
Owens et al. [21] 13.96 22.64 21.79 38.08
Qian et al. [22] 24.16 16.82 20.16 31.31
Hu et al. [16] 21.25 33.05 33.74 40.02
Ours 37.78 37.50 51.06 56.49

Table 1: Localization results of different methods on AVE and Audioset-Instrument datasets.
All methods are evaluated by IoU@0.5 and cloU@0.5. The top-1 result in each column is
highlighted.

(c) Uni-Modal Memory (d) Cross-Modal + Uni-Modal Memory

Figure 5: Ablation Study: Visualizations of sounding object localization from the three
ablative groups. Here, only horse is making audible sounds.

ablation study for the following models: (1) Cross-Modal Memory + Uni-Modal Memory
(C+U): we employ both uni-modal and cross-modal temporal learning modules. (2) Uni-
Modal Memory (U): we remove the cross-modal memory module, propagating memory on
a uni-modal level only. (3) Without Temporal: we remove both uni-modal and cross-modal
memory modules. Without temporal learning, the baseline model associates frames and
sounds on single timesteps. We show the quantitative results in Table 2 and the qualitative
results in Figure 5. We find that (1) outperforms the other two ablative groups numerically
and demonstrates significantly more robust visualization results.

Method AVE Audioset-Instrument
cloU@0.5 IoU@0.5 cloU@0.5 IoU®@0.5
Without Temporal 34.81 33.82 44.30 51.57
U 36.41 35.23 48.96 53.19
C+U 37.78 37.50 51.06 56.49

Table 2: Ablation Study: Localization results of the ablative groups on AVE and Audioset-
Instrument datasets. All methods are evaluated by IloU@0.5 and cloU@0.5. The top-1 result
in each column is highlighted.

Handling the absence of audio-visual events. Given that not all audio-visual segments con-
tain audio-visual events, we further demonstrate the robustness of our model in a challenging
example in Figure 6. While the cello performer has lifted her bow up, it is impossible to tell
whether the flute is sounding merely from sight. Our framework identifies the non-sounding
frames by resorting to sound.
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Figure 6: Handling the absence of audio-visual events: In this challenging example (top),
both performers stop playing between the third and the fourth steps, and resume on the
fifth step. We show our model performance (bottom), where background class is predicted
following an absence of audio-visual events.

Audio-Visual Object Grounding. Following the RPN-based approach to extract sounding
objects, we demonstrate how our cross-modal attention map can be incorporated to further
refine localization performance in Figure 7.

(a) Attention Output (b) Box Proposals (c) AV Grounding

Figure 7: Audio-Visual Object Grounding: Using a pretrained RPN, our grounding ap-
proach can further refine the localization performance of our framework. Here, we show (a)
the final model output followed by contour detection, (b) the extracted box proposals, and
(c) the audio-visual object grounding results.

5 Conclusion

In this paper, we investigate the effectiveness of multi-modal temporal learning in localizing
audio-visual objects. We propose a novel space-time memory framework to address the
problem. Results from experimental comparison and ablation study support our claim both
objectively and subjectively that multi-modal temporal learning is crucial for robust sounding
object localization performance.

Acknowledgements: We would like to thank the anonymous reviewers for the constructive
comments. This work was supported in part by NSF 1741472 and 1909912. The article
solely reflects the opinions and conclusions of its authors but not the funding agents.
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