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Abstract

The state-of-the-art one-stage detectors are usually implemented with Feature Pyra-
mid Network (FPN) as neck. FPN fuses multi-scale feature information so that the detec-
tor can better deal with objects with different scales. However, FPN has information loss
due to feature dimension reduction. In this paper, we introduce a new feature enhance-
ment architecture named Multi-scale Feature Enhancement (MFE). MFE includes Scale
Fusion, CombineFPN and Pixel-Region Attention module. Scale Fusion can supplement
the low-level information to the high-level features without the influence of semantic gap.
CombineFPN further combines top-down and bottom-up structure to reduce the informa-
tion loss of all scale features. Scale Fusion and CombineFPN can fully fuse features from
different levels to enhance the multi-scale features. Pixel-Region Module, a lightweight
non-local attention method, is finally used to enhance features with distant neighborhood
information. For FCOS, RetinaNet and Mask R-CNN with ResNet50, using MFE can
increase the Average Precision (AP) by 1.2, 1.1 and 1.0 points on MS COCO test-dev.
For ATSS and FSAF with ResNet101 as backbone, using MFE can increase AP by 1.2
and 1.3 points. Our method also performs well on Pascal VOC dataset.

1 Introduction
Object detection is one of the most critical and challenging tasks in the field of computer vi-
sion. It aims to predict the positions and categories of objects in the image. Object detection
task is widely utilized in autonomous driving, medicine, robot, to name a view. With the
continuous development of deep learning, object detection has made remarkable progress.

At present, many state-of-the-art detectors are FPN-based [4, 16, 22, 23, 27, 31, 34, 40,
41, 43]. FPN[22] is a top-down architecture with skip connections, which can significantly
improve the detector’s performance. Classification and regression operations are appended
after FPN. The architecture is illustrated in Figure 1 (a).

FPN can be divided into two stages: (1) feature dimension reduction, (2) feature fusion.
These two parts constitute the feature pyramid, enabling the rich semantic information of
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Figure 1: The left is FPN-based one-stage method, the other is the structure of MFE. Three
components constitute into MFE: Scale Fusion, CombineFPN and PRA. PRA means Pixel-
Region Attention module.

high-level features to be transmitted to low-level features. However, FPN has two limi-
tations: First, after feature dimension reduction, the features of different levels obtained
from backbone network will have significant information loss, especially for the high-level
features. Although the top-down structure of FPN can make up for the information loss
of low-level features, it supplements less information for the higher levels of features. The
highest-level feature are not supplemented by any information. Second, in feature fusion,
FPN only considers transmitting the semantic information in high-level features to the low-
level features. Zeiler and Fergus[39] points out that the high-level neurons have a strong
response to the whole object, while the low-level neurons are more likely to respond to the
object’s texture and details. Therefore, low-level features with rich detail information can be
exploited more by FPN.

FPN-based detection methods can be divided into one-stage methods[23, 34, 41, 43] and
two-stage methods[16, 22, 27, 31]. Two-stage methods first use region proposal network
(RPN) to select regions where there may be objects, which can filter out negative sample
regions as much as possible. These regions can be called region proposals. According to
the size of region proposals, they will be assigned to different feature layers. Small region
proposals will be assigned to the low-level feature maps, and large region proposals will
be assigned to the high-level feature maps. Then the feature map corresponding to region
proposals will be captured for concrete classification and more accurate positioning. With
the continuous improvement of the two-stage method, many methods[13, 25] will allocate
each region proposal to all pyramid features and use captured region proposal features from
different pyramid levels to provide better features for location refinement and classification.
For two-stage methods, this improvement can alleviate the two drawbacks of FPN, but the
one-stage method does not have an effective way to solve these problems.

One-stage methods usually perform pixel-level classification of feature maps, like FCOS
[34], which is similar to semantic segmentation tasks. Many segmentation tasks[9, 18] utilize
the non-local attention mechanism to obtain the correlation between different pixels, thereby
improving pixel-level segmentation accuracy. Therefore, non-local attention should be able
to improve one-stage detectors that need pixel-level classification. However, the non-local
attention mechanism has a large amount of calculation and takes up too much computing
resources. At present, the object detection network has occupied lots of GPU memories,
so the non-local attention mechanism is challenging to apply to detection tasks with limited
computing resources.

In this paper, we propose MFE, an effective multi-scale feature enhancement method
including Scale Fusion, CombineFPN, and Pixel-Region Attention module, which integrates
three different components to address the above problems. MFE is illustrated in Figure 1 (b).
Without bells and whistles, we evaluate the proposed methods on the MS COCO dataset[21].
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MFE-based FCOS reports an AP of 37.8 points and 43.8 points, which outperforms FPN-
based FCOS by 1.1 points and 0.8 points AP when using ResNet50[15] and ResNet101 as the
backbone respectively. Furthermore, by utilizing MFE RetinaNet[23], ATSS[41], FSAF[43]
are improved by 1.5 points, 1.2 points and 1.3 points respectively, when using ResNet101 as
the backbone.

We summarize our contributions as follows:

• We observe the information loss of FPN and its limitation in transmitting low-level
features, and propose Scale Fusion and CombineFPN for enhanced feature fusion.

• We propose a Pixel-Region Attention module to further enhance the features of FPN
with distant regional correlation. PRA is a light-weight attention module that can be
efficiently incorporated with popular detection methods.

• We have verified various detectors equipped with our method on two datasets, and
results show that our method can constantly improve FPN-based detectors by about 1
point AP on MS COCO and 2.5 points AP on Pascal VOC.

2 Related Work
The main task of object detection is to locate and classify the objects in the image. In
the field of deep learning, object detection methods can be roughly classified as two-stage
methods[1, 5, 7, 11, 12, 13, 16, 31] and one-stage methods[4, 6, 8, 20, 26, 29, 30, 34, 38].

Two-stage object detection tasks can be divided into two steps: first, extract region pro-
posals known as Region-of-Interest (RoI), and then classify and regress according to the
extracted region proposals features. R-CNN[12] introduces the two-stage method, and R-
CNN uses selective search[35] method to generate region proposals, then the extracted im-
age region is processed by convolution neural network and SVM. SPP-Net[14] and Fast
R-CNN[11] perform convolution operations on the whole image to extract features. They
use spatial pyramid pooling and RoI pooling respectively to extract region features, which
improves the detection performance. Faster R-CNN[31] proposes RPN (region proposal net-
work) to make the two-stage method end-to-end training and uses anchor box for the first
time. RPN selects the foreground anchors from all the anchors through binary classifica-
tion, and the anchors are regressed to accurate proposals. Since then, the use of anchors
has become more popular. Based on Faster R-CNN, Mask R-CNN[16] adds a branch of
semantic masks prediction, which can perform multiple tasks simultaneously, and proposes
RoI align to replace RoI pooling, which solves the misalignment problem caused by RoI
pooling. Cascade R-CNN[1] is a multi-stage method based on two-stage, which sets dif-
ferent IoU thresholds for each stage and gets more accurate detection results after several
iterations. According to the idea of the two-stage method, CPN[7] improves CornerNet[20],
a one-stage method, to a two-stage method, improving detection accuracy.

One-stage object detection methods do not explicitly generate region proposals but di-
rectly classify and regress the bounding box. YOLO[30] divides the image into S× S grids
and then classifies and regresses the grids. YOLOv2[29] uses anchors to replace the grids in
YOLO and introduces batch normalization and a high-resolution classifier to improve perfor-
mance. SSD[26] sets dense anchors on multi-scale features and then classifies and regresses
based on these anchors. DSSD[8] adds a deconvolution module to SSD and uses skip con-
nections to fuse low-level features to high-level features. RetinaNet[23] proposes a novel
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focal loss to solve the imbalance problem of positive and negative samples. Because using
anchors will bring much calculation, so the anchor-free method is becoming more and more
popular. FCOS[34] is an anchor-free detector based on FPN, which predicts the distance
between positive sample points and four sides of the bounding box. FCOS achieves compa-
rable accuracy with the two-stage method. Some methods based on key-point detection also
achieve excellent results, like CornerNet[20] and CenterNet[6]. However, the FPN-based
one-stage method does not have a suitable way to fuse multi-scale features.

The non-local attention mechanism is often used to capture rich long-range depen-
dencies. Non-local neural network[37] captures the long-range dependence by calculating
the correlation between each pixel. DANet[9] introduces the attention between channels
based on non-local neural networks. Because of the large amount of calculation in the
non-local network, it is not easy to be generalized. CCNet[18] introduces the Criss-Cross
attention module to obtain long-range dependencies, which significantly reduces memory
consumption and calculation. GCNet[2] proposed a Global Context block, inspired by
Non-local attention and SENet, which uses global information to generate channel atten-
tion. Liu[24] combines Non-local attention and SE block to improve feature representation
and discrimination. Joutard[19] introduced a self-attention module called Permutohedral At-
tention Module, which utilizes the efficient approximation algorithm of the Permutohedral
Lattice. RNAN[42] utilizes the Non-local attention model to establish a residual non-local
attention block to obtain the long-range dependencies of the image, and the residual convolu-
tion block obtains the local dependencies. Ramachandran[28] proposed a local self-attention
layer, which takes content-based interactions as the primary feature extraction tool to re-
place convolution operation. Zhu[45] proposed two self-attention modules, the asymmetric
pyramid non-local block (APNB) and the asymmetric fusion non-local block (AFNB), to
improve the performance of semantic segmentation. APNB realized the lightweight of pa-
rameters with the help of SPP, and AFNB established the relationship between different scale
features.

In object detection tasks, there are also some methods to improve the performance by
acquiring long-range dependencies. Hu[17] proposed an object relation module based on
self-attention, which models different objects’ relations by integrating appearance features
and geometry information. HoughNet[32] proposed a voting-based object detector that inte-
grates both near and long-range feature information for visual recognition. Transformer[36]
based on self-attention performs excellently in NLP tasks. Recently, there are already been
methods to introduce transformer into computer vision. Due to the self-attention and residual
structure in the transformer, it also has a good performance in the field of object detection,
such as DETR[3] and Deformable DETR[44]. However, the transformer-based methods
need much more training data and training time than the CNN-based methods.

FPN-based methods are popular in the field of computer vision. In instance segmen-
tation, PANet[25] adds a bottom-up path to supplement the low-level information to the
high-level features, which shortens the information path between lower layers and topmost
feature. In object detection tasks, Libra R-CNN[27] proposed a Balanced Feature Pyra-
mid (BFP), consisting of four steps, rescaling, integrating, refining and strengthening to
strengthen the multi-level features using the same deeply integrated balanced semantic fea-
tures. NAS[46] provides a new exploration direction for vision tasks. NAS-FPN[10] and
Bi-FPN[33] employ neural architecture search to search FPN and PAFPN, respectively, for
a better cross-scale feature network topology. However, the search process requires a huge
amount of GPU resources and time.
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3 Proposed Method

Our approach introduces Scale Fusion, CombineFPN and resource-saving Pixel-Region At-
tention module to enhance multi-scale features of the FPN-based one-stage method.

3.1 Scale Fusion

In FPN, feature map C2 also participates in downsampling and pyramid operations. However,
some FPN-based object detection networks [23, 34] do not use C2 in the pyramid operation
but generate features P6 and P7 based on high-level features. Although it can enrich the se-
mantic information of the object, it loses some details and texture information. This inspires
us to propose Scale Fusion, which can supplement the information of C2 to features from
different levels in different ways. The Scale Fusion Module is shown in the blue dotted box
in Figure 2.

Specifically, we perform 1×1 convolution dimension reduction on {C3,C4,C5} to gen-
erate {T3,T4,T5}. Then we downsample C2 to get T ′3 which has the same resolution with T3.
Because the dimension of C2 is 256, it is the same as the dimension of the feature map after
dimension reduction, so dimension reduction is not necessary. We perform an element-wise
sum operation on T3 and T ′3 to generate N3. Then T ′3 is down-sampled to get T ′4 which have
the same resolution with T4, then we perform an element-wise sum operation on T4 and T ′4
to generate N4. Because T3 and T4 are low-level features and have small semantic gap with
C2, they can be fused directly by element-wise sum operation.

However, T5 is a high-level feature. Due to the inconsistent semantic information be-
tween low-level and high-level features, direct fusion will affect multi-scale feature repre-
sentation. In order to solve this problem, we propose Multi-scale Semantic Fusion (MSF)
module (as shown in Figure 3.), which is a component in Scale Fusion. The input of MSF
module is high-level feature T5 and {N3,N4} fused with C2 feature. We integrate input into
feature G ∈ RH×W×3C, G = {G1,G2,G3}= {T 5,D2(N4),D4(N3)}, where Di means down-
sampling operation with the stride of i. Then weight-calculation network process feature G
to generate position weight map K ∈ RH×W×3, where K = {K1,K2,K3}, Ki is i-th weight
map. The position weight map is integrated with feature G to get N5.

N5 =
3

∑
i=1

Ki�Di (1)
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map of size S×N, which is outputted after softmax operation and represents each pixel’s
correlation coefficient to different regions. The 1-th, 6-th, 21-th and 110-th rows of the
matrix respectively indicate the correlation of each pixel to the whole image, the blue box
area, the green box area and the yellow box area.

Through MSF, the information of C2 can be transmitted to high-level features with the
help of middle-level features, and the multi-scale feature representation ability of high-level
features will not be affected. The output features of scale fusion are {N3,N4,N5}.

3.2 CombineFPN Module
In FPN, the feature pyramid only contains the top-down structure, and the feedforward com-
putation of the backbone is regarded as the bottom-up structure. However, FPN does not
consider the problem of information loss caused by backbone dimension reduction. Accord-
ing to the above analysis and the motivation in Section 3.1, the feature pyramid also needs
a bottom-up structure to compensate for the loss of information at different levels. The goal
of this section is to integrate the top-down and bottom-up structure by CombineFPN. The
CombineFPN module is shown in the red dotted box in Figure 2.

The top-down structure of CombineFPN is consistent with FPN. The input features
{N3,N4,N5} are from Scale Fusion. Features {P3,P4,P5} are generated by the top-down
structure. Then we perform two different stride downsampling operations on P5 to get
{P6,P7}. The bottom-up structure shares input with the top-down structure and RP3 is sim-
ply N3, without any processing. We use a 3× 3 convolution layer with stride 2 to down-
sampling RPi−1, and then we perform an element-wise sum operation with Ni to get RPi,
which is an iterative process until RP5 is generated. We then perform two different stride
down-sampling operations on RP5 to get {RP6,RP7}. We fuse features {P3,P4,P5,P6,P7} and
{RP3,RP4,RP5,RP6,RP7} by an element-wise sum operation, respectively. Finally, the fused
feature maps are processed by another 3×3 convolution layer to reduce the aliasing effect.
The final features {FP3,FP4,FP5,FP6,FP7} are used as the input of the head part.

3.3 Pixel-Region Attention Module
The head part equipped with the Pixel-Region Attention module is shown in Figure 1. There
are two branches in the head part. One is a regression branch to predict the distance be-
tween the pixels and borders, and the other is to classify each pixel of the feature map.
Pixel-Region Attention module is supplemented after the first convolution layer of the clas-
sification branch. The Pixel-Region Attention module is shown in Figure 4(a). The input
feature x ∈ RH×W×C is processed by three different 1×1 convolutions to obtain the features
Q ∈ RH×W×C/8, K ∈ RH×W×C/8 and V ∈ RH×W×C. Compared with the input features, the
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Method GN Backbone AP AP50 AP75 APS APM APL

FCOS[34] ResNet-50 36.7 55.6 39.2 20.0 39.2 46.1
FCOS† X ResNet-50 38.6 57.5 41.6 21.6 41.0 49.0
FCOS* X ResNet-101 43.0 61.7 46.3 26.0 46.8 55.0

FCOS(AugFPN[13]) X ResNet-50 37.9 58.0 40.4 21.2 40.5 47.9
RetinaNet[23] ResNet-50 36.9 56.2 39.3 20.5 39.9 46.3

RetinaNet(PANet[25]) ResNet-50 37.1 56.3 39.7 20.9 40.3 45.7
RetinaNet(AugFPN[13]) ResNet-50 37.5 58.4 40.1 21.3 40.5 47.3

RetinaNet(BFP[27]) ResNet-50 37.8 56.9 40.5 21.2 40.9 47.7
RetinaNet ResNet-101 39.1 59.1 42.3 21.8 42.7 50.2
ATSS*[41] ResNet-101 43.6 62.1 47.4 26.1 47.0 53.6
FSAF[43] ResNet-101 40.9 61.5 44.0 24.0 44.2 51.3

RepPoints[38] ResNet-50 38.3 59.2 41.3 21.9 41.5 47.2
Faster R-CNN[31] ResNet-50 36.5 55.4 39.1 20.4 40.3 48.1
Mask R-CNN[16] ResNet-50 38.0 58.6 41.4 21.7 41.4 50.6

FCOS(ours) ResNet-50 37.8[+1.1] 57.1 40.3 20.1 40.4 48.3
FCOS(ours)† X ResNet-50 39.7[+1.1] 58.2 42.3 22.4 42.1 49.3
FCOS(ours)* X ResNet-101 43.8[+0.8] 62.9 47.5 26.0 46.8 55.0
FCOS(ours) X ResNet-50 38.2 58.2 40.7 20.5 41.1 48.4

RetinaNet(ours) ResNet-50 38.0[+1.1] 57.9 40.5 21.7 41.1 46.5
RetinaNet(ours) ResNet-101 40.6[+1.5] 60.8 43.3 22.8 43.8 51.7

ATSS(ours)* ResNet-101 44.8[+1.2] 63.3 48.8 27.1 48.1 55.9
FSAF(ours) ResNet-101 42.2[+1.3] 62.3 45.0 23.3 45.1 53.8

RepPoints(ours) ResNet-50 39.2[+0.9] 60.4 42.2 23.1 42.7 48.0
Faster R-CNN(ours) ResNet-50 37.4[+0.9] 58.3 40.5 21.5 41.0 48.2
Mask R-CNN(ours) ResNet-50 39.0[+1.0] 59.3 42.5 22.6 42.4 51.0

Table 1: Comparison with the state-of-the-art methods on COCO test-dev. The symbol ’*’
means multi-scale training. The number in [] stands for the relative improvement. The
symbol ’†’ means a better baseline with some tricks.

feature dimensions of Q and K are reduced by eight times. The calculation of correlation
degree between location and region does not need a vector with too high dimension, only
the representative vector of each location. Reshape Q to Q′ ∈ RN×C/8, where N = H×W is
the number of feature pixels. Spatial Pyramid Pooling (SPP)[14] is performed on K and V
to generate K′ ∈ RC/8×S and V ′ ∈ RC×S, where S is the total pixel number of all pooling fea-
tures which are generated by each pooling operation in SPP operation. SPP contains several
pooling operations with different kernel sizes, which can obtain global context information
and context information of different regions. Then perform a matrix multiplication between
the transpose of Q′ and K′, and then apply a softmax layer to calculate the Pixel-Region
attention map M ∈ RN×S.

After that, we perform a matrix multiplication between the transpose of M and V ′ and
reshape the result to RH×W×C. Then we multiply it by γ to get the weighted feature K. γ

is a scale parameter, which is initialized to 1 and adjusted gradually by backpropagation.
Finally, we perform an element-wise sum operation on K and the input feature X to generate
the output feature PR ∈ RH×W×C, as shown below. f is the reshape function.

PR = γ f (MTV ′)+X (2)

4 Experiments
All our experiments were carried out on the MS COCO or Pascal VOC datasets. MS COCO
dataset contain 80 object categories and 1.5 million object instances. We use the ’train2017’
set, including 118K images for training, and the ’val2017’ set, including 5K images as the
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CFPN SF PRA AP AP50 AP75 APS APM APL

36.2 54.6 38.4 20.3 39.4 47.4
X 36.6 55.1 38.9 20.5 40.4 47.7

X 36.5 55.0 39.0 20.1 40.0 48.1
X 37.0 56.0 39.5 21.1 40.7 48.2

X X 36.9 55.4 39.2 20.3 40.4 48.5
X X X 37.4 56.4 39.6 21.5 41.2 49.0

Table 2: Effect of each component based on
ResNet-50 backbone and FCOS. Results are
reported on COCO val2017. CFPN means
CombineFPN. SF means Scale Fusion. PRA
means Pixel-Region Attention module.

T3 T4 T5 AP AP50 AP75 APS APM APL

MSF MSF MSF 36.2 54.7 38.3 20.4 39.6 47.0

EWS EWS EWS 36.2 54.7 38.6 20.5 39.3 47.4

EWS EWS MSF 36.5 55.0 39.0 20.1 40.0 48.1

Table 3: Ablation studies of Scale Fu-
sion on COCO val2017. MSF, EWS
means Multi-scale Semantic Fusion and
Element-Wise Sum operation. They are
fusion method between C2 and Ti.

verification set. We perform ablation study and visualization experiments on the validation
set. The final results are reported on ‘test-dev’. Pascal VOC dataset contain 20 object cate-
gories. We use the ’VOC2012train’ and ’VOC2007tain’, including 16K images, for training.
’VOC2007test’ including 5K images is the test set.

4.1 Implementation Details

We use ResNet as the backbone network and adjust the input image to keep the shorter
edge being 800 and the longer edge no more than 1333. The whole network is trained using
Stochastic Gradient Descent (SGD) algorithm for 12 epochs with 0.9 momentum and 0.0001
weight decay. We set the initial learning rate as 0.01 and reduce it by a factor of 10 at epoch
8 and 11, respectively. We use 8 2080ti GPUs to train the network, and each GPU allocates
two images, so the batch size is 16.

4.2 Main Results

We verify the state-of-the-art one-stage detectors equipped with MFE on the COCO test-dev
and Pascal VOC datasets and compare them with the original methods. In order to be fair,
the parameter setting in our experiment is consistent with the original method. All the results
are shown in Table 1 and Table 4.

For anchor-free method. In our experiment on COCO dataset, we use Scale Fusion,
CombineFPN and PRA module to improve detectors. When using ResNet50 as backbone
network, FCOS and RepPoints achieve 37.8 and 39.2 points AP, which is 1.1 and 0.9 points
higher than original methods. When ResNet101 is used as the backbone network, our meth-
ods can improve FSAF by 1.3 points AP. When using multi-scale training, FCOS and ATSS
with ResNet101 are improved by 0.8 and 1.2 points AP. Experimenting on Pascal VOC
dataset, our method can improve FCOS and FSAF by 3.1 and 2.4 points AP.

For anchor-based method. Experimenting on COCO dataset, RetinaNet achieves 37.5
points AP by replacing FPN with AugFPN. Using our method to improve RetinaNet, 38.0
points AP are obtained, which are 1.1 and 0.5 points higher than original RetinaNet and
AugFPN-based RetinaNet, respectively. Using ResNet101 as the backbone network, Reti-
naNet, based on our methods, achieves 40.6 points AP, which is 1.5 points higher than the
original RetinaNet. For two-stage methods, our method improve Faster R-CNN and Mask
R-CNN by 0.9 and 1.0 points AP. Experimenting on Pascal VOC dataset, our method can
improve RetinaNet and Faster R-CNN by 2.9 and 1.6 points AP.
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Figure 5: Visualization of Pixel-Region attention Map. The first column is the input images
divided into different regions, and the other columns are the attention maps of different scale
features. The superscript of attention map is FPi_numA that means when the input feature of
predict part is FPi, the attention map associated with the numbA region. Red indicates higher
attention weights, and blue indicates lower attention weights. The other colors indicate the
medium attention weights.

Method Backbone AP
RetinaNet ResNet-50 77.3

RetinaNet(ours) ResNet-50 80.2[+2.9]
FCOS ResNet-50 68.5

FCOS(ours) ResNet-50 71.6[+3.1]
FSAF ResNet-50 78.7

FSAF(ours) ResNet-50 81.1[+2.4]
Faster R-CNN ResNet-50 79.5

Faster R-CNN(ours) ResNet-50 81.1[+1.6]

Table 4: Comparison with the state-of-the-art
methods on Pascal VOC.

CFPN+SF PRA NA[37] GFLOPs Params
200.5 32.02 M

X 233.9 40.41 M
X X 235.7 40.49 M
X X 238.2 40.61 M

Table 5: Calculation and parameters of
different component combinations. The
input image size is (3,1280,800). The
baseline is FCOS with ResNet-50.

4.3 Ablation Study

Our work mainly consists of three parts, including Scale Fusion, CombineFPN and Pixel-
Region Attention module. In order to analyze the contribution of each part, we conduct
ablation experiments in this section. We chose FCOS with ResNet50 as the baseline.

Ablation studies on contribution of each components. We add the three components
to the baseline one by one to verify the effect of each component on the detection results.
Meanwhile, we perform experiments on combinations of different components to verify the
interaction between different components. All the results are shown in Table 2.

Ablation studies on Scale Fusion. In the Scale Fusion module, we use two fusion
methods to supplement the information of low-level feature C2 to high-level features. One is
element-wise sum operation, and the other is Multi-scale Semantic Fusion. We use these two
methods to fuse features of different levels with C2, and the experimental results are shown
in Table 3. These results indicate that T3 and T4 are low-level features, and their semantic gap
with C2 is not very big, so they can be fused using element-wise sum operation. However, T5
is a high-level feature, and there is a significant semantic gap between C2 and T5, Multi-scale
Semantic Fusion should be used to alleviate the impact of the semantic gap.

Ablation studies on Pixel-Region Attention Module. We compared the effects of dif-
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PRA NA[37] APNB[45] GCB[2] DAN[9] PAM[19] AP AP50 AP75 APS APM APL
36.2 54.6 38.4 20.3 39.4 47.4

X 37.0 56.0 39.5 21.1 40.7 48.2
X 37.0 56.0 39.3 21.3 40.8 48.9

X 36.8 55.7 39.3 21.0 40.3 48.1
X 36.5 54.7 38.9 20.3 40.1 47.7

X 37.0 55.7 39.5 21.3 40.4 48.3
X 36.4 54.7 38.7 20.0 39.8 47.7

X X 36.6 55.4 39.1 20.8 40.7 47.6

Table 6: Comparative experiment with different non-local attention modules on COCO
val2017. The baseline is FCOS with ResNet50

ferent non-local attention modules on the detector performance in Table 6. PRA, NA, APNB
and PAM are spatial attention modules, and GCB is channel attention module. DAN com-
bines spatial and channel attention. PRA, NA and DAN performed best, and AP reached
37.0. The AP of GCB is 36.8. APNB utilizes SPP to lightweight parameters, but K and V
in APNB are the same features. That is, K and V are mapped in the same space, resulting in
poor generalization ability. Different K and V can expand the capacity and expression ability
of the model. For channel attention, just using a GCB to weigh the channel information can
improve the detector’s performance. However, when GCB is added after spatial attention,
it cannot reach the AP when using spatial attention alone. Because the channel and spatial
attention of DAN is similar to NA, the calculation of DAN is twice that of NA. The com-
putational complexity of PAM is O(N) lower than that of NA (O(N2)), but the performance
will also decline.

We carry out experiments to analyze the FLOPs and memory increment of each module,
and the experimental results are shown in Table 5. The FLOPs and parameters of the Non-
local Attention module are about 1.9 and 2.5 times those of the PRA.

Visualization of Pixel-Region Attention Map. To get a deeper understanding of our
Pixel-Region Attention module, we visualize the learned attention maps shown in Figure 5.
We divide the input image into different regions according to the pooled feature size in SPP.
The input feature of the prediction part is FPi generated by CombineFPN, i ∈ {3,4,5,6,7}.
With the increase of i, the resolution of FPi decreases gradually. Since the resolution of the
generated attention maps is the same as input features, the attention map needs to be inter-
polated. The interpolated feature map has the same size as the original image, so the details
of the attention map with higher resolution are richer. We select different input features and
regions and show their corresponding attention maps.

5 Conclusion
In this paper, we analyze the defects of FPN and propose the problem that it is difficult to im-
prove the performance using traditional non-local methods in object detection. We propose
MFE, including Scale Fusion, CombineFPN and Pixel-Region Attention module, to enhance
multi-scale features. Scale Fusion and CombineFPN fully fuse features from different levels,
which alleviate the problem of information loss caused by dimension reduction in FPN and
solve the problem of insufficient multi-scale feature fusion in FPN. Pixel-Region Attention
module, a lightweight non-local attention module, obtain the correlation between pixels and
different image regions to capture long-range dependencies. On challenging MS COCO and
Pascal VOC datasets, our method can significantly improve state-of-the-art methods, such as
FCOS, RetinaNet, Faster R-CNN and FSAF.
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