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Abstract

Hairstyle transfer is the task of modifying a source hairstyle to a target one. Although
recent hairstyle transfer models can reflect the delicate features of hairstyles, they still
have two major limitations. First, the existing methods fail to transfer hairstyles when
a source and a target image have different poses (e.g., viewing direction or face size),
which is prevalent in the real world. Also, the previous models generate unrealistic im-
ages when there is a non-trivial amount of regions in the source image occluded by its
original hair. When modifying long hair to short hair, shoulders or backgrounds occluded
by the long hair need to be inpainted. To address these issues, we propose a novel frame-
work for pose-invariant hairstyle transfer, HairFIT. Our model consists of two stages: 1)
flow-based hair alignment and 2) hair synthesis. In the hair alignment stage, we leverage
a keypoint-based optical flow estimator to align a target hairstyle with a source pose.
Then, we generate a final hairstyle-transferred image in the hair synthesis stage based on
Semantic-region-aware Inpainting Mask (SIM) estimator. Our SIM estimator divides the
occluded regions in the source image into different semantic regions to reflect their dis-
tinct features during the inpainting. To demonstrate the effectiveness of our model, we
conduct quantitative and qualitative evaluations using multi-view datasets, K-hairstyle
and VoxCeleb. The results indicate that HairFIT achieves a state-of-the-art performance
by successfully transferring hairstyles between images of different poses, which have
never been achieved before.

* indicates equal contributions.
©2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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1 Introduction

Recently, hairstyle has been considered as a way to express one’s own identity. Responding
to the increasing demands, various approaches have tackled virtual hairstyle transfer, a task
of modifying one’s hairstyle to a target one, based on generative adversarial networks [8].
The existing methods [25, 28] transfer the target hairstyle to a source image while success-
fully preserving delicate features of the target hairstyle. However, despite their convincing
performances, hairstyle transfer still poses several challenges.

First, the existing models are hardly applicable to a source image that has a different
pose (e.g., viewing direction or face size) from a target image, which is prevalent in the
real world. The first two rows of Fig. 3 present examples of the pose difference between
the source and the target image. Since the same hairstyle appears different when its pose
changes, the target hairstyle should have a similar pose with the source image. However, the
previous approaches fail to align the target hair with the source pose when their poses are
significantly different.

Additionally, the existing methods poorly generate regions originally occluded in the
source image. When the source image contains the regions that are occluded by its original
hair, the occlusions need to be newly generated during the transfer. For instance, the first row
of Fig. 4 shows that the occluded shoulders and backgrounds should be properly inpainted
when transferring the shorter hair. Moreover, the occlusions become even larger when the
source and the target image have a significant pose difference. Although the existing models
leverage the external inpainting networks, it is still challenging for a model to fill in the
occlusions containing multiple semantic regions.

To address these issues, we propose a novel framework, Hairstyle transfer via Flow-
based hair alignment and semantic-region-aware InpainTing (HairFIT), which successfully
performs hairstyle transfer regardless of a pose difference between a source and a target
image. HairFIT consists of two parts: 1) flow-based hair alignment and 2) hair synthesis. We
first align the target hair with the source pose based on the estimated optical flow between
the source and the target. Then, we apply the aligned target hair to the source image to
synthesize the final output. The hair synthesis module inpaints in the occluded regions of
the source image and refines the aligned target hair leveraging ALIgnment-Aware Segment
(ALIAS) generator [3]. We newly present a Semantic-region-aware Inpainting Mask (SIM)
estimator to support realistic occlusion inpainting. By predicting separate semantic regions,
the estimator helps our generator to reflect distinctive features of diverse semantic regions
(e.g., backgrounds, clothes, and forehead) during inpainting.

We conduct quantitative and qualitative evaluations using K-hairstyle and VoxCeleb
which contain images of different poses. The results indicate that our model achieves a
state-of-the-art performance compared to the existing methods. Our model outperforms other
models especially when the source and the target image have a significantly different pose.

Our contributions are summarized as follows:

* This is the first work that proposes a pose-invariant hairstyle transfer framework by
adopting the optical flow estimation for hair alignment.

* We present a Semantic-region-aware Inpainting Mask (SIM) estimator which supports
high-quality occlusion inpainting by allowing hair synthesis module to reflect distinc-
tive features of each segmented inpainting region.

* HairFIT achieves the state-of-the-art performance in both quantitative and qualitative
evaluations with two multi-view datasets, K-hairstyle and VoxCeleb.
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2 Related Work

2.1 Conditional Image Generation

Conditional image generation is the task of synthesizing images based on the given con-
ditions such as category labels [1, 19], text [24, 36], and images [12, 21]. Recent stud-
ies on image-conditioned generation have proposed various approaches to modify specific
features (e.g., face shape, hairstyle, etc.) on facial images [13, 15, 23, 32]. In particular,
MaskGAN [15] enables facial image manipulation based on a user-edited semantic mask as
a conditional input. Also, SC-FEGAN [13], FaceShop [23], and Deep Plastic Surgery [32] al-
low modification of facial attributes based on human-drawn sketches. However, the existing
methods require a non-trivial amount of user interaction to obtain the desired conditional in-
puts to change specific target attributes. In this paper, we propose a framework that transfers
a hairstyle without any user-modified conditional input or user interaction.

2.2 Hairstyle Transfer

Hairstyle transfer aims to modify a hairstyle of a source image to a target one while pre-
serving other features of the source. Along with the researches on facial attribute mod-
ification [13, 23, 32], hairstyle transfer has also been actively tackled in the recent few
years [25, 28]. MichiGAN [28] successfully transfers a hairstyle reflecting its delicate fea-
tures using disentangled hair attributes and conditional synthesis modules of each attribute.
In addition, LOHO [25] generates realistic hairstyle-transferred images by decomposing
hairstyle features and optimizing latent space to inpaint missing hair structure details. How-
ever, these works only tackle the cases where poses of a source and a target image are similar.
Therefore, they fail to generate realistic images when the source and the target have signifi-
cantly different viewing directions or face sizes. Unlike the existing approaches, our model
successfully transfers a hairstyle even when the source and the target image have a significant
pose difference.

2.3 Optical Flow Estimation

Optical flow represents apparent pixel-level motion patterns between two images using a
vector field. There are several approaches based on neural networks that directly predict an
optical flow map between two consecutive frames of a video [4, 10, 11] and warp the raw
pixels of a frame to generate the unseen frame [5, 16, 17, 20]. The optical flow estimation
is also leveraged to transfer motions from another video by learning the motion difference
between a source and a target frame [26, 27]. To achieve pose-invariant hairstyle transfer,
we utilize the optical flow to deform the target hairstyle according to the pose of the source
image. To the best of our knowledge, this is the first work that applies optical flow estimation
to hairstyle transfer.

3 Method

3.1 Overview

We employ a two-stage approach with two separate modules: 1) flow-based hair alignment
module and 2) hair synthesis module. When given a source image and a target image con-
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Figure 1: Overall architecture of HairFIT. Our model consists of two modules: (a) flow-based
hair alignment module and (b) hair synthesis module. (a) Hair alignment module aligns the
hair from a target image I, with the pose of a source image I; based on facial keypoints K,
k; extracted from each image. In (b) hair synthesis stage, ALIAS generator synthesizes the
final image I based on (c) mask division with SIM estimator.

taining the target hairstyle, the flow-based hair alignment module first warps the target image
and its hair segmentation mask to align the target hairstyle with the source face. Here, we
utilize the optical flow predicted by our hair flow estimation network. Then, the hair synthe-
sis module generates the final image based on the aligned target hair and the source image
via semantic-region-aware inpainting and hair refinement. Fig. 1 describes the overall archi-
tecture of HairFIT.

‘We train our model with multi-view datasets, which contain diverse views for each indi-
vidual. In particular, we sample two images (i.e., a source and a target image), which have
different views with the same identity and hairstyle. Then, our model is required to recon-
struct the source image by transferring the hairstyle of the target image to the source. Here,
the source image works as the ground truth the model aims to generate. In this manner, the
flow-based hair alignment module learns to align the target hair with the source pose accord-
ing to the pose difference, and the hair synthesis module learns to reconstruct the original
source image based on the aligned target hairstyle.

Ideally, when given a source and a target image with different poses, identities, and
hairstyles, the ground truth image with the source pose and identity and the target hairstyle
can provide HairFIT with direct supervision. In this case, the ground truth image can guide
the model to align and apply the target hairstyle to the source face. However, a hairstyle
dataset containing such images does not exist since it is expensive and time-consuming to
collect them. Instead, we utilize the multi-view datasets for training our model. Although
our model uses only image pairs of the same identity and hairstyle during the training, our
model successfully transfers the hairstyle of the target image that has a different identity and
hairstyle from the source.



CHUNG ET EL.: HAIRFIT, POSE-INVARIANT HAIRSTYLE TRANSFER 5

3.2 Flow-based Hair Alignment

The flow-based hair alignment module aims to align the pose (i.e., view and scale) of a target
image with a source image.

As described in Fig. 1 (a), our hair flow estimation network estimates a dense optical

flow map that represents a pose difference between the source image I; and the target image
I, with the source keypoints kg, target keypoints k;, and I, given as inputs (I € R3>*#>W and
k € RM>*2 where H, W, and N, denote the image height, width, and the number of keypoints,
respectively). Then, we warp I; as well as its hair segmentation mask Mf’ according to the
estimated optical flow. As a result, we gain the warped target hairstyle in I; ,, and its hair
mask Mﬁw aligned with the source face, where % indicates hair and w means the image or
mask is warped.
Hair flow estimation network. Hair flow estimation network predicts the dense optical
flow with the given kj,k;, and I;. To obtain the coarse pose difference, the network first
converts Kk and k; into a Gaussian keypoint heatmap H € RN #*W respectively. Then, we
obtain the keypoint heatmap difference H, calculated as H, — H,. With H and I, deformed
by the keypoint difference k, which is k; — k;, the network predicts the Ni-channel mask
M € R¥*HXW and F,,r. M contains the estimated local regions to apply each channel of k
to. Also, F.r indicates a refinement flow map that reflects additional detailed optical flow.
Finally, we obtain the dense optical flow F € R>*#>*W for the entire image by adding the
coarse optical flow and refinement flow map as F = Z?L p(k') ® M + F,,r. Here, p(-)
repeats the input tensor by H x W times and & denotes element-wise multiplication.

More details of the network architectures are described in supplementary materials. For

training, we use the reconstruction loss L., which is calculated as E[||I,,, — L]|;]. For
the implementation, we referred to the existing keypoint-based optical flow estimation net-
works [26, 27].
Facial keypoints. Our hair flow estimation network utilizes keypoints to predict the flow map
between the source and the target image. Here, the predicted optical flow needs to reflect
the pixel-wise pose difference effectively, thus the keypoints should represent the overall
view and scale of an image [27, 30]. In this regard, we utilize the facial keypoints, which
consistently represent a person’s view (e.g., head pose) or scale (e.g., face size), regardless
of his/her identity. Facial keypoints are simple but robust pose representations that guide the
network to capture the key differences in poses. Since the datasets do not include ground
truth facial keypoints, we extract 68 facial keypoints from each image using the pre-trained
keypoint detector [2].

3.3 Hair Synthesis

The goal of the hair synthesis module is to transfer the target hairstyle to the source image
using the aligned target hairstyle obtained from the previous stage. To achieve this, we utilize
ALIAS generator [3] with a newly-proposed hair-agnostic image and a Semantic-region-
aware Inpainting Mask (SIM) estimator.

Hair-agnostic image. At test time, our model needs to transfer hairstyle between the im-
ages of different identities and hairstyles, unlike the training phase. Therefore, the difference
between the target hairstyle and the source hairstyle during the test is much larger than dur-
ing the training. To minimize the difference, we obtain the hair-agnostic image Iy4 with
the hair region of the source image I; removed as presented in Fig. 2. To be specific, we
exclude the region of the source hair mask M? and the forehead mask M{ " from I;. The
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Figure 2: Process to obtain the hair-agnostic image Iz4 for hair synthesis. First, we remove
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the source hair region M, the forehead region M‘Sf " and the warped target hair region Mffw
from I;. We additionally remove a random warped hair region Mﬁw during training to obtain

Ipa. Mﬁ’,w and Mﬁw are warped by our flow-based hair alignment module.

warped target hair mask M/, is also subtracted from I;. During the training, M and M”
have only a slight difference since we use image pairs of the same hairstyle. Therefore, we
sample a random image I, from the training set and warp its hair mask M” to fit the source
pose, resulting in M’,fw. Then, the region of Mﬁ'_w is removed from the hair-agnostic image.
This successfully mimics the inference situations by providing the model with the chance to
fill in larger occluded regions. In this regard, the proposed Iz4 enhances our hair synthesis
generator’s generalization ability at test time.

SIM estimator. As previously mentioned, the hairstyle transfer model is required to inpaint
the occlusions in the source image and refine the aligned target hair. To address the chal-
lenges, we propose a SIM estimator, which separates the occluded regions into different
semantic areas. With IHA,MfﬁW, and Mjpaine as inputs, SIM estimator predicts a semantic-
region-aware inpainting mask Mg; € {0, 1}**#>*W by dividing Minpain € {0, 11X into
face, clothes, background, and unknown. Here, My pqins is calculated by subtracting Mfiw
from the occluded region of Iy4. The fifth column in Fig. 4 presents examples of Mg;. The
separated mask effectively guides our ALIAS generator to inpaint each semantic region by
reflecting its distinctive features, leading to high-quality image generation.

ALIAS generator. As described in Fig. 1 (b), the inputs I, 174 © K and M}, &M pqins B
Myg; are injected into each layer of ALIAS generator, where K € R¥>*#*W is an RGB-
rendered source keypoint image. In each layer, the features are normalized separately based
on the inpainting mask Mj;pins in a similar manner to general region normalization [3, 35].
The normalized features are then modulated by 8 and 7y, which are predicted based on
Mﬁ’ w ®Minpaine ®Mg;. As a semantic guidance map of inpainting, Mg; allows the modulation
parameters 8 and 7 to reflect distinctive semantic features of each divided region, increasing
the overall quality of occlusion inpainting of the output. The hair synthesis module generates
the final output after a series of ALIAS residual blocks with up-sampling layers. Additional
details of ALIAS generator are provided in our supplementary material.

Losses. We train the ALIAS generator with the conditional adversarial loss L.gay, the fea-
ture matching loss Lry, the perceptual 10ss £ percepr, and the hairstyle loss Ly, referring to
SPADE [22], pix2pixHD [29], and LOHO [25]. Since the training pairs have the same iden-
tity and hairstyle, the losses can be computed between a synthesized image and the ground
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truth (source) image, working as direct supervision. We use the Hinge loss as the adversarial
loss [37]. The Ly, is computed between Gram matrix [6] feature maps of the generated hair
image and the source hair image to support detailed hairstyle refinement. The generated hair
image is extracted from the final output using the pre-trained hair segmentation model [7].
Additionally, we train SIM estimator with SIM loss L. Lsya is calculated using the binary
cross-entropy loss between the estimated Mgy and the ground truth segmentation masks ob-
tained by the pre-trained face parsing model [33]. The total loss of the hair synthesis module
is as follows:

ACtotal = ACCGAN + AFM EFM + )vpercept Lpercept + }fslyleﬁstyle + A’SIM/:’SIMa (1)

where we set both Ary and Apercepr as 10, Agye as 50, and Agzys as 100. More details of the
losses are described in the supplementary material.

4 Experiments

To demonstrate the effectiveness of HairFIT, we conduct quantitative and qualitative eval-
uations compared to baseline models, using two multi-view datasets. We also conduct an
ablation study to present the effect of key components in our model.

4.1 Experimental Setup

Dataset. As mentioned in Section 3.1, we leverage multi-view datasets for the experiments.
First, we utilize K-hairstyle [14] which contains 500,000 high-resolution hairstyle images.
The dataset consists of multi-view images including more than 6,400 identities. The view-
ing angle of images ranges from O to 360 degrees. Also, each image in the dataset has a
hair segmentation mask as well as various hairstyle attributes. Since our goal is to transfer a
hairstyle, we excluded images whose hairstyle is significantly occluded. Also, we removed
images whose face is extremely rotated, such as images of a person facing the side or the
back, since we cannot extract facial keypoints from them. Accordingly, our training set con-
sists of randomly sampled 60,584 images with 5,407 identities, and the test set includes
6,717 images with 611 identities. While the maximum image resolution is 4,032 x 3,024, we
resized the images into 256x256 and 512x512 in our experiments.

Additionally, we use VoxCeleb [18] which consists of more than 100,000 utterance
videos with 1,251 identities. For the training data, we randomly sampled 16,847 videos,
each of which contains 30 frames on average. The frames of a video can be considered as
multi-view images of a single identity. The test set includes randomly sampled 2,209 videos.
For the experiments, we resized the images into 256 x256.

For both datasets, the training set consists of image pairs that have the same identity and
hairstyle, while the test set contains image pairs that have different identities and hairstyles.
We utilize one image of a pair as a source image and the other as a target image.
Evaluation metrics. As a quantitative evaluation, we use the fréchet inception distance (FID)
score [9]. The FID score measures how similar the distributions of the synthesized images
and the real images are. The lower FID score indicates a higher similarity between the im-
ages.
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Dataset ‘ K-hairstyle ‘ VoxCeleb
Resolution ‘ 256 x 256 512 x 512 ‘ 256 x 256
MichiGAN 30.52 36.12 81.14

LOHO 62.44 71.79 66.97

HairFIT (Ours) 18.53 19.01 17.66

Table 1: Quantitative comparison with the baselines using K-hairstyle and VoxCeleb. We
measure the FID scores.

4.2 Comparison to Baselines

Quantitative evaluations. First, we compare the FID scores between our model and the
baseline models, MichiGAN [28] and LOHO [25]. We train both models with the same
datasets, K-hairstyle and VoxCeleb, based on their official implementation codes. We utilize
a gated convolution network [34] for the inpainting modules in MichiGAN and LOHO, as
described in LOHO paper. As presented in Table 1, our model achieves the lowest FID score
with a large margin compared to the baseline models.

Pose difference level | Medium | Difficult | Extremely difficult

MichiGAN 31.58 34.41 40.41
LOHO 57.80 62.34 95.89
HairFIT (Ours) 21.95 21.76 24.60

Table 2: Quantitative comparison with the baselines with three different levels of pose dif-
ferences using K-hairstyle. We measure the FID scores.

For further analysis, we also conduct quantitative comparisons with three different levels
of pose difference. We split our test pairs of K-hairstyle into three categories of 2,000 im-
ages, ‘Medium’, ‘Difficult’, and *Extremely difficult’. As in LOHO [25], we use 68 facial
keypoints extracted by the pre-trained keypoint detector [2] to measure the pose distance
(PD) between the source and the target keypoints as follows: PD = é 1-631 Iks — K¢ ||2. The
result in Table 2 describes that HairFIT outperforms the other baselines with a larger margin
as the degree of pose difference increases from ‘Medium’ to ‘Extremely difficult’. Michi-
GAN and LOHO show poor hairstyle transfer performance on images with significant pose
differences, as they stated in their paper.

Additionally, to demonstrate that HairFIT successfully aligns the target hair with the
source pose, we conduct a quantitative evaluation on hairstyle reconstruction. We compare

Dataset ‘ K-hairstyle ‘ VoxCeleb ‘

Metric | SSIM;  LPIPS; | SSIM; LPIPS;
MichiGAN 0.7210  0.2432 | 0.7021  0.2282

LOHO 0.7852  0.1452 | 0.6389 0.2419

HairFIT(Ours) | 0.8041  0.0841 | 0.7147  0.1262

Table 3: Quantitative comparison with baselines on hairstyle reconstruction. We measure
SSIM and LPIPS using K-hairstyle and VoxCeleb. 1 indicates the larger the better and |
means the smaller the better.
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[ K-hairstyle

Figure 3: Qualitative comparison with the baselines. (a) indicates the source images, (b) the
target images, (c) the results of MichiGAN, (d) LOHO, and (e) ours. Due to the privacy
issue, we blur the faces of the images from the K-hairstyle dataset.

our model to MichiGAN [28] and LOHO [25]. Given a source image and a target image
which have the same identity and hairstyle but different poses, a model reconstructs the
source image by applying the target hairstyle extracted from the target image to the source
image. We measure the structural similarity (SSIM) [31] and learned perceptual image patch
similarity (LPIPS) [38] using the same 3,000 image pairs. The higher the SSIM and the lower
the LPIPS, the better. As described in Table 3, our model achieves superior performance over
the baseline models.

Qualitative evaluations. As presented in Fig. 3, qualitative results also present the superi-
ority of HairFIT for both of the two datasets. While the baseline models generate unrealistic
images, our model robustly transfers target hairstyles to the source images even when they

ALIAS  + Flow-based + Mﬁ’ w + SIM estimator ~ + Hairstyle loss
only hair alignment  subtraction with SIM loss (Full)

FID (256) | 25.58 22.89 19.40 19.16 18.53

Method

Table 4: Ablation study on K-hairstyle dataset. Starting from ALIAS generator, we measure
the FID scores by gradually adding each module and loss.
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Target hairstyle Minpaint Output w/o SIM Mg; Output w/ SIM

By Py . 4 - Y J
Figure 4: Qualitative evaluation on the SIM estimator. The first and the second row are
examples of K-hairstyle and VoxCeleb, respectively. The red, green, and blue regions of Mg;
indicate face, clothes, and background, respectively. Due to the privacy issue, we blur the
faces of K-hairstyle images.

have significantly different poses or the source image has occluded regions.

4.3 Ablation Study

Quantitative evaluations. We conduct an ablation study to validate the effectiveness of each
component in our model. Starting from ALIAS generator, we gradually add flow-based hair
alignment module, Mﬁw subtraction in a hair-agnostic image Iy4, SIM estimator with SIM
loss, and hairstyle loss, which is our full model. Mﬁw indicates warped random hair mask in
Iy4 as described in Section 3.3. The results show that all of our design decisions lead to an
improvement of the FID score, successfully addressing both pose differences and occlusion
inpainting.

Qualitative evaluations. Furthermore, we conduct a qualitative evaluation on the effect of
SIM estimator. As mentioned in Section 3.3, SIM estimator guides our model to effectively
inpaint occlusions by reflecting distinctive features of each region. According to Fig. 4, out-
puts of HairFIT with SIM estimator present more realistic inpainting quality compared to
HairFIT without SIM estimator. In particular, while the output without SIM on the first row
of Fig. 4 has blue artifacts on its clothes, the output with SIM does not. Moreover, unlike the
output without SIM on the second row, the output with SIM has a clean forehead without
brown artifacts.

5 Conclusion

We propose a two-stage pose-invariant hairstyle transfer model, HairFIT, which successfully
transfers a target hairstyle to a source image when the source and the target have a differ-
ent pose. In our model, a flow-based hair alignment network first aligns the target hairstyle
with the source leveraging optical flow estimation. Then, a hair synthesis module generates
output via an ALIAS generator with the help of a hair-agnostic image and a SIM estima-
tor. Our SIM estimator guides the generator to inpaint occlusions in the source image which
contain multiple semantic regions. The quantitative and qualitative results demonstrate the
superiority of HairFIT over the existing methods.
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