
SON ET AL.: PROGRESSIVE GROWING OF POINTS 1

Progressive Growing of Points
with Tree-structured Generators
Hyeontae Son1

son.ht@naverlabs.com

Young Min Kim2

youngmin.kim@snu.ac.kr

1 NAVER LABS
Seongnam, South Korea

2 Department of ECE
Seoul National University
Seoul, South Korea

Abstract

We present progressive growing of points with tree-structured networks that gener-
ates high-fidelity point cloud. Because point cloud data lacks the information of inherent
topology or connectivity between neighboring points, the data generated from deep neu-
ral networks usually fails to faithfully produce local details. Inspired by the recent suc-
cess of the progressive generation of images and curriculum learning, we suggest that the
hierarchical structure of the tree-based network architecture can endow contextual infor-
mation to enforce the progressive generation of point clouds. When the tree-structured
network is incrementally trained by progressively adding the subsequent layers of depth,
the quality of generated point cloud is superior to the data generated by the same network
structure with naïve end-to-end training. Furthermore, our pipeline simultaneously learns
the hierarchical structure within the data set and finds a consistent spatial decomposition
of 3D shapes by coherently positioning the nodes with the same ancestors. Extensive ex-
periments show that our method can produce a high-fidelity shape when applied to shape
generation and completion as well as auto-encoding point clouds. 1

1 Introduction
Point cloud is the raw output of 3D measurements of real-life objects and is widely used in
applications for vision, robotics, and graphics. While point cloud is a simple yet expressive
representation for 3D shape, the representation does not have a structure which can define the
local context. In contrast to the CNN-based architecture for images that aggregates neigh-
borhood information, an auto-encoder for 3D point clouds is designed to map the entire
shape directly from the condensed global representation. Specifically, the encoder extracts
the global feature vector (GFV), and the decoder regresses the entire shape from the GFV.
Such encoder-decoder architecture successfully captures the global shape, and it is widely
used for shape generation [1, 4, 30], 3D object reconstruction [22, 32], shape matching [6, 8]
and shape deformation [26, 27].

The neural networks for the point cloud are trained with the loss that represents the dis-
crepancy between two point cloud shapes. The most commonly used loss to compare two
point cloud shapes is the Chamfer Distance (CD), which is the mean of the bi-directional

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

1Code available on https://github.com/countywest/progressive_growing_of_points

Citation
Citation
{Achlioptas, Diamanti, Mitliagkas, and Guibas} 2018

Citation
Citation
{Cai, Yang, Averbuch{-}Elor, Hao, Belongie, Snavely, and Hariharan}

Citation
Citation
{Yang, Huang, Hao, Liu, Belongie, and Hariharan}

Citation
Citation
{Sarmad, Lee, and Kim} 2019

Citation
Citation
{Yuan, Khot, Held, Mertz, and Hebert} 2018

Citation
Citation
{Deprelle, Groueix, Fisher, Kim, Russell, and Aubry}

Citation
Citation
{Groueix, Fisher, Kim, Russell, and Aubry}

Citation
Citation
{Wang, Ceylan, Mech, and Neumann}

Citation
Citation
{Wang, Aigerman, Kim, Chaudhuri, and Sorkine{-}Hornung}

https://github.com/countywest/progressive_growing_of_points

2 SON ET AL.: PROGRESSIVE GROWING OF POINTS

nearest neighbor distances. CD loss is used since the point-wise correspondences are not
provided. The lack of this local context in the training objective results in the reconstructed
shape having a highly irregular distribution of points without preserving the fine geometric
details. Recent works also state that the training with CD is often trapped in local min-
ima [14] and CD loss fails to make a correct assessment on the similarity of 3D shapes [1].
Such limitation of CD is referred to as Chamfer’s blindness [1].

We propose progressive growing of point clouds which guides the point cloud to over-
come the limitation of the Chamfer’s blindness. The key motivation of our work is the
success of coarse-to-fine strategies in generating 2D images [11, 28] and 3D geometries [10,
21, 29, 32]. All of these methods share the spirit of curriculum learning [3], which suggests
starting from an easy task and guiding the training process to harder tasks, step by step,
to reach the desired optimum. Applying the idea in training the auto-encoder for the point
cloud, we start from a sparse set of points and progressively generate dense points in multiple
stages.

As a means to steer the progressive growth, we utilize the hierarchical levels in tree-
structured point cloud generators [7, 23, 24]. Because there is no connectivity or well-defined
structure in point cloud data, it is challenging to decide how to progressively add points on a
3D shape. One common practice is to perform two-stage generation [21, 32] where the sec-
ond stage upsamples the coarse results from the first stage. Instead, we increase the number
of points by persistently adding a layer of hierarchy in the tree structure. As an additional hi-
erarchy is attached, the leaf nodes from the previous stage become the immediate parents of
the new leaf nodes and guide them to consistently grow into denser points in higher fidelity
with our progressive training scheme.

Our progressive generation is designed to uniformly distribute points with the desired
density, leading to high-fidelity reconstruction. In addition to high-quality generation, our
process enforces a consistent hierarchical structure for the dataset. We position the points
with the same ancestors in proximity and this property induces an interesting pattern in
the indices of generated points. As a byproduct, we can find coherent spatial partitions of
generated shapes, producing locally consistent correspondences. We visualize the spatial
decomposition induced by our progressive generation. The newly endowed structure helps
us understand how the latent nodes in different hierarchies are correlated, and we can even
discern the intermediate nodes in the tree that participated in generating a specific part in the
final shape. We test the efficacy of our method with tree-structured generators for 3 tasks;
auto-encoding, generation, and completion of point clouds. Experimental results show that
the progressive growing method boosts the performance of reconstructing point clouds over
the baseline methods.

2 Related Works
Progressive learning. Progressive learning approaches have shown substantial improve-
ment in high-resolution image generation [11], super-resolution [13, 28] and image-to-image
translation [15, 25] by preserving all levels of detail and stabilizing the learning process. Sev-
eral works apply the same idea to the tasks for 3D point clouds such as point upsampling [29]
and point cloud generation [2, 10]. The training data is prepared in multiple resolutions by
randomly sampling from the dense point clouds. In contrast, we simply use one ground
truth for a shape without explicitly preparing multiple datasets. We also demonstrate that the
sparse-to-dense transition overcomes the fundamental limitation of Chamfer distance and

Citation
Citation
{Li, Simon, Saragih, P{ó}czos, and Sheikh}

Citation
Citation
{Achlioptas, Diamanti, Mitliagkas, and Guibas} 2018

Citation
Citation
{Achlioptas, Diamanti, Mitliagkas, and Guibas} 2018

Citation
Citation
{Karras, Aila, Laine, and Lehtinen}

Citation
Citation
{Wang, Perazzi, McWilliams, Sorkine{-}Hornung, Sorkine{-}Hornung, and Schroers}

Citation
Citation
{Hui, Xu, Xie, Qian, and Yang}

Citation
Citation
{Saito, Simon, Saragih, and Joo}

Citation
Citation
{Wang, Wu, Huang, Cohen{-}Or, and Sorkine{-}Hornung} 2019

Citation
Citation
{Yuan, Khot, Held, Mertz, and Hebert} 2018

Citation
Citation
{Bengio, Louradour, Collobert, and Weston}

Citation
Citation
{Gadelha, Wang, and Maji}

Citation
Citation
{Shu, Park, and Kwon} 2019

Citation
Citation
{Tchapmi, Kosaraju, Rezatofighi, Reid, and Savarese} 2019

Citation
Citation
{Saito, Simon, Saragih, and Joo}

Citation
Citation
{Yuan, Khot, Held, Mertz, and Hebert} 2018

Citation
Citation
{Karras, Aila, Laine, and Lehtinen}

Citation
Citation
{Lai, Huang, Ahuja, and Yang}

Citation
Citation
{Wang, Perazzi, McWilliams, Sorkine{-}Hornung, Sorkine{-}Hornung, and Schroers}

Citation
Citation
{Lin, Pang, Xia, Chen, and Luo}

Citation
Citation
{Wang, Liu, Zhu, Tao, Kautz, and Catanzaro}

Citation
Citation
{Wang, Wu, Huang, Cohen{-}Or, and Sorkine{-}Hornung} 2019

Citation
Citation
{Arshad and Beksi}

Citation
Citation
{Hui, Xu, Xie, Qian, and Yang}

SON ET AL.: PROGRESSIVE GROWING OF POINTS 3

Figure 1: Progressive growing of points with tree-structured network. For any tree-shaped
decoder that generates shape from a global feature vector (GFV), our method can progres-
sively train the network to generate high-fidelity shapes in a coarse-to-fine fashion.

uniformly distributes the generated points.
The progressive growing in 3D also requires a method to systematically increase the size

of the neural network. Previous works suggest fixing the pre-trained subnets [29], generating
multiple resolutions with inter-level skip connections [10, 29] and initializing the new layers
by replicating the last branch [2]. We utilize tree nodes, similar to [2], but we encourage
smooth transition to higher resolution by linear interpolation [11]. By controlling the co-
efficient for the interpolation, the newly added nodes faithfully generate higher resolution
shapes in the place where the parent nodes faded out.

Tree-structured point cloud generation. Generating point cloud with tree-shaped archi-
tecture is suggested by several works for single-image 3D reconstruction [7], 3D shape
generation [7, 23], and point cloud completion [24]. The tree structure is composed of
hierarchical feature nodes followed by leaf nodes that correspond to individual points. The
parent-to-child connection in the network is implemented with 1D transposed convolution
with multi-resolution features [7], 1D convolution with the node feature concatenated with
the GFV [24], or a graph convolution recursively connecting the ancestor nodes [23]. While
our pipeline can be applied in any tree-shaped architecture, progressive growing needs to
allow the intermediate nodes at any hierarchy to produce points. We augment the intermedi-
ate nodes with auxiliary shared-MLP layers producing points, which are not used once the
progressive training is finished.

3 Progressive Growing of Points
We suggest progressive growing of tree-structured network [11] to generate dense point
clouds. As we incrementally add layers of the hierarchy, the network generates denser points

Citation
Citation
{Wang, Wu, Huang, Cohen{-}Or, and Sorkine{-}Hornung} 2019

Citation
Citation
{Hui, Xu, Xie, Qian, and Yang}

Citation
Citation
{Wang, Wu, Huang, Cohen{-}Or, and Sorkine{-}Hornung} 2019

Citation
Citation
{Arshad and Beksi}

Citation
Citation
{Arshad and Beksi}

Citation
Citation
{Karras, Aila, Laine, and Lehtinen}

Citation
Citation
{Gadelha, Wang, and Maji}

Citation
Citation
{Gadelha, Wang, and Maji}

Citation
Citation
{Shu, Park, and Kwon} 2019

Citation
Citation
{Tchapmi, Kosaraju, Rezatofighi, Reid, and Savarese} 2019

Citation
Citation
{Gadelha, Wang, and Maji}

Citation
Citation
{Tchapmi, Kosaraju, Rezatofighi, Reid, and Savarese} 2019

Citation
Citation
{Shu, Park, and Kwon} 2019

Citation
Citation
{Karras, Aila, Laine, and Lehtinen}

4 SON ET AL.: PROGRESSIVE GROWING OF POINTS

accordingly as visualized in Figure 1. The i-th node in `-th layer of the tree contains feature
f `i which can be transformed into an explicit 3D coordinate p`i = toPoint`(f `i), where p`i
is 3D coordinate in R3 and toPoint` is implemented with a shared-MLP.

For the reconstruction loss, we use Chamfer distance (CD) defined as

CD(Pout ,Pgt) =
1
2

(1
|Pout | ∑

x∈Pout

min
y∈Pgt
‖x− y‖+ 1

|Pgt | ∑
y∈Pgt

min
x∈Pout

‖x− y‖
)

(1)

where Pout represents the point set generated from neural networks and Pgt is the ground
truth (G.T.) point cloud. CD loss can be calculated even if the number of two point sets are
different, namely |Pout | 6= |Pgt |. Minimizing the left term (1

2 (
1
|Pout | ∑x∈Pout miny∈Pgt ‖x− y‖))

enforces the output points to be attached to the nearest G.T. points. On the other hand,
minimizing the right term (1

2 (
1
|Pgt | ∑y∈Pgt minx∈Pout ‖x− y‖)) enforces the G.T. points to pull

the nearest output points. Note that |Pout | for our method increases as we add layers for
progressive training. When |Pout | � |Pgt |, minimizing the CD loss leads Pout to be uniformly
distributed on the true 3D shape Pgt by minimizing the right term. Thus when the CD loss
is applied in a progressive setting, the reconstructed shape does not suffer from cluttering
in a particular area, which is commonly observed when the entire shape is generated in an
end-to-end fashion.

When we augment an additional layer of nodes, we train the network to smoothly transi-
tion from the previous phase,

p`i = (1−α) ·toPoint`−1(f `−1
P`(i))+α ·toPoint`(f `i). (2)

Here toPoint`−1(f `−1
P`(i)

) represents the output coordinate of the (`−1)-th layer, where the

index of the parent node for node i at `-th layer P`(i) =
⌊

i
D`

⌋
can be found by considering

the number of siblings D` added with `-th layer. By increasing the weight α linearly from
0 to 1 for each phase `, we can gradually transit to produce an increased number of points.
In our experiments, we increase the α by adding 2

step` for every back-propagation step and

fix the α to 1 after it reaches to 1, where step` means the pre-defined number of iterations
for phase `. This technique helps to avoid sudden shocks of adding new layers to the already
trained networks [11], stabilizing the learning process.

Strictly speaking, we use equation 2 except for the first and the last phases. In the first
phase, we train the first layer by formulating the output point as p1

i = toPoint1(f 1
i), since

there is no trained previous layer. In the last phase (` = L), we design the output as pL
i =

(1−α) ·toPointL−1(f L−1
PL(i))+α · f L

i where the f L
i is the i-th leaf node which is the 3D

coordinate in itself and the ultimate output of the tree networks. After the training process is
done, only the leaf nodes are used in the testing and the auxiliary networks named toPoint
are not needed anymore.

In the early phases, Pout(= {p`i }) is spread to the G.T. shape by minimizing the CD loss
since |Pout | � |Pgt |. After the early phases, progressive training with the smooth transition as
shown in Equation 2 enforces the sibling nodes to produce points in finer resolution near the
coarser points from their parent nodes. p`i starts to move from toPoint`−1(f `−1

P`(i)
), which

is already well trained results in the previous phase. As the α grows slowly, p`i tends to stick
to the nearest G.T. point smoothly by the CD loss, so the p`i will be located near the initial
position. As a result, the generated high-resolution point clouds are uniformly distributed on

Citation
Citation
{Karras, Aila, Laine, and Lehtinen}

SON ET AL.: PROGRESSIVE GROWING OF POINTS 5

Table 1: Auto-encoding and l-GAN results. ↑: The higher the better, ↓: The lower the
better. Better results are in bold. For the metrics of auto-encoder evaluation, the average
CD multiplied by 103, EMD multiplied by 102, and F-score for different threshold ds are
reported. For the metrics of l-GAN evaluation, JSD multiplied by 102, MMD-CD multiplied
by 103, MMD-EMD multiplied by 102, COV, and 1-NNA are reported. Ours are post-fixed
by PG which is an acronym of progressive growing.

Category Model
Auto-encoder l-GAN

CD(↓) EMD(↓) F-score(↑) JSD(↓) MMD(↓) COV(%, ↑) 1-NNA(%, ↓)
@1% @2% @3% CD EMD CD EMD CD EMD

Airplane

SRTDec 8.967 2.641 0.268 0.723 0.894 9.71 11.92 5.91 41.48 7.16 75.93 99.51
SRTDec(PG) 7.618 1.383 0.343 0.810 0.937 1.71 12.32 3.49 49.30 28.07 70.70 88.60
MRTDec 8.613 3.063 0.283 0.737 0.904 14.22 11.75 6.73 44.12 5.68 74.86 99.75
MRTDec(PG) 7.777 1.410 0.345 0.798 0.928 1.95 12.32 3.33 50.29 31.44 69.59 85.35
TopNet 9.050 1.896 0.273 0.724 0.888 4.79 12.35 4.40 45.10 14.24 78.07 96.79
TopNet(PG) 8.601 1.606 0.289 0.754 0.905 2.05 12.04 3.31 48.64 34.24 72.84 87.65
TreeGCN 7.883 1.863 0.336 0.784 0.927 5.27 12.04 4.59 42.22 11.69 75.56 97.65
TreeGCN(PG) 7.962 1.407 0.351 0.788 0.917 1.67 12.53 3.28 48.23 33.66 73.70 85.23

Chair

SRTDec 17.062 4.997 0.0672 0.307 0.584 23.84 24.38 15.53 39.87 2.70 71.21 99.95
SRTDec(PG) 13.740 2.457 0.0975 0.448 0.746 2.39 25.40 5.94 48.48 26.50 72.25 91.15
MRTDec 15.779 6.243 0.0772 0.329 0.619 21.61 23.31 13.38 43.22 4.52 66.74 100.00
MRTDec(PG) 14.188 3.286 0.0918 0.413 0.716 5.62 24.80 8.41 48.72 13.37 69.62 98.70
TopNet 16.632 3.539 0.0672 0.328 0.617 9.38 23.95 10.78 46.95 7.47 66.49 99.85
TopNet(PG) 15.285 2.940 0.0796 0.387 0.683 2.78 24.35 5.97 49.07 30.97 65.90 92.33
TreeGCN 13.990 3.266 0.0912 0.418 0.723 9.31 24.08 8.79 47.00 18.19 66.64 99.78
TreeGCN(PG) 13.848 2.346 0.0972 0.445 0.743 1.78 24.90 5.46 48.72 34.91 65.46 83.48

Car

SRTDec 14.547 2.601 0.0533 0.304 0.624 23.41 43.79 12.25 6.24 3.74 99.07 99.85
SRTDec(PG) 13.108 2.161 0.0758 0.383 0.705 1.49 16.17 3.54 38.67 22.12 59.39 80.84
MRTDec 13.772 2.429 0.0656 0.345 0.667 26.18 45.77 13.27 5.21 3.05 98.62 99.98
MRTDec(PG) 13.770 2.500 0.0659 0.345 0.668 2.78 16.11 4.39 33.47 9.97 59.84 99.11
TopNet 14.604 2.449 0.0560 0.314 0.631 24.31 43.99 10.69 9.59 4.67 99.34 99.75
TopNet(PG) 14.051 2.329 0.0625 0.339 0.658 1.99 16.28 3.54 36.05 23.45 60.73 86.23
TreeGCN 13.056 2.203 0.0783 0.383 0.702 19.09 37.79 11.31 9.34 3.54 97.62 99.83
TreeGCN(PG) 13.089 2.136 0.0770 0.384 0.705 1.71 16.48 3.51 35.38 23.99 63.55 80.77

the G.T. shape. Furthermore, the hierarchical latent structure of generated points enables the
consistent part decomposition of 3D shapes without any additional loss term [16], as will be
presented in results.

4 Experiments
We evaluate our progressive growing method through 3 tasks; auto-encoding, generation,
and completion of point clouds. In our experiment, four tree structured generators are in-
cluded; SRTDecoder [7], MRTDecoder [7], TopNet [24], and TreeGCN [23]. Since we
are interested in testing the progressive training of tree-structured generator (decoder), we
use the shared PointNet [20] encoder and trained two version of decoders for each experi-
ment; one is trained to directly generate point clouds from the global feature vector (GFV),
whereas the other is trained with our progressive growing method. We implemented all of
the networks in PyTorch [19] and experimented on Nvidia RTX 2080Ti and Titan RTX.
Supplementary material contains evaluation metrics and the detailed method for applying
our method to MRTDecoder.

4.1 Auto-encoder and l-GAN
For auto-encoding and generating point clouds, we trained neural networks for each of the
three categories in the ShapeNet dataset [5]: airplane, chair and car. Following the prior
work [1], we use 2048 points for each shape and split the dataset to train/validation/test with
85%-5%-10%.

Table 1 shows the quantitative comparison of the baseline and our method. The proposed
learning method boosts the reconstruction quality in all metrics. The description of individ-
ual evaluation metrics is deferred in the supplementary material. We can clearly observe

Citation
Citation
{Liu, Sheng, Yang, Shao, and Hu}

Citation
Citation
{Gadelha, Wang, and Maji}

Citation
Citation
{Gadelha, Wang, and Maji}

Citation
Citation
{Tchapmi, Kosaraju, Rezatofighi, Reid, and Savarese} 2019

Citation
Citation
{Shu, Park, and Kwon} 2019

Citation
Citation
{Qi, Su, Mo, and Guibas}

Citation
Citation
{Paszke, Gross, Chintala, Chanan, Yang, DeVito, Lin, Desmaison, Antiga, and Lerer} 2017

Citation
Citation
{Chang, Funkhouser, Guibas, Hanrahan, Huang, Li, Savarese, Savva, Song, Su, Xiao, Yi, and Yu} 2015

Citation
Citation
{Achlioptas, Diamanti, Mitliagkas, and Guibas} 2018

6 SON ET AL.: PROGRESSIVE GROWING OF POINTS

Figure 2: Auto-encoder results. Figure 3: l-GAN results.

Figure 4: Part editing by index-wise copying. Figure 5: l-GAN interpolation results.

in Figure 2 that our reconstruction uniformly distributes the points with high-quality recon-
struction, similar to the ground truth input. As a result, our method decreases the EMDs by a
large margin and achieves higher F-scores. The benefit of progressive training is especially
prominent in narrow chair legs or fine geometric details, where the baseline method suffers
from irregular, blurry distribution of points.

The pre-trained auto-encoders can generate the shape by training l-GAN [1] to generate
GFV which can be decoded into a point cloud. Table 1 also shows our method outperforms
the baseline consistently in all metrics except some cases in MMD-CD. The qualitative re-
sults in Figure 3 show that our results create uniformly distributed high-quality shapes. The
superior performance is demonstrated with the significant boost in JSD and EMD-based met-
rics.

Spatial decomposition. In addition to the high-quality generation, shapes created by our
method exhibit consistent spatial structure. The consistent structure is visualized in Figure 2
and 3, where points are colored according to the intermediate ancestor nodes they are gen-
erated from. Clearly, all of the tree-structured networks enjoy the spatially-coherent part
decomposition even though our method does not utilize any explicit supervision about the
part labels [17, 18, 31]. The coherent decomposition is induced from our generation method,
where the additional layer of nodes in the tree structure has been progressively guided to
generate shapes in the spatial vicinity of its ancestors. In contrast, the end-to-end training
of baseline methods with latent tree structure cannot bring the explicable structure into the
ambient space.

Citation
Citation
{Achlioptas, Diamanti, Mitliagkas, and Guibas} 2018

Citation
Citation
{Mo, Zhu, Chang, Yi, Tripathi, Guibas, and Su}

Citation
Citation
{Mo, Guerrero, Yi, Su, Wonka, Mitra, and Guibas} 2019

Citation
Citation
{Yu, Liu, Zhang, Zhu, and Xu}

SON ET AL.: PROGRESSIVE GROWING OF POINTS 7

Figure 6: Outputs of the auto-encoder from different poses of the inputs. For this figure,
we trained the networks by feeding point clouds with random rotation around the up-axis.
Points of the same color are consistently located in the nearby space. However, they are not
correlated to semantic information.

The consistent 3D correspondences can be utilized for part-level control of generated
shapes. For example, we can cut and paste the points with the same indices as shown in
Figure 4 (see the yellow dashed line). We can also generate the 3D point clouds of interme-
diate shapes by interpolating the latent code of l-GAN as shown in Figure 5. The consistent
segmentation along the smooth transition between shapes indicates that the positions of in-
termediate nodes and the part decomposition are persistent over the interpolated shapes.

Our decomposition is a byproduct of increasing the spatial resolution with uniform den-
sity and does not contain semantic context. Our generation process produces higher reso-
lution points in the neighborhood of the immediate ancestors and results in spatial partition
given aligned data set. For example, if we perturb the initial poses as shown in Figure 6, the
consistent point indices are bound to the same spatial position rather than the semantic parts.

Implementation details. For auto-encoding point clouds, we used the PointNet encoder
implemented using 5 1-D convolutional layers with ReLU activation and max pooling oper-
ator in all experiments. The decoder networks are structured to be a tree of which the depth
is 6 (SRTDecoder, MRTDecoder, TopNet) or 7 (TreeGCN). We used Adam optimizer [12]
with β1 = 0.9, β2 = 0.99. The learning rate was chosen to be 10−4 with no decaying and
the networks are trained with a batch size of 64 up to 300K iterations. When we apply our
progressive method, we scheduled the learning phase with transition steps(list of the step` in
the section 3) of [4K, 8K, 32K, 64K, 128K, 300K] for the 6-layered decoders and [4K, 8K,
16K, 32K, 64K, 128K, 300K] for the 7-layered decoder (TreeGCN).

For the generation of point clouds, we followed the l-GAN framework. We trained GANs
for learning the distribution of the latent space following WGAN-GP [9] with the two kinds
of pre-trained auto-encoders. The networks for the generators and discriminators are imple-
mented as fully connected layers followed by ReLU activation with 2-layers and 3-layers
each. In all experiments for 3D shape generation, the networks are trained up to 2K epochs
with a batch size of 32, and the best models with the lowest JSD in the validation set were
chosen for the test. We conducted the same tests 3 times and reported the average of results
since they could be volatile to sampling noise for generating Sout . For the visualizations in
Figure 2 and 3, we used MRTDecoder [7] for the airplane, TreeGCN [23] for the chair, and
SRTDecoder [7] for the car.

Citation
Citation
{Kingma and Ba} 2015

Citation
Citation
{Gulrajani, Ahmed, Arjovsky, Dumoulin, and Courville}

Citation
Citation
{Gadelha, Wang, and Maji}

Citation
Citation
{Shu, Park, and Kwon} 2019

Citation
Citation
{Gadelha, Wang, and Maji}

8 SON ET AL.: PROGRESSIVE GROWING OF POINTS

4.2 Point Cloud Completion

Figure 7: Completion results in PCN
dataset.

Figure 8: Completion results in TopNet
dataset.

The progressive growing can faithfully reconstruct missing data given a partial point
cloud. For the point cloud completion task, we used two datasets: PCN dataset [32] and
TopNet dataset [24]. PCN dataset consists of 30974 pairs of partial and corresponding com-
plete point cloud from 8 categories of ShapeNet [5]. TopNet dataset is composed of 28974
and 800 pairs for training and validation. The key difference between the two datasets is the
density of the ground truth point clouds. Each complete point cloud contains 16384 points
in the PCN dataset and 2048 points in the TopNet dataset. For the PCN dataset, we used
the provided train/validation/test splits as [32]. Since the ground truth shapes of the test split
are not provided in the TopNet dataset, we used the provided validation set as a test set and
randomly sampled 600 pairs from the training set for the validation.

The progressive training of tree-structured decoders increases the performance of point
cloud completion. Table 2 shows the quantitative results of the point cloud completion and
a few exemplar results are available in Figure 7 and 8. Since the progressive generation
effectively avoids falling in the local minima of CD, the points are uniformly distributed to
the correct location. In contrast, the direct generation of the full point cloud fails to recon-
struct the thin structures and fills the space recklessly which should be empty. As a result,
the quantitative metric confirms superior performance of progressive growing, with lower
CD and EMD, and higher F-score. Also, our method still enjoys the spatial decomposition
visualized by color-coded indices of point clouds, which is not available in the baseline re-
construction.

Implementation details. The networks for the point cloud completion are designed in the
same manner as the auto-encoders. In all experiments, we used the PointNet encoder and
Adam optimizer similar to those of auto-encoder. The four tree networks were trained up to
300K steps, and we scheduled the transition steps following the auto-encoder experiments
to apply our methods. Unlike auto-encoder experiments, we used 4-layered encoders and
trained networks with a batch size of 32. Since the number of points in the GT shapes varies
depending on the dataset, we regulated the number of output points to be equal to that of GT
of the datasets by controlling the number of children for each node. We used TopNet [24]
for the visualizations in Figure 7 and 8, and painted the generated point clouds according to
the index of the intermediate nodes as before.

Citation
Citation
{Yuan, Khot, Held, Mertz, and Hebert} 2018

Citation
Citation
{Tchapmi, Kosaraju, Rezatofighi, Reid, and Savarese} 2019

Citation
Citation
{Chang, Funkhouser, Guibas, Hanrahan, Huang, Li, Savarese, Savva, Song, Su, Xiao, Yi, and Yu} 2015

Citation
Citation
{Yuan, Khot, Held, Mertz, and Hebert} 2018

Citation
Citation
{Tchapmi, Kosaraju, Rezatofighi, Reid, and Savarese} 2019

SON ET AL.: PROGRESSIVE GROWING OF POINTS 9

Table 2: Point cloud completion results. ↑: The higher the better, ↓: The lower the better.
Better results are in bold. The average CD multiplied by 103, EMD multiplied by 102, and F-
score for different threshold ds are reported. Ours are post-fixed by PG which is an acronym
of progressive growing.

Dataset Model CD(↓) EMD(↓) F-Score(↑)
@1% @2% @3%

PCN

SRTDec 13.255 5.018 0.105 0.396 0.658
SRTDec(PG) 10.960 2.546 0.276 0.645 0.816
MRTDec 11.267 3.645 0.236 0.581 0.787
MRTDec(PG) 10.401 2.447 0.295 0.670 0.834
TopNet 10.548 2.948 0.260 0.646 0.829
TopNet(PG) 9.837 2.482 0.329 0.696 0.848
TreeGCN 9.876 2.916 0.292 0.692 0.856
TreeGCN(PG) 9.820 2.331 0.334 0.707 0.853

TopNet

SRTDec 25.470 7.950 0.0504 0.226 0.432
SRTDec(PG) 23.503 3.923 0.0603 0.298 0.548
MRTDec 23.183 6.191 0.0650 0.280 0.513
MRTDec(PG) 22.830 3.770 0.0711 0.319 0.574
TopNet 21.845 3.902 0.0735 0.328 0.581
TopNet(PG) 21.930 3.625 0.0806 0.350 0.605
TreeGCN 21.410 3.854 0.0843 0.347 0.610
TreeGCN(PG) 21.939 3.518 0.0831 0.349 0.608

5 Conclusions
In this paper, we propose a progressive learning method for the tree-structured point cloud
generators. Motivated by previous works on progressive growing, we adapt the coarse-to-
fine strategy for the point cloud generation. The transition to an increasing number of points
is implemented by augmenting the intermediate nodes of the tree-structured network to gen-
erate points at each layer, then smoothly interpolating into the increased hierarchy of the
layer. The hierarchy is gradually added as the learning phase progresses, and the point cloud
is guided to distribute uniformly, avoiding local minima of Chamfer distance (CD). The
effectiveness of the progressive growing is demonstrated with three tasks; point cloud auto-
encoder, generation, and completion. The results not only show the superior performance
of the proposed training method but also suggest a consistent structural relationship in the
generated shapes which spatially decomposes parts without any prior labeling.

Acknowledgements.
This research was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (No. 2020R1C1C1008195), the National Conver-
gence Research of Scientific Challenges through the National Research Foundation of Korea
(NRF) funded by Ministry of Science and ICT (NRF-2020M3F7A1094300), and the BK21
FOUR program of the Education and Research Program for Future ICT Pioneers, Seoul
National University in 2021.

10 SON ET AL.: PROGRESSIVE GROWING OF POINTS

References
[1] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas J. Guibas. Learn-

ing Representations and Generative Models for 3D Point Clouds. In Proceedings of the
35th International Conference on Machine Learning, ICML, pages 40–49, 2018.

[2] Mohammad Samiul Arshad and William J. Beksi. A Progressive Conditional Gen-
erative Adversarial Network for Generating Dense and Colored 3D Point Clouds. In
Vitomir Struc and Francisco Gómez Fernández, editors, 8th International Conference
on 3D Vision, 3DV 2020, Virtual Event, Japan, November 25-28, 2020.

[3] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum
learning. In Andrea Pohoreckyj Danyluk, Léon Bottou, and Michael L. Littman, edi-
tors, Proceedings of the 26th Annual International Conference on Machine Learning,
ICML 2009, Montreal, Quebec, Canada, June 14-18, 2009.

[4] Ruojin Cai, Guandao Yang, Hadar Averbuch-Elor, Zekun Hao, Serge J. Belongie, Noah
Snavely, and Bharath Hariharan. Learning Gradient Fields for Shape Generation. In
Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm, editors, Com-
puter Vision - ECCV 2020 - 16th European Conference, Glasgow, UK, August 23-28,
2020, Proceedings, Part III.

[5] Angel X. Chang, Thomas A. Funkhouser, Leonidas J. Guibas, Pat Hanrahan, Qi-Xing
Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong
Xiao, Li Yi, and Fisher Yu. ShapeNet: An Information-Rich 3D Model Repository.
CoRR, abs/1512.03012, 2015.

[6] Theo Deprelle, Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan C. Rus-
sell, and Mathieu Aubry. Learning elementary structures for 3d shape generation
and matching. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence
d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances in Neural Infor-
mation Processing Systems 32: Annual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada.

[7] Matheus Gadelha, Rui Wang, and Subhransu Maji. Multiresolution Tree Networks for
3D Point Cloud Processing. In Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu,
and Yair Weiss, editors, Computer Vision - ECCV 2018 - 15th European Conference,
Munich, Germany, September 8-14, 2018, Proceedings, Part VII.

[8] Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan C. Russell, and Mathieu
Aubry. 3D-CODED: 3D Correspondences by Deep Deformation. In Vittorio Fer-
rari, Martial Hebert, Cristian Sminchisescu, and Yair Weiss, editors, Computer Vision
- ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018,
Proceedings, Part II.

[9] Ishaan Gulrajani, Faruk Ahmed, Martín Arjovsky, Vincent Dumoulin, and Aaron C.
Courville. Improved Training of Wasserstein GANs. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan,
and Roman Garnett, editors, Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA.

SON ET AL.: PROGRESSIVE GROWING OF POINTS 11

[10] Le Hui, Rui Xu, Jin Xie, Jianjun Qian, and Jian Yang. Progressive Point Cloud Decon-
volution Generation Network. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and
Jan-Michael Frahm, editors, Computer Vision - ECCV 2020 - 16th European Confer-
ence, Glasgow, UK, August 23-28, 2020, Proceedings, Part XV.

[11] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive Growing of
GANs for Improved Quality, Stability, and Variation. In 6th International Conference
on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3,
2018, Conference Track Proceedings.

[12] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In
3rd International Conference on Learning Representations, ICLR, 2015.

[13] Wei-Sheng Lai, Jia-Bin Huang, Narendra Ahuja, and Ming-Hsuan Yang. Deep Lapla-
cian Pyramid Networks for Fast and Accurate Super-Resolution. In 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA,
July 21-26, 2017.

[14] Chun-Liang Li, Tomas Simon, Jason M. Saragih, Barnabás Póczos, and Yaser Sheikh.
LBS Autoencoder: Self-Supervised Fitting of Articulated Meshes to Point Clouds. In
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long
Beach, CA, USA, June 16-20, 2019.

[15] Jianxin Lin, Yingxue Pang, Yingce Xia, Zhibo Chen, and Jiebo Luo. TuiGAN: Learn-
ing Versatile Image-to-Image Translation with Two Unpaired Images. In Andrea
Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm, editors, Computer Vi-
sion - ECCV 2020 - 16th European Conference, Glasgow, UK, August 23-28, 2020,
Proceedings, Part IV.

[16] Minghua Liu, Lu Sheng, Sheng Yang, Jing Shao, and Shi-Min Hu. Morphing and
Sampling Network for Dense Point Cloud Completion. In The Thirty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Appli-
cations of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium
on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA,
February 7-12, 2020.

[17] Kaichun Mo, Shilin Zhu, Angel X. Chang, Li Yi, Subarna Tripathi, Leonidas J. Guibas,
and Hao Su. PartNet: A Large-scale Benchmark for Fine-grained and Hierarchical Part-
level 3D Object Understanding. In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019.

[18] Kaichun Mo, Paul Guerrero, Li Yi, Hao Su, Peter Wonka, Niloy J. Mitra, and
Leonidas J. Guibas. StructureNet: Hierarchical Graph Networks for 3D Shape Gener-
ation. ACM Trans. Graph., 38(6):242:1–242:19, 2019.

[19] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in PyTorch. 2017.

[20] Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. PointNet:
Deep Learning on Point Sets for 3D Classification and Segmentation. In 2017 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR.

12 SON ET AL.: PROGRESSIVE GROWING OF POINTS

[21] Shunsuke Saito, Tomas Simon, Jason M. Saragih, and Hanbyul Joo. PIFuHD: Multi-
Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization.
In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR
2020, Seattle, WA, USA, June 13-19, 2020.

[22] Muhammad Sarmad, Hyunjoo Jenny Lee, and Young Min Kim. RL-GAN-Net: A
Reinforcement Learning Agent Controlled GAN Network for Real-Time Point Cloud
Shape Completion. In The IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), June 2019.

[23] Dong Wook Shu, Sung Woo Park, and Junseok Kwon. 3D Point Cloud Generative
Adversarial Network Based on Tree Structured Graph Convolutions. In The IEEE
International Conference on Computer Vision (ICCV), October 2019.

[24] Lyne P. Tchapmi, Vineet Kosaraju, Hamid Rezatofighi, Ian Reid, and Silvio Savarese.
TopNet: Structural Point Cloud Decoder. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2019.

[25] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan
Catanzaro. High-Resolution Image Synthesis and Semantic Manipulation With Condi-
tional GANs. In 2018 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, .

[26] Weiyue Wang, Duygu Ceylan, Radomír Mech, and Ulrich Neumann. 3DN: 3D Defor-
mation Network. In IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, .

[27] Yifan Wang, Noam Aigerman, Vladimir G. Kim, Siddhartha Chaudhuri, and Olga
Sorkine-Hornung. Neural Cages for Detail-Preserving 3D Deformations. In 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020,
Seattle, WA, USA, June 13-19, 2020, .

[28] Yifan Wang, Federico Perazzi, Brian McWilliams, Alexander Sorkine-Hornung, Olga
Sorkine-Hornung, and Christopher Schroers. A Fully Progressive Approach to Single-
Image Super-Resolution. In 2018 IEEE Conference on Computer Vision and Pattern
Recognition Workshops, CVPR Workshops 2018, Salt Lake City, UT, USA, June 18-22,
2018, .

[29] Yifan Wang, Shihao Wu, Hui Huang, Daniel Cohen-Or, and Olga Sorkine-Hornung.
Patch-Based Progressive 3D Point Set Upsampling. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR, pages 5958–5967, 2019.

[30] Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge J. Belongie, and Bharath
Hariharan. PointFlow: 3D Point Cloud Generation With Continuous Normalizing
Flows. In 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019,
Seoul, Korea (South), October 27 - November 2, 2019.

[31] Fenggen Yu, Kun Liu, Yan Zhang, Chenyang Zhu, and Kai Xu. PartNet: A Recursive
Part Decomposition Network for Fine-grained and Hierarchical Shape Segmentation.
In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long
Beach, CA, USA, June 16-20, 2019.

SON ET AL.: PROGRESSIVE GROWING OF POINTS 13

[32] Wentao Yuan, Tejas Khot, David Held, Christoph Mertz, and Martial Hebert. PCN:
Point Completion Network. In Proceedings of 2018 International Conference on 3D
Vision (3DV), 2018.

