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Abstract

Long iterative training processes for Deep Neural Networks (DNNs) are commonly
required to achieve state-of-the-art performance in many computer vision tasks. Impor-
tance sampling approaches might play a key role in budgeted training regimes, i.e. when
limiting the number of training iterations. These approaches aim at dynamically estimating
the importance of each sample to focus on the most relevant and speed up convergence.
This work explores this paradigm and how a budget constraint interacts with importance
sampling approaches and data augmentation techniques. We show that under budget re-
strictions, importance sampling approaches do not provide a consistent improvement over
uniform sampling. We suggest that, given a specific budget, the best course of action is to
disregard the importance and introduce adequate data augmentation; e.g. when reducing
the budget to a 30% in CIFAR-10/100, RICAP data augmentation maintains accuracy,
while importance sampling does not. We conclude from our work that DNNs under budget
restrictions benefit greatly from variety in the training set and that finding the right samples
to train on is not the most effective strategy when balancing high performance with low
computational requirements. Source code available at: https://git.io/JKHa3

1 Introduction

The availability of vast amounts of labeled data is crucial when training deep neural net-
works (DNNs) [39, 57]. Despite prompting considerable advances in many computer vision
tasks [50, 58], this dependence poses two challenges: the generation of the datasets and the
large computation requirements that arise as a result. Research addressing the former has
experienced great progress in recent years via novel techniques that reduce the strong supervi-
sion required to achieve top results [52, 54] by, e.g. improving semi-supervised learning [5, 8],
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self-supervised learning [23, 41], or training with noisy web labels [4, 33]. The latter chal-
lenge has also experienced many advances from the side of network efficiency via DNN
compression [16, 35], neural architecture search [10, 52], or parameter quantization [25, 45].
All these approaches are designed with a common constraint: a large dataset is needed to
achieve top results [57]. This conditions the success of the training process on the available
computational resources. Conversely, a smart reduction of the amount of samples used during
training can alleviate this constraint [30, 40].

The selection of samples plays an important role in the optimization of DNN parameters
during training, where Stochastic Gradient Descent (SGD) [9, 17] is often used. SGD guides
the parameter updates using the estimation of model error gradients over sets of samples (mini-
batches) that are uniformly randomly selected in an iterative fashion. This strategy assumes
equal importance across samples, whereas other works suggest that alternative strategies
for revisiting samples are more effective in achieving better performance [11, 31] and faster
convergence [26, 30]. Similarly, the selection of a unique and informative subset of samples
(core-set) [14, 53] can reduce the computation requirements during training, while reducing
the performance drop with respect to training on all data. However, although removing data
samples speeds up training, precise sample selection often requires a pretraining stage that
acts counter computational reduction [40, 47].

A possible solution to this limitation might be to dynamically change the important subset
during training, as is done by importance sampling methods [3, 62], which select the samples
based on a sampling distribution that evolves with the model and often depends on the loss
or network logits [28, 37]. An up-to-date sample importance estimation is key for current
methods to succeed but, in practice, is infeasible to compute [30]. The importance of a
sample changes after each iteration and estimations become out-dated, yielding considerable
performance drops [11, 62]. Importance sampling methods focus on training with the most
relevant samples and achieve a convergence speed-up as a side effect. They do not, however,
strictly study the benefits on DNN training when restricting the number of training iterations,
i.e. the budget.

Budgeted training [29, 34, 42] imposes an additional constraint on the optimization of a
DNN: a maximum number of iterations. Defining this budget provides a concise notion of the
limited training resources. Li et al. [34] propose to address the budget limitation using specific
learning rate schedules that better suit this scenario. Despite the standardized scenario that
budgeted training poses to evaluate methods when reducing the computation requirements,
there are few works to date in this direction [30, 34]. As mentioned, importance sampling
methods are closely related, but the lack of exploration of different budget restrictions makes
these approaches less applicable: the sensitivity to hyperparamenters that they often exhibit
limits their generalization [11, 37].

In this paper, we overcome the limitations outlined above by analyzing the effectiveness
of importance sampling methods when a budget restriction is imposed [34]. Given a budget
restriction, we study synergies among importance sampling and data augmentation [15, 51,
61]. We find the improvements of importance sampling approaches over uniform random
sampling are not always consistent across budgets and datasets. We argue and experimentally
confirm (see Section 4.4) that when using certain data augmentation strategies [15, 51,
61], existing importance sampling techniques do not provide further benefits, making data
augmentation the most effective strategy to exploit a given budget.
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2 Related work

Few works exploit a budgeted training paradigm [34]. Instead, many aim to speed up
convergence to a given performance using a better sampling strategy or carefully organizing
the samples to allow the model to learn faster and generalize better. Others explore how
to improve model performance by labeling the most important samples from an unlabeled
set [0, 46, 59] or how to better train DNNs when limited samples per class are available
[2, 12, 64]. None of these works, however, explore the efficiency of these approaches when
trained under constraints in the number of iterations allowed, i.e. budgeted training. This
section reviews relevant works that aim to improve the computational efficiency of training
DNNs.

Curriculum learning (CL) aims to improve model performance by ordering the samples
from easy to difficult [7, 13, 21, 56]. Like importance sampling approaches, CL leverages
different samples at different stages of training. However, while CL prioritizes easy samples at
the beginning of training and includes all of them at the end, importance sampling prioritizes
the most difficult subset of samples at each stage of the training. The main drawback of
CL is that, in most cases, the order of the samples (curriculum) has to be defined before
training, which is already a costly task that requires manually assessing the sample difficulty
or transferring knowledge from a pre-trained model. Some approaches remedy this with a
simple curriculum [36] or by learning it during training [27]; these methods, however, do not
aim to speed up training by ordering the samples, but to improve convergence by weighting
the sample contribution to the loss.

Core-set selection approaches aim to find the subset of samples that is most useful [14,
40, 53] and maintain accuracy despite training on a fraction of the data. The ability of these
methods to reduce training cost relies on using smaller training sets, but the benefit is limited
since they require a pre-training stage with the full dataset. They do, however, demonstrate
that DNNs can achieve peak performance with a fraction of the full dataset. Some approaches
to core-set selection use the most often forgotten samples by the network [53], the nearest
samples to cluster centroids built from model features [40], or use a smaller pretrained model
to select the most informative samples [14].

Importance sampling approaches lie in the middle ground between the previous two:
they aim to speed up training convergence by leveraging the most useful samples at each
training stage [26, 30, 62], which correspond to those with highest loss gradient magnitude [1,
43, 63]. Johnson and Guestrin [28] have shown that the last layer gradients are a good
approximation and are easier to obtain in deep learning frameworks. Alternative importance
measures include the loss [26], the probability predicted for the true class [11], or the rank
order of these probabilities [37].

The approximation of the optimal distribution by importance sampling approaches avoids
the cost of computing the importance of each sample at every iteration. However, this distribu-
tion changes very rapidly between iterations, leading to outdated estimations. Initial attempts
at addressing this included using several hyper-parameters to smooth the estimated distribu-
tion [11], more frequent distribution updates via additional forward passes [37], or alternative
measures to estimate the sampling distribution [3]. Several works added complex support
techniques to the training to estimate a better distribution: using robust optimization [28],
introducing repulsive point techniques [60], or adding a second network [62].

More recent methods leverage the random-then-greedy technique [38], where the proba-
bilities of an initial random batch of samples are computed and then used to select a batch
for training. Within this scheme, [30] define a theoretical bound for the magnitude of the
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gradients that allows for faster computation of the sampling probabilities, and [24, 26] use
the loss as a measure of sample importance to keep the sampling distribution updated through
the training. Finally, Kawaguchi and Lu [31] introduce the top-k loss [19] to perform the
back-propagation step using the samples with highest losses only. Note that these methods do
a full forward pass every epoch to update the sampling probabilities.

Learning rate schedules have proven to be useful alternatives for faster convergence. In
particular, [48, 49] propose a cyclic learning rate schedule to reach faster convergence by using
larger learning rates at intermediate training stages and very low rates at final stages. Similarly,
Li et al. [34] explore budgeted training and propose a linearly decaying learning rate schedule
that approaches zero at the end of the training, which without additional hyper-parameters,
provides better convergence than the standard learning rate schedulers. These approaches,
however, do not explore sample selection techniques to further increase convergence speed.

3 Budgeted training

This section formally introduces budgeted training and the different importance sampling
methods used through the paper to explore the efficiency of these approaches under budget
restrictions. The standard way of training DNNs is by gradient based minimization of
Cross-entropy

1 N
0(8) =~ Y v loghe (ylx:), (1
i=1

where N is the number of samples in the dataset D = {(x;,y;)}~., and y; € {0,1}€ is the
one-hot encoding ground-truth label for sample x;, C is the number of classes, hg(y|x;) is the
predicted posterior probability of a DNN model given x; (i.e. the prediction after softmax
normalization), and 6 are the parameters of the model. Convergence to a reasonable level of
performance usually determines the end of the training, whereas in budgeted training there is
a fixed iteration budget. We adopt the setting defined by [34], where the budget is defined
as a percentage of the full training setup. Formally, we define the budget B € [0, 1] as the
fraction of forward and backward passes used for training the model &g (x) with respect to a
standard full training. As we aim at analyzing importance sampling, the budget restriction
will be mainly applied to the amount of data N x B seen every epoch. However, a reduction
on the number of epochs 7T to T x B (where an epoch T is considered a pass over all samples)
is also considered as truncated training for budgeted training.

Truncated training is the simplest approach to budgeted training: keep the standard
SGD optimization and reduce the number of epochs trained by the model to T x B. We call
this strategy, where the model sees all the samples every epoch, scan-SGD. While seeing
all the samples is common practice, we remove this constraint and draw the samples from
a uniform probability distribution at every iteration and call this strategy unif-SGD. In this
approach the budget is defined by randomly selecting N x B samples every epoch (and still
training for T epochs).

Importance sampling aims to accelerate the convergence of SGD by sampling the most
difficult samples Dg = {(x;, yi)}f.isl more often, where Ny = N x B (the number of samples
selected given a certain budget). Loshchilov and Hutter [37] proposed a simple approach
for importance sampling that uses the loss of every sample as a measure of the sample
importance. Chang et al. [11] adapts this approach to avoid additional forward passes by
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using as importance:
t
A= ¥ (150t +¢, @
k=1

where K (y[x;) is the prediction of the model given the sample x; in epoch &, and  is the
current epoch. Therefore, the average predicted probability across previous epochs associated
to the ground-truth class of each sample defines the importance of sample x;. The smoothing
constant €' is defined as the mean per sample importance up to the current epoch: %Zf»vzl Ph.
The sampling distribution P’ at a particular epoch ¢ is then given by:
!
P==l 3

= 3)
By drawing samples from the distribution P’ this approach biases the training towards the
most difficult samples, and selects samples with highest loss value; we name this method
p-SGD. Similarly, Chang et al. [11] propose to select those samples that are closer to the
decision boundaries and favor samples with higher uncertainty by defining the importance
measure as ¢; = p! x (1 — pt); we name this approach c-SGD.

Both p-SGD and ¢-SGD are very computationally efficient as the importance estimation
only requires information available during training. Conversely, Jiang et al. [26] propose to
perform forward passes on all the samples to determine the most important ones and later
reduce the amount of backward passes; they name this method selective backpropagation
(SB). At every forward pass, SB stores the sample x; with probability:

st = [Fr(E(Hy(x:),71))]" (@)

where Fy is the cumulative distribution function from a history of the loss values of the last
R samples seen by the model and b > 0 is a constant that determines the selectivity of the
method, i.e. the budget used during the training. In practice, SB does as many forward passes
as needed until it has enough samples to form a full a mini-batch. It then performs the training
forward and backward passes with the selected samples to update the model.

Finally, as an alternative training paradigm to prioritize the most important samples,
Kawaguchi and Lu [31] propose to use only the g samples with highest loss from a mini-batch
in the backward pass. As the training accuracy increases, g decreases until only 1/16 of the
images in the mini-batch are used in the backward pass. The authors name this approach
ordered SGD (OSGD) and provide a default setting for the adaptive values of g.

Importance sampling methods under budgeted training give a precise notion of the
training budget. For unif-SGD, p-SGD, and c-SGD the adaptation needed consists of selecting
a fixed number of samples N x B per epoch based on the corresponding sampling probability
distribution F; and still train the full 7 epochs. For SB, the parameter b determines the
selectivity of the algorithm: higher values will reject more samples. Note that this method
requires additional forward passes that we exclude from the budget as they do not induce the
backward passes used for training. By assuming that each DNN backward pass is twice as
computationally expensive as a forward pass [30] we could approximate the budget used by
SB as Bsg = B+ 1/3, e.g. the results under B = 0.2 for SB correspond to B =2 0.5 for the other
approaches. We adapt OSGD by truncating the training as in scan-SGD: all the parameters
are kept constant but the total number of epochs is reduced to 7 x B. We also consider the
wall-clock time with respect to a full budget training as a metric to evaluate the approaches.
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4 Experiments and Results

4.1 Experimental framework

Datasets. We experiment on image classification tasks using CIFAR-10/100 [32], SVHN [44],
and mini-ImageNet [55] datasets. CIFAR-10/100 consist of 50K samples for training and 10K
for testing; each divided into 10(100) classes for CIFAR-10(100). The samples are images
extracted from ImageNet [18] and down-sampled to 32x32. SVHN contains 32x32 RGB
images of real-world house numbers divided into 10 classes, 73257 for training and 26032 for
testing. Mini-ImageNet is a subset of ImageNet with SOK samples for training and 10K for
testing divided into 100 classes and down-sampled to 84 x84. Unless otherwise stated, all the
experiments use standard data augmentation: random cropping with padding of 4 pixels per
side and random horizontal flip (except in SVHN, where horizontal flip is omitted).

Training details. We train a ResNet-18 architecture [22] for 200 epochs with SGD with
momentum of 0.9 and a batch size of 128. We use two learning rate schedules: step-wise and
linear decay. For both schedules we adopt the budget-aware version proposed by Li et al. [34]
and use an initial learning rate of 0.1. In the step-wise case, the learning rate is divided by 10 at
1/3 (epoch 66) and 2/3 (epoch 133) of the training. The linear schedule decreases the learning
rate value at every iteration linearly from the initial value to approximately zero (107°) at
the end of the training. We always report the average accuracy and standard deviation of the
model across 3 independent runs trained on a GeForce GTX 1080Ti GPU using the Pytorch
library. For each budget, we report best results in bold and best results in each section — data
augmentation or learning rate schedule — in blue (baseline SGD is excluded).

4.2 Budget-free training for importance sampling

Current importance sampling methods from  Table 1: Test accuracy (%), time (min) and
the state-of-the-art are optimized with no re-  speed-up (%) with respect SGD under a budget-

striction in the number of training iterations. free training (A, T, and S respectively). * de-
While this allows the methods to better ex- notes that we have used the official code.

ploit the training process, it makes it diffi- CIFAR-10 CIFAR-100
cult to evaluate their computational benefit. ~Method A T S A T S
Therefore, Table 1 pI'CSCl’ltS the performance, SGD 9458 033 141 0.0 7456006 141 0.0
: ) p-SGD  9441i01 113 199 T44dio06 127 99
wall-clock time, and speed-up relative to a  c-.s6p  9417:0n 100 29.1 7440:006 127 9.9

SB (*) 9390 016 85 397 73.39x037 119 156

full tralnlng of the methods presented in Sec- OSGD (*) 9434 <007 139 0.1 7422=x021 141 0.0

tion 3. All methods train with a step-wise
linear learning rate schedule. SGD corresponds to a standard training as described in Sub-
section 4.1. p-SGD and ¢-SGD correspond to the methods described in Section 3 introduced
by Chang et al. [11] that for the experiments in Table | train for 200 epochs where the
first 70 epochs consist of a warm-up stage with a uniform sampling strategy as done in the
original paper. For CIFAR-10 we use a budget of 0.8 for p-SGD and 0.7 for ¢-SGD, and
for CIFAR-100 a budget of 0.9 for both approaches (budgets retaining most accuracy were
selected). Finally, SB and OSGD follow the setups described in the corresponding papers,
[26] and [31], and run on the official code.

While the simpler approaches to importance sampling, p-SGD and c-SGD, achieve similar
performance to SGD and reduce computation up to 29.08% (9.93%) in CIFAR-10 (CIFAR-
100), SB reduces the training time 39.72% (15.60%) in CIFAR-10 (CIFAR-100) with very
small drops in accuracy. This supports importance sampling observations where particular
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configurations effectively reduce computational requirements and maintain accuracy.

4.3 Budgeted training for importance sampling

We adapt importance sampling ap- Table 2: Test accuracy with a step-wise and a linear
proaches as described in Section 3 Jearning rate decay under different budgets. Note that
and configure each method to con-  §B requires additional computation (forward passes).

strain its computation to the given CIFAR-10 CIFAR-100

_ SGD - SLR 94.58 +0.33 74.56 + 0.06
budget' Table 2 shows the ana SGD - LLR 94.80 + 0.08 75.44 £0.16
lyzed methods performance under g 02 03 05 02 03 05
the same budget for a step-wise Step-wise decay of the learning rate (SLR)

: scan-SGD  92.03 +024  93.06 +015 93.80 015  70.89 +023 7231 +022 73.49 +020
learnlng rate (SLR) decay and the unif-SGD 91.82 +005 92.69 +007 93.71 007 7036030 72.03 +047 73.36 +020

linear decay (LLR) proposed by Ll p-SGD 9228 +005 9291 +018 93.85+007 70.24 +028 72.11 +039 72.94 +036

L. ¢-SGD 91.70 025 9283 £030 93.71 x015 69.86 +036 71.56 +027 73.02 +034
et al. [34] for budgeted tralnlng (de— SB 93.37 o011 93.86+027 9421 013 7094 £o038 7225 +068 73.39 037
OSGD 90.61 031 91.78 030 93.45 <010 70.09 +025 72.18 +035 73.39 x022

scribed in Section 4.1). Surpris- Lineat docay of the learning e (LLE)

ingly, this setup shows that most san-S6D 9295100 9355 10m 94225016 7204202 7297 0w 73.90 01
methods achieve very similar per-  ;56n" 5353010 9363 o S41i-on 7172.0m 7294500 74060
formance given a predefined bud- G Rt s sl gl 2t 2
get, thus not Observing faster con- 0SGD 91.87 036  93.00 008 9393 x0220 T1.25+011 7256 £036 73.40 0.4
vergence when using importance sampling. Both p-SGD and ¢-SGD provide marginal or
no improvements: p-SGD marginally improves unif-SGD in CIFAR-10, but fails to do so in
CIFAR-100. Similar behaviour is observed in c-SGD. Conversely, SB surpasses the other
approaches consistently for SLR and in most cases in the LLR setup. However, SB introduces
additional forward passes not considered as budget, while the other methods do not (see
Section 3 for an estimation of the budget used by SB).

We consider scan-SGD and unif-SGD, as two naive baselines for budgeted training.
Despite having similar results (scan-SGD seems to be marginally better than unif-SGD),
we use unif-SGD for further experimentation in the following subsections as it adopts a
uniform random sampling distribution, which allows contrasting with the importance sampling
methods. Additionally, Table 2 confirms the effectiveness of a linear learning rate schedule
as proposed in [34]: all methods consistently improve with this schedule and, in most cases,
unif-SGD and LLR perform on par with SB and SLR, and surpasses all the other methods
when using SLR.

This failure of the sampling strategies to consistently outperform unif-SGD could be
explained by importance sampling breaking the assumption that samples are i.i.d: SGD
assumes that a set of randomly selected samples represents the whole dataset and provides an
unbiased estimation of the gradients. Importance sampling explicitly breaks this assumption
and biases the gradient estimates. While this might produce gradient estimates that have a
bigger impact on the loss, breaking the i.i.d. assumption leads SGD to biased solutions [11,
37, 62], which offsets the possible benefits of training with the most relevant samples. As
a result, importance sampling does not bring a consistent speed-up in training. Note that
approaches that weight the contribution of each sample with the inverse sampling probability
to generate an unbiased gradient estimate obtain similar results [1, 11, 20, 28, 62].

4.4 Data variability importance during training

Core-set selection approaches [14, 53] aim to find the most representative samples in the
dataset to make training more efficient, while keeping accuracy as high as possible. Fig-
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== p-SGD, SLR, no ¢, no average  wm p-SGD, no € == p-SGD + RICAP
p-SGD, no ¢, no average == p-SGD

=20% = 50% = 30% =70%--"100%

Core-set  unif-SGD * Random  Core-set unif-SGD X

(a) (b) (© (@)

Figure 1: Importance of data variability in CIFAR-10, (a) and (c), and CIFAR-100, (b)
and (d). (a) and (b) compare different training set selection strategies: randomly selecting
samples at every epoch (unif-SGD) outperforms fixed core-set or random subsets. (c) and (d)
compares the data variability of different training strategies: the entropy of sample counts
during training (0.3 budget) demonstrates that importance sampling, linear learning rate, and
data augmentation contribute to higher data variability (entropy).

Random

ure 1, (a) and (b), presents how core-set selection and a randomly chosen subset (Random)
both under-perform uniform random sampling of a subset each epoch (unif-SGD), which
approaches standard training performance (black dashed line). This shows that randomly
selecting a different subset every epoch (unif-SGD), which is equally computationally efficient,
achieves substantially better accuracy. This result supports the widely adopted assumption
that data variability is key and suggests that it might be more important than sample quality.

We also find data variability to play an important role within importance sampling.
Figure 1 (c) and (d) shows data variability measured using the entropy H(c) of the number of
times that a sample is seen by the network during training, with ¢ being the N-D distribution
of sample counts. These results show how increases in variability (higher entropy) follow
accuracy improvements in p-SGD when introducing the LLR, the smoothing constant to the
P' sampling distribution, the average of the predictions across epochs, and data augmentation.

4.5 Data augmentation for importance sampling

Importance sampling approaches Table 3: Data augmentation for budgeted importance
usually do not explore the in- sampling in CIFAR-10/100. N and M are the number
teraction of sampling strategies and strength of RandAugment augmentations, and o
with data augmentation techniques  controls the interpolation in mixup and RICAP. Note
[26, 30, 37]. To better under- that SGD corresponds to the full training.

stand this interaction, we explore CIFAR-10 CIFAR-100
interpolation-based augmentations =~ _Budeet 02 03 05 02 03 05
. . . Standard data augmentation
via RICAP [5 1 ] and leup [6 1 ] ’ SGD (B=1) 94.80 +0.08 75.44 0.6
and non—interpolation augmenta-  wi-SGD 92834014 9348+005s 9398011 72.02<024 T274+057 7393 +016
. . p-SGD 9323 £014  93.63+004 9414 o011 T1.72+037 7294 +037 74.06 £o.10
tions using RandAugment [15]. ss 93.78 z011 94.06+037 945701 7196:0s 7301042 74350
We implemented these data aug_ RandAugment data augmentation (N =2, M = 4)
. R . SGD (B=1) 95.56 +0.12 75.52 +0.17
mentation pohcles as repor ted In wirsep 9276 <016 9378 +on1 94.64 1008 7144103 7323102 TATB +04s
.. p-SGD 92.95 £031 93.99 +028 9491 o018  71.63 027 72.91 £013  74.30 004
the orlglnal papers (see Table 3 SB 9327 +038  94.64x007 9527026 6684 =115 7379 +040 7487 018
for the hyperparameters used in mixup data augmentation (o = 0.3)
. SGD (B=1) 95.82 +0.17 77.62 +0.40
our experiments). Note that for wnif-SGD 93.64 107 9449 toos 95.18 1005 7328 2051 75.13 1052 75.80 03
H 3 p-SGD 93.78 004 9441 +o016 9526 006 73.35+020 75.05+015s 7587 =015
leup and RICAP we Comblne 2 SB 93.62+036 93.92+008 9451 017 7338 +013 74.88+031 7557 £023
and 4 images respectively within RICAP data augmentation (¢ = 0.3)
each mini-batch, which results in ~ S6P@B=1 96.17 019 7891+ 0m
’ ) unif-SGD 93.85 000 9493 1020 9547 zo018 7487 028 76.27 +032 77.83 015
the same number of samp]es belng p-SGD 94.02 £0.08 9479 to1s  95.63 2015 74591015 7650 £022  77.58 £o49
SB 89.93 +084 93.64 042 9476 £002 56.66 065 7224 +058 76.26 022

shown to the network (7" x B).
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Table 3 and 4 show that data
augmentation is beneficial in a bud-
geted training scenario: in most
cases all strategies increase per-
formance compared to standard
data augmentation. The main ex-
ception is for the lowest budget
for SB where in some cases data
augmentation hurts performance.
In particular, with RICAP and
mixup, the improvements from im-
portance sampling approaches are
marginal and the naive unif-SGD
provides results close to full train-
ing with standard augmentation.
In some cases unif-SGD surpasses
full-training with standard augmen-
tations, e.g. RICAP with 0.3 and
0.5 budget and both mixup and RI-

Table 4: Data augmentation for budgeted importance
sampling in SVHN and mini-ImageNet. N and M are the
number and strength of RandAugment augmentations,
and o controls the interpolation in mixup and RICAP.

SVHN mini-ImageNet
Budget: 0.2 0.3 0.5 0.2 0.3 0.5
Standard data augmentation

SGD (B=1) 97.02 £ 0.05 75.19 0.6

unif-SGD 96.56 012 96.78 =013 96.95 +007 70.87 o056 72.19 £043 73.88 042
p-SGD 96.52 £003  96.75 003 96.84 £006 71.05+029 7239 £045 73.66 +039
SB 96.93 +007  96.85 =001  96.97 006 69.68 +009 71.46 £015 73.51 030

RandAugment data augmentation (N =2, M =4)

SGD (B=1) 97.59 £ 0.14 T74.15 022

unif-SGD 97.38 005  97.50 =007  97.60 +005s 71.29 025 73.04 034 7321 +o052
p-SGD 97.25+003 9744 002 97.52+003 7143 1025 7236 +015 7321 +o038
SB 97.42 +009 9743 019 97.56 +005s 67.17 +251 T1.69 £031  73.28 +0.03

mixup data augmentation (o = 0.3)

SGD (B=1) 97.24 £ 003 76.28 + 028

unif-SGD 96.99 +009  97.04 =008 97.24 +007 7250 051 73.76 026  75.05 029
p-SGD 96.92 +008 97.34 049 9737 +049 7221 o081 73.63 013 T4.54 +053
SB 96.80 £009  96.92 009 96.96 009 70.12 +051 7201 072 73.76 £036

RICAP data augmentation (o = 0.3)

SGD (B=1) 97.61 +0.06 78.75 +0.40

unif-SGD 9747 004  97.62 =016 97.55 004 73.56+024 75.15=045 77.20 £033
p-SGD 97.48 +008 9745006 97.57 005 73.67 x060 7546 =027 77.25 047
SB 97.34 £003  97.40 x006 97.45 +o001 53.26 t071  TL75+067 75.65 +0.40

CAP with 0.3 budget in CIFAR-10/100. This is even more evident in SVHN where all the
budgets in Table 4 for unif-SGD with RICAP surpass full training (SGD) with standard

augmentation.

Given that the cost of the data augmenta- Table 5: Wall-clock time (minutes) in CIFAR-
tion policies used is negligible (see Table 5

for the wall-clock times when B = 0.3), our
results show that adequate data augmenta-
tion alone can reduce training time at no
accuracy cost and in some cases with a con-
siderable increase in accuracy. For example,
a 70% reduction in training time (0.3 budget) corresponds to an increase in accuracy from
75.44% to 76.27% in CIFAR-100 and from 94.80% to 94.93% in CIFAR-10. Also, a 50%
reduction (0.5 budget) corresponds to an increase in accuracy from 75.44% to 77.83% in
CIFAR-100 and from 94.80% to 95.47% in CIFAR-10.

Table 6: Test accuracy for CIFAR-10/100 and mini-
ImageNet under extreme budgets.

We also experimented with ex-
tremely low budgets (see Table 6)
and found that importance sam-
pling approaches (p-SGD and SB)
still bring little improvement over
uniform random sampling (unif-
SGD). Here additional data aug-
mentation does not bring a signifi-
cant improvement in accuracy and
in the most challenging cases, hin-
ders convergence. For example,
when introducing RICAP with B =
0.05, the accuracy drops approx-
imately 2 points in CIFAR-10, 5
points in CIFAR-100, and 7 points

100 for a training of 0.3 of budget.

Approaches:

unif-SGD  p-SGD  SB

Standard data augmentation
RandAugment

mixup

RICAP

47
48
48
49

48
48
48
49

91
93
93
95

CIFAR-10 CIFAR-100 mini-ImageNet
Budget: 0.05 0.1 0.05 0.1 0.05 0.1
Standard data augmentation
unif-SGD  87.90 £040  91.46 +008  62.66 +0.65 69.34 £068 56.38 011  67.61 052
p-SGD 88.86 017 91.66 +0.11 6220056 69.32+017 5695043 67.67 £0.41
SB 79.45 +431 92,66 +014 50.53 £227 68.29 xo068 11.19+346 61.25 176
RandAugment data augmentation (N =2, M =4)
unif-SGD  83.24 006 88.95+022 47.64+33¢ 6448 +010 4235+154 64.98 2047
p-SGD 83.94 026 89.77 o038 4878 +148 65.05+037 41.72+077 65.88 +0.15
SB 3221 +414 33864502 5.05+064 5.05+064 5.6l 066 594 +013
mixup data augmentation (o = 0.3)
unif-SGD  87.33 1042 91.74 004 59.90 +071  70.43 +045 53.13 1083 68.54 098
p-SGD 87.56 +067 91.59 017  59.68 +071  70.31 +010 5420 £095 68.39 +0.46
SB 77.72 531 9256 +015  43.27 £737  69.64 £024 12,10 £027  61.01 +0.64
RICAP data augmentation (¢t = 0.3)
unif-SGD  85.61 024 9132 +028 55.85+051 6943 +033 48951065 67.26+063
p-SGD 85.57+070 90.94 016 56.09 071 70.05 £007 49.35+060 67.27 =085
SB 4493 £267 5476 431 10.75+072 1333 +039 871 x045 10.84 o036
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in mini-ImageNet with respect to 87.90%, 62.66%, and 56.38% for unif-SGD with standard
data augmentation.

5 Conclusion

This paper studied DNN training for image classification when the number of iterations is
fixed (i.e. budgeted training) and explores the interaction of importance sampling techniques
and data augmentation in this setup. We empirically showed that, in budgeted training, DNNs
prefer variability over selection of important samples: adequate data augmentation surpasses
state-of-the-art importance sampling methods and allows for up to a 70% reduction of the
training time (budget) with no loss (and sometimes an increase) in accuracy. In future work,
we plan to explore the limitations found in extreme budgets and extend the study to large-scale
datasets where training DNNs becomes a longer process. Additionally, we find particularly
interesting as future work to study the generalization of the conclusions presented in this
paper to different tasks, types of data, and model architectures. Finally, we encourage the use
of data augmentation techniques rather than importance sampling approaches in scenarios
where the iterations budget is restricted, and motivate research on these scenarios to better
exploit computational resources.
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