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Abstract

Deep learning models have shown promising results in a wide range of computer vi-
sion applications across various domains. The success of deep learning methods relies
heavily on the availability of a large amount of data. Deep neural networks are prone to
overfitting when data is scarce. This problem becomes even more severe for neural net-
work with classification head with access to only a few data points. However, acquiring
large-scale datasets is very challenging, laborious, or even infeasible in some domains.
Hence, developing classifiers that are able to perform well in small data regimes is cru-
cial for applications with limited data. This paper presents CvS, a cost-effective classifier
for small datasets that derives the classification labels from predicting the segmentation
maps. We employ the label propagation method to achieve a fully segmented dataset with
only a handful of manually segmented data. We evaluate the effectiveness of our frame-
work on diverse problems showing that CvS is able to achieve much higher classification
results compared to previous methods when given only a handful of examples.

1 Introduction
Over the past decade, deep learning algorithms have been proved to excel at various com-
puter vision tasks ranging from classification to object detection and segmentation. The
tremendous success of deep learning algorithms in computer vision has inspired great in-
novations across many domains from healthcare to the automotive industry. Contemporary
deep neural networks heavily rely on a large amount of data to learn robust models that
generalize well to unseen data. For this reason, large-scale datasets have been collected
[4, 14, 17, 18], enabling the development of powerful models pushing the state-of-the-art
further in many computer vision applications. However, collecting large-scale datasets is not
only laborious but also infeasible in settings where the scarcity of data is inevitable due to
the nature of the task such as the diagnosis of a rare disease. On the other hand, the deep neu-
ral network tends to overfit when data is scarce. This problem can be even more severe for
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classification networks modeled by deep neural networks. Therefore, developing a classifier
network that is able to handle small datasets is crucial for applications with limited data.

Multi-task learning has shown to be an effective way of exploiting the knowledge in re-
lated tasks to improve the generalization of each task by jointly training the network with a
group of related tasks [34, 35]. Segmentation are among the ones that are commonly being
employed with classification in a multi-task setting [21]. Despite the success of MTL meth-
ods in some applications, balancing the loss from different heads often lead to overfitting the
problem and hence limits their applications. Moreover, acquiring segmented data is not only
very time-consuming but also requires the knowledge of domain experts in many fields.

In general, segmentation models have shown more robustness to overfitting when trained
with a small dataset [1, 23]. The reason could potentially be attributed to encoding a dense
pixel-wise loss that incorporates a high bias shape prior to the learning process. In this paper,
we propose a novel framework, called CvS (Classification via Segmentation), that leverages
the power of segmentation to solve the classification task in a low data regime. CvS is not
only able to outperforms previous works, but it also addresses the problem of loss balancing
in MTL networks and the difficulty to procure segmentation labels for a dataset.

Main contributions. In this work, (i) we introduce a novel framework, called CvS,
that utilizes the segmentation power to perform classification when the model has access to
only a handful of examples (∼ 1− 5 samples per class). (ii) As opposed to the standard
MTL framework, CvS is a single-headed approach forcing both tasks, segmentation, and
classification, to be computed together. (iii) We employ a label propagation technique to
obtain fully segmented data by segmenting only a small subset of the dataset.

We show the effectiveness of our approach through extensive experiments on a diverse
set of problems in the context of image classification.

2 Related Work
The machine learning field has witnessed an evolution of deep classifier networks over the
past decades evolving from a simple multi-layer network to more complex and deeper neural
networks aiming at pushing the state-of-the-art for the image classification problems [10,
12, 15, 16, 25, 27, 28]. The current state-of-the-art models for image classification, however,
are mainly developed based on the assumption of the availability of a large amount of data
[3, 6, 9, 20, 22].

Transfer learning. With emerge of ImageNet, transfer learning have been commonly
employed in many computer vision tasks by transferring the network weights learned on
ImageNet classification. In general these method have shown to be an effective way of im-
proving the performance of downstream tasks with small data by exploiting the weights of
pretrained networks [37]. Big Transfer [13] is currently one of the strongest methods that
harness the power of transfer learning to mitigate the problem of small dataset for classifi-
cation tasks. However, transfer learning based methods require a large amount of data for
building a rich base model. Moreover, transfer learning methods not only require careful se-
lection of sets of information to transfer but also tend to perform to their full potential when
the nature of data for the target task does not vary significantly from the data used in the
pre-trained networks [30]. Additionally, the representation in some layers of the pretrained
model may be local and irrelevant to the target task which can make the decision on number
of layers to keep or remove less confident and more challenging [33].

Few-shot learning. Few-shot learning methods are based on building reliable models
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that generalize to new classes with insufficient data in training set [7, 8]. In general, these
methods require a large initial or base dataset that is of the same domain and it’s the support
set that can be small and hence cannot perform well when the initial dataset is also small.
These methods often learn a similarity metric on training data and transfer it to new classes
[26, 29, 31]. Unlike the few-shot learning methods our proposed model, CvS, aims to solve
the classification tasks for extremely small datasets that do not have access to any initial large
datasets to begin with, such as medical imaging classification problems.

Weakly supervised learning and label propagation. Weakly supervised algorithms
aim to build strong predictive model by learning from noisy or incomplete supervision where
coarse labels or small subset of data with ground truth labels are available [11, 24, 36]. Simi-
larly, label propagation creates more training data by propagating from few labeled examples
to a large collection of unlabeled examples [32]. Deep Metric Transfer [19] improves upon
label propagation by utilizing metric transfer to address the problem of object recognition
from a very small amount of labeled data. This method, transfer a similarity metric learned
from another related domain and propagate the labels from labeled examples to unlabeled
images to enlarge the labeled data that enables training of deep neural networks. Although
our proposed framework is similar to these methods, they do not fit our experimental set up
for direct comparison. Weakly supervised learning often tries to show how the weak super-
vision is close to the full label supervision and thus, showing how label propagation is close
to full manual labeling. However, our main goal with CvS is to show its superiority over
classification, especially with respect to human annotation time. We acknowledge that al-
though other semi-supervised methods could potentially improve upon the label propagation
method, the focus of CvS is not on getting the actual label propagation to work but rather
using the most naive and simple approach to show the lower bound of the performance.

3 Methodology
CvS is a single-headed approach to the standard multi-task learning methods, which elimi-
nates the need to balance the losses from different heads while still doing both tasks of seg-
mentation and classification. CvS harnesses the power of segmentation to learn from smaller
datasets, which allows us to perform classification on extremely small datasets (∼ 1− 5
samples per class).

3.1 Problem Formulation
The CvS framework derives the classification label through a segmentation module. The
overall architecture is illustrated in Fig.1

Figure 1: The illustration of the overall architecture of CvS network.

Suppose the training set comprises N samples and denoted as

D =
{
(xk,sk,yk)|sk(i, j) ∈ {0,1},yk ∈ {1,2, ...,P}

}N
k=1
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where xk is of size [H,W,C], sk represents the segmentation map, yk represents the ground
truth class label, and P represents the number of classes. Given D, our goal is to learn a
classifier fc :X −→Y parameterized by θc. We define functions f (xk;θ f ) = zk and g(zk;θg) =
hk where f (.) parameterized by θ f represents the backbone function f : X −→ H mapping
the input image to the latent feature map zk, and g(.) parameterized by θg represents the
head function g :H −→ S mapping the feature encoding zk to the segmentation map, hk, of
size [H,W,P+ 1]. The extra class (class zero) in p+ 1 represents the background and is
discarded. Then we define another function q(hk) = yk that averages over the remaining P
segmentation maps followed by a softmax function to obtain the class label for the given
input. Given the input xk ∈ X , function fc can be decomposed such that

fc(xk,θc) = (q◦g◦ f )(xk) (1)

where θc = {θg,θ f }. The backbone function f (.) is modeled by a neural network and the
head network consists of a stack of convolutional blocks. The loss function is taken to be a
cross entropy loss.

3.2 CvS Segmentation

Most classification datasets do not provide segmentation labels and collecting segmenta-
tion labels for the full classification dataset is prohibitively expensive. Motivated by this
challenge, we employ two simple approaches, binarization and label propagation to procure
segmented datasets. Although label propagation has been widely used, we employ it in the
context of our work by learning a preliminary model from segmenting a small subset of the
dataset (∼ 1− 5 samples per class) and use this model to propagate segmentation labels to
the rest of the dataset. This allows us to apply CvS on the whole dataset of any size by
collecting segmentation labels for an extremely small subset.

Binarization. For datasets containing black and white images such as MNIST, we opted
for simplicity and applied a binarization technique with threshold 0.0 to obtain the segmen-
tation maps. In the obtained image, the 0.0 pixel values represent the background and the
non-zero pixels (pixels with value 1) represent the class that the given image belongs to.

Segmentation Label Propagation. For datasets with more complex image data such
as CIFAR10/100 where the binarization method was no longer applicable, we employed
label propagation to obtain segmentation labels for the dataset. The overall pipeline for
segmentation propagation is illustrated in Fig.2. We started by manually segmenting M
samples per class (Usually chosen to be a very small number). Then we used the M×nclasses
data points to train the segmentation network of the CvS framework (the functions f and g)
which we refer to as Seg-M network. Then we used this preliminary model to propagate the
segmentation labels to the rest of the images.

4 Model Architecture
The CvS framework classifies the given input image via a segmentation module which itself
is composed of two main components, backbone and head. The backbone network takes the
input image and learns the latent feature maps which are being utilized by the head network
to predict segmentation maps. The predicted segmentation maps are further used to derive
the class label for the input image. The overall architecture is illustrated in Fig.1.
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Figure 2: Pipeline for Segmentation Propagation

4.1 Backbone Architecture

The CvS framework allows various choices of backbone architecture without any constraints.
We adopted ResNet-101 and Wide-ResNet for our work. We employed a custom Wide-
ResNet 1 with the depth 28 and width 10. The network is composed of a convolutional layer
followed by a stack of three ResNet blocks where each consists of two BatchNormalization-
ReLU-Conv structures. The first layer in each ResNet block is followed by Dropout. For
ResNet-101, we employed a standard architecture used in TorchVision package.

4.2 Head Architecture

The CvS head is built upon a convolutional layer. The architecture of the convolutional head
varies slightly depending on the choice of the backbone network. When Wide-ResNet is used
as the backbone, the head follows the BatchNormalization-ReLU-ConvTranspose structure.
When ResNet101 is used, the DeepLabHead architecture is employed as the head layer.

5 Experiments

5.1 Data Collection

MNIST [17]: MNIST dataset comprises 60K 28× 28 hand written digits labeled with 10
classes corresponding to digits 0 to 9. we employed the binarization method to obtain the
segmentation labels. Given the [0,1] valued images, zero-valued pixels were labeled as
background, and pixels with value 1 were multiplied by their corresponding class label,
i.e. 1×7 representing the class of digit 7. Further, to distinguish the class of digit zero and

1We borrowed the same network architecture developed by Bumsoo Kim https://github.com/meliketoy and repli-
cated all the experiments for the purpose of our work.
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the background class (zero-valued pixels), we incremented the non-zero pixel values by one
i.e. 1×7+1 representing the class of digit 7.

CIFAR10/100 [14]: The CIFAR-10 and CIFAR-100 dataset consist of 60K 32×32 color
images with 10 and 100 classes respectively. To obtain the segmentation labels, we employed
the label propagation method. We chose the CIFAR-10 dataset and manually segmented M
images per class where M ∈ {1,5,10,25,50,100}. Then we trained the Seg-M model using
the M× 10 images with segmentation labels. Out of the six trained Seg-M networks, we
chose Seg-10 and Seg-100 as the preliminary models to segment the rest of the dataset. For
CIFAR-100, we employed the same Seg-10 and Seg-100 models from CIFAR-10 to obtain
segmentation labels for the whole CIFAR-100 dataset.

HRF [2]: This dataset consists of 45 Fundus images belonging to 45 patients in three
classes, healthy, diabetic retinopathy, or glaucomatous with 15 images per class. This dataset
provides the binary gold standard vessel segmentation for each image.

5.2 Baselines

To show the effectiveness of our proposed framework, we compared CvS with standard
classifier deep neural networks, multi-task learning, and previous works for each image clas-
sification task. The baseline methods have a similar structure to CvS with ResNet101 or
Wide-ResNet chosen as their backbone networks.

Linear Head: The linear head is employed in standard classification networks and fol-
lows the BatchNormalization-ReLU-AveragePooling structure followed by a linear layer.

Multi-task Head: The multi-task learning method is composed of segmentation and
classification. When using Wide-ResNet as the backbone, we employed a ConvTranspose
layer after applying BatchNormalization-ReLU for the segmentation head. For the classifica-
tion head, we applied BatchNormalization-ReLU-AveragePooling followed by a linear layer.
When using ResNet101 as the backbone, we employed a stack of three ConvTranspose lay-
ers for segmentation head where the first two layers are followed by ReLu and BatchNorm.
For classification, we applied an average pooling layer followed by a linear layer.

5.3 Experimental Setting

We employed different settings based on the choice of the backbone network. When us-
ing Wide-ResNet as the backbone, the model is trained from random initialization, and im-
ages were kept in their original resolution for MNIST, CIFAR-10, and CIFAR-100. When
ResNet101 is used, the pretrained network’s weights were used as initialization, and images
were resized to 128×128 for MNIST, CIFAR-10, and CIFAR-100 and 512×512 for HRF.

We used slightly different data augmentation based on the choice of dataset and the
model. For CvS, when using MNIST, a random turn, random shift with zoom, and gaussian
noise are employed. When using CIFAR-10, a random turn, color distortion, and random
flip are used. When using CIFAR-100, a color distortion, random shift with zoom, and ran-
dom flip are used. For baseline methods (classification and multi-task), when using CIFAR-
10/100 and MNIST, a random crop and resize with random horizontal flip are employed.
When using HRF, random horizontal flip and random turn are used. Depending on the size
of the dataset, the batch size is selected from {8,16,32,128}. For optimizer, we used SGD
with momentum parameter set to 0.9, weight decay 0.0005, and initial learning rate 0.1.
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Methods
Number of samples per class

1 5 10 25 50 100 500 1k Full
ResNet101
Classification 58.21 50.38 68.09 82.78 91.09 94.06 98.62 98.68 99.47
Multi-task 48.82 79.43 83.26 93.94 95.19 96.65 99.36 99.39 99.75
CvS 71 87.67 92.7 95.59 97.8 97.8 99.11 99.17 99.62
W-ResNet
Classification 20.16 77.05 78.78 84.88 89.31 95.45 98.49 98.83 99.16
Multi-task 15.25 30.87 37.17 84.6 96.28 97.87 99.18 99.51 99.45
CvS 54 88 90.9 95.68 97.41 97.95 99.08 99.25 99.51
Others
LeNet 47.7 - 72 - - 82 - - 98.5

Table 1: MNIST Test Set Performance

5.4 Experimental Results

To show the effectiveness of our proposed method in a low data regime, we train our model
using different data sizes ranging from only one sample per class to using the full dataset.

5.4.1 MNIST

We selected M ∈{1,5,10,25,50,100,500,1000,N} random samples per class as our training
set where N represents the size of the dataset. We compared our proposed method against
a standard classification network, multi-task approach, and previous approach LeNet [16].
The result is depicted in Table 1. The result for LeNet is reported directly from their paper.
The result in Table 1, shows that CvS outperforms all the baseline methods significantly
especially when the size of the dataset is very small (M 6 100) and achieves comparable
results to multi-task learning when the number of training samples is larger than 50k. We
observed that using ResNet-101 as the backbone network achieves superior results over the
Wide-ResNet when only a handful of examples per class (M = 1) are available to the model
and achieves comparable results in the larger data regime (M > 5). The result indicates
that CvS can achieve high performance without the need for a large amount of data for pre-
training or a significant amount of computational resources.

5.4.2 CIFAR-10

Similar to the MNIST setting, we selected M ∈ {1,5,10,25,50,100,500,1000,N} random
samples per class as our training data. Table 2 compares the results of our work with the
classification network and two of the previously proposed approaches Big Transfer [13] and
Deep Metric Transfer [19] where the results are reported directly from their papers. Table
2 shows the result for CvS where M ∈ {1,5,10,25,50,100} samples per class were manu-
ally segmented. We then selected two of the trained CvS models achieving an accuracy of
73.94% and 90.1% with ResNet-101 and 38.56% and 68.5% with W-ResNet (depicted by
∗ and ∗∗ in Table 2) and chose their corresponding trained segmentation network, Seg-10
and Seg-100 as the preliminary models to segment the remaining images. The CvS(Seg-10)
and CvS(Seg-100) in Table 2 indicate the performance of CvS framework when Seg-10 and
Seg-100 were employed to obtain the segmentation labels.
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Methods
Number of samples per class

1 5 10 25 50 100 500 1k Full
ResNet101
Classification 18.85 20.67 26.01 27.12 37.37 42.16 69.75 76.4 93.55
CvS 39.31 67.24 73.94∗ 80.95 86.43 90.1∗ - - -
CvS(Seg-10) - - - 78.69 84.89 88.51 93.26 94.66 96.42
CvS(Seg-100) - - - - - - 93.79 95.37 97.13
W-ResNet
Classification 16.66 25.03 26.11 35.47 42.34 54.2 79.29 85.49 93.71
CvS 19.35 33.07 38.56∗∗ 51.4 59.69 68.5∗∗ - - -
CvS(Seg-10) - - - 45.45 54.09 62.12 78.93 84.81 93.29
CvS(Seg-100) - - - - - - 80.76 85.81 93.18
Others
Big Transfer 67 94 97 - - 98 - - 99.4
DeepMetric-tr - 56.3 63.5 - 74.8 79.4 84.6 87.9 -

Table 2: CIFAR-10 Test Set Performance

As Table 2 suggests, CvS outperforms standard classification networks and Deep Metric
Transfer significantly. The performance gap is particularly noticeable in a low data regime.
This result suggests that CvS is much more powerful as opposed to standard classifiers when
dealing with extremely small datasets. We can also see that CvS achieves its best perfor-
mance when using ResNet-101 as the backbone network.

As was expected, CvS models that had access to data with segmentation labels perform
slightly better than those with predicted segmentation labels. Comparing CvS(Seg-10) and
CvS(Seg-100) shows that the model does not benefit much from increasing the number of
data with segmentation labels. This result indicates the effectiveness of CvS in achieving
high performance with having access to only a handful of data with segmentation labels.

Although CvS doesn’t outperform Big Transfer, this method tend to perform to its full
potential when the initial and target problems are related. Therefore its application becomes
limited for domains such as medical imaging where the target data is significantly different
from the ImageNet data [30, 33].

5.4.3 CIFAR-100

For CIFAR-100 we selected M ∈ {1,5,10,25,50,100,N} random samples per class where
N is the size of the dataset. Since we did not segment any of the CIFAR-100 images, the
segmentation annotation is performed by Seg-10 and Seg-100 networks from the CvS model
trained on CIFAR-10 (depicted by ∗ in Table 2). Table 3 compares the results of our work
with the classification network and Big Transfer [13]. The observation from Table 3 sup-
ports the results in Table 2. The result shows the superiority of CvS over standard classifier
networks. We can also see that the model doesn’t benefit from more data with segmentation
labels. The overall result indicates that the CvS model can achieve much higher performance
than the vanilla classification network with a negligible cost for manual segmentation.

5.4.4 High Resolution Fundus Photographs (HRF)

In this section, we evaluate our work on a medical dataset for a real-world application and
compare it with classification, multi-task learning and previous approach from [5]. We em-
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Methods
Number of samples per class

1 5 10 25 50 100 Full
Backbone:ResNet101
Classification 2.97 7.6 11.25 24.9 38.2 55.48 78.24
CvS (Seg-10) 21.78 46.93 56.4 65.21 70.24 75.14 83.9
CvS (Seg-100) 21.49 45.73 52.8 64.07 70.23 74.65 83.64
Backbone:Wide-ResNet
Classification 3.89 7.12 9.38 31.45 33.75 55.85 78.01
CvS (Seg-10) 10.23 19.35 24.54 33.51 41.89 53.02 75.76
CvS (Seg-100) 10.79 20.03 25.11 33.45 40.75 51.46 72
Other Architectures
Big Transfer (SoTA) 40 78 84 87 - 91 93.5

Table 3: CIFAR-100 Test Set Performance. All segmentation labels were propagated from
CIFAR10 trained networks, following the same nomenclature as Sec.5.4.2.

ployed 5-fold cross-validation, where folds were chosen randomly and each fold used 36
images in the training set and was tested on the left-out 9 images. We used the hyperparame-
ters that worked best for the CIFAR-10 experiments. Our baseline ResNet101 classification
network achieved an accuracy of 66.67%; our multitask network achieved an accuracy of
70.23%, and our CvS network achieved an accuracy of 82.22%. Our CvS method even
slightly outperforms the high performance of 80% reported by [5], that uses a combination
of 5 datasets as their training data and does not use full Fundus but a crop around the optic
disc to help increase signal to noise.

5.5 Cost Analysis

In this section we evaluate the cost of the manual annotation for pure classification based
approaches and our CvS model which is computed as follows: (1) the cost of pure classifica-
tion is calculated as the average time spent for annotating each image with its corresponding
class label, (2) the cost of CvS method is computed as the average time spent for manual
segmentation of each image plus the time for manual annotation of each image with it corre-
sponding class label. Figure 3 shows the cost analysis of compared methods for CIFAR-10
from 2 using the ResNet-101 as the backbone. In our experiment, the average time for clas-
sification and segmentation annotation per example of CIFAR-10 was 3.5 and 29.52 seconds
respectively. As Fig.3 suggests, all CvS plots are above the pure classification method. We
can see that as the number of samples per class increases, the extra segmentation annotation
of 1000 more images doesn’t matter relative to the 50k class labels at the upper limit. This
shows that our CvS method is not only a better method for every dataset size, but also better
given human annotation time.

5.6 Label Propagation Analysis

In this section, we analyze the quality of predicted segmentation labels performed by the seg-
mentation propagation method. We employed our two preliminary models, Seg-10 and Seg-
100, and visualized their results on a randomly selected image from each class in CIFAR-10.
Figure 4 compares the result against images with segmentation labels.
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Figure 3: Comparison of the cost in terms of human annotation for different methods for
CIFAR-10. The radius of circles represent the computational costs of each method.
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Figure 4: Illustration of predicted segmentation maps performed by label propagation tech-
nique for CIFAR-10. From left to right, we have an original image randomly selected from
each class, (a) manual segmentation, (b), and (c) predicted result of Seg-10 and seg-100.

Figure 4 shows a reasonable accuracy for predicted segmentation maps. The results
suggest that the label propagation technique can obtain a quality segmented dataset with
access to only a handful of data points with segmentation labels.

6 Conclusion
In this work, we presented a novel framework for classification in a low data regime. We
studied its components and showed the effectiveness of our method on diverse classification
tasks. Our experiments showed considerable improvement over previous approaches. Our
method differs from multi-task learning in the choice of the loss function and tackles the
issues of loss balancing from different heads in MTL by computing both tasks together.
We also employed label propagation and binarization technique to alleviate the difficulty of
procuring segmentation labels for classification datasets.
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