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Abstract 

Super-Resolution Generative Adversarial Networks (SRGAN) and follow-up perceptual single 

image super-resolution(SISR) method has shown us impressive texture generation capability. 

However, these models do not fully exploit the difference between the reconstructed image and the 

original image. In this paper, we propose a Self-Interpolation Ranker(SI-Ranker) to take advantage of 

the difference between the reconstructed image and the original image. SI-Ranker sorts the interpolated 

image of the reconstruction image and the original image and guides the image reconstruction during 

training. This method allows the generator to focus on the difference between the reconstruction image 

and the original image to improve the quality of the reconstructed image while obtaining a 

reconstruction image closer to the original image. In addition, we propose Patch Distance Loss (PDL) 

to reduce the artifacts in the reconstructed image. PDL reduces artifacts by calculating the cosine 

similarity between the reconstructed image and HR in all patches. Experiments show that SIR-SRGAN 

improves consistency with the original at both pixel and feature levels, allowing it to be compared to 

the state-of-the-art. Our code at http://github.com/huang-junhong/SIRSRGAN. 

1. Introduction 

The purpose of the single image super-resolution (SISR) is to restore the input low-

resolution (LR) image to its corresponding high-resolution image (HR). SISR is an ill-posed 

problem because different HRs may get the same LR by downsampling. Many SISR 

models[2][3][4][5][6] use mean-absolute-error(MAE) or mean-square-error(MSE) to get 

higher PSNR. However, people discovered that these methods’ optimization of PSNR was 

too smooth to match the human visual perception when the super-resolution factor 4(SRF4) 

or bigger. [7][8] was the first to introduce the Generation Adversarial Network (GAN)[9] 

into SISR, which improved the realism of the reconstructed image. However, with GAN, the 

reconstruction images produced many artifacts. Subsequently, ESRGAN[11], NatSR[12], 

SFT-SRGAN[44], Rank-SRGAN[13], SPSR[14], made progress in suppressing artifacts 

and improving the quality of reconstruction. 

One of the problems with the perceptual SISR method is that using GAN enhances the 

realism of textures while producing many artifacts and noise, reducing the consistency of 

the reconstructed image with the original image. In this paper, we propose Self-Interpolation 
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Ranker(SI-Ranker) and patch distance loss (PDL) to improve the consistency of the 

reconstructed image with the original image. Specifically, SI-Ranker discovers the intrinsic 

differences by sorting the interpolation image between reconstructing images and HR. The 

interpolation factor determines the quality of interpolated images without using IQA; this 

also eliminates the need for an SI-Ranker to prepare external data and pay more attention to 

the intrinsic characteristics of the reconstructed image. PDL is a loss function used to 

constrain high frequencies and reduces the artifacts of the reconstructed image by cutting 

the reconstructed image and HR into patches and calculating the cosine similarity between 

SR patches and all HR patches. 

In summary, our contributions include: 

1. We propose a framework SIR-SRGAN for supervised SISR, which uses SI-Ranker to 

dynamically explore the intrinsic differences between the reconstructed image and the 

original image to improve the reconstructed image quality. 

2. We propose PDL, which reduces the noise and artifacts of reconstructing images by 

cutting the reconstructed image and HR into patches and calculating the cosine 

similarity between SR patches and all HR patches. 

   
HR SRGAN(a) Rank-SRGAN(b) 

   
ESRGAN(c) NatSR(d) Ours(e) 

Figure 1. SR results of different methods. That model is the perceptual SISR method. 
SIR-SRGAN uses SRRes-Net as its generator, which same as (a), (b). 

2. Related Works 

Let us start with SISR methods, which can broadly divide into PSNR-Oriented and 

Perceptual-Oriented.  

PSNR-Oriented SISR: Dong et al. first proposed [2] using CNN in SISR. Soon many 

CNN-based SISR models were proposed. These methods[3],[4],[5],[6][15][16][17] use 

MSE or MAE as their loss function to get higher PSNR, and the main differences are the 

structure and depth of the network. These methods make a significant contribution to 

improve PSNR. However, these PSNR-Oriented models’ results are too smooth in larger 

SRF. 

Perceptual-Oriented SISR: [7],[8] introduce GAN into SISR for the first time. It makes 

the reconstructed image have a rich texture and improves realism. The perceptual-Oriented 

method is often tied to Perceptual Loss[18] because GAN eliminates the board artifacts that 

Perceptual loss brings while enhancing its effects. ESRGAN[11] replaces the generator with 

RRDN, while the discriminator uses Ra-GAN to improve reconstruction quality. NatSR[12] 

proposes to add a natural manifold discriminator based on ESRGAN to improve the quality 
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of reconstructed images. SPSR[14] adds gradient branches and gradient loss to the generator 

to protect the structure of the reconstruction image. SFT-SRGAN[44] integrates semantic 

information into the generator to improve the texture of the reconstructed image. The closest 

method to our work is the recently proposed Rank-SRGAN[13]. Rank-SRGAN uses the 

reconstructed images from other SISR models to train rankers to learn image quality ranking. 

The selected IQA determines the quality and ranking of the image. Rank-SRGAN will only 

improve the parts that IQA is interested in. No IQA can comprehensively evaluate the image 

quality, and such improvement is not comprehensive. Different IQA focuses on different 

image information, making it difficult for these IQAs to combine[52]. 

Learn to rank: Learn to rank was first proposed by [20], and its original purpose was 

to control the strength of a property in the generated image because a property is not only 

true or false. [21] then first used CNN to learn rank. [22] merges rank with GAN to produce 

more realistic images. For the first time, [23] uses Ranker for IQA that is called Rank-IQA. 

Recently, Rank-SRGAN[13] combined different SISR models to simulate the selected IQA 

and guide image reconstruction.  

Unlike Rank-SRGAN, which wants to optimize IQA, we pay attention to the internal 

information of reconstructed images. Meanwhile, simply eliminating noise and artifacts will 

reduce the visual quality of the reconstructed image. The image interpolation method can 

apply to the pixel and image features without conflict. To our knowledge, no one has tried 

to sort interpolated images and their features before. 

3. Method 

3.1 Overview 

Figure 2 shows the overall structure of SIR-SRGAN. SIR-SRGAN uses the same 

generator(G) and discriminator(D) with SRGAN. So, the G wants to reconstruct an image 

that cannot be judged by D, while D hopes to determine whether the input image is an HR 

or a reconstructed image. Based on SRGAN, we added a pixel ranker and feature ranker. 

The input of Pixel Ranker is images. (The structure of the two rankers is in the supplementary 

file). The input of the feature ranker is the high-level feature extracted by the VGG19[29] 

model. PDL is an additional loss function to reduce artifacts and improve texture. 
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Figure 2. Overview of the proposed method. Left is the normal GAN training process, 

and right is how SI-Ranker works. 
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3.2 SI-Ranker 

The input during SI-Ranker training is interpolation images between HRs and 

reconstructed images. It represents as: 

{
𝐼𝑡𝑝_𝐼𝑚𝑔𝛼 = 𝑆𝑅 ∗ 𝛼 + (1 − 𝛼) ∗ 𝐻𝑅

𝛼 ∈ [0,1)
 (1)  

Where 𝛼 is the interpolation factor, SR is the reconstructed image; HR corresponds to a 

high-resolution image, 𝐼𝑡𝑝_𝐼𝑚𝑔𝛼 is the interpolated image. Different interpolation factors 

can directly determine the quality of interpolated images without any IQA. Further, 

controlling the number of interpolated images, the difference between the interpolated 

images and the original images can be smoother. The lower the score for the input image, 

the better. That is 

{
𝑆𝛼 = 𝑅(𝜃, 𝐼𝑡𝑝_𝐼𝑚𝑔𝛼 )

𝑆𝛼 < 𝑆𝛽  𝑖𝑓 𝛼 <  𝛽
 (2)  

𝜃 is the parameter that needs to optimize in the network 𝑅. 𝑆𝛼  is the score of 𝐼𝑡𝑝_𝐼𝑚𝑔𝛼 

in 𝑅, 𝛼, 𝛽 are interpolation factors. The smaller interpolation factors, the better quality. To 

optimize ranker, we used Margin Ranking Loss as Ranker’s optimization function like 

[13,23]. It represents as: 

{

𝐿(𝑆𝛼 , 𝑆𝛽 , 𝛾, 𝜖) = 𝑀𝐴𝑋((𝑆𝛼 − 𝑆𝛽) ∗ 𝛾 + 𝜖, 0)

𝛾 = 1    𝑖𝑓 𝛼 < 𝛽
𝛾 = −1 𝑖𝑓 𝛼 > 𝛽

 (3)  

(3) describes sorting two images. SI-Ranker needs to sort multiple images simultaneously, 

so we extend it to sorting multiple images. It represents as: 

𝐿𝑡𝑟𝑎𝑖𝑛_𝑟𝑎𝑛𝑘𝑒𝑟 = L(S, F, ϵ) =
1

𝑛2
∑ 𝑀𝑎𝑥(0, (𝑆 − 𝑆𝑇) ∗ 𝐹 + ϵ)

𝑛

1

 (4)  

(𝑆 − 𝑆𝑇) ∗ 𝐹 =

 𝑆1 𝑆2 ⋯ 𝑆𝑛

𝑆1 0 𝑆1 − 𝑆2 ⋯ 𝑆1 − 𝑆𝑛

𝑆2 𝑆2 − 𝑆1 0 ⋯ 𝑆2 − 𝑆𝑛

⋮ ⋮ ⋮ ⋱ ⋮
𝑆𝑛 𝑆𝑛 − 𝑆1 𝑆𝑛 − 𝑆2 ⋯ 0

 ∗   (
0 ⋯ 1
⋮ ⋱ ⋮

−1 ⋯ 0
) (5)  

Sorting n images, we will obtain n scores. These scores are connected according to the image 

quality from good to bad to obtain 𝑆 in (4). 𝑆𝑇  is the transpose of 𝑆. We arrange the 

interpolation images by interpolation factor from low to high input R, and the coefficient 

matrix 𝐹 corresponds to 𝛾 in (3), the upper half of the coefficient matrix F is 1, and the 

lower half is -1, and the main verb is 0. SI-Ranker trains alternately with G and D. R update 

multi(mt) times, then G and D are updated once. 

Different from Rank-SRGAN: SIR-SRGAN and Rank-SRGAN add ranker to the 

SRGAN to constrain the reconstruction of images, but both are entirely differentexcept that 

they both use Learn to Rank.  

1. Sort in a different way. Rank-SRGAN sorts the results of different SISR models based on 

the IQA selected; this allows the ranker to optimize the selected IQA while combining other 

model results indirectly. In contrast, SI-Ranker sorts the interpolated image between the 

original and reconstructed images without external data and IQA. This sorting makes SI-

Ranker more concerned with reconstructing the difference between the image and the 

original image. 

2. Different training processes. Rank-SRGAN requires separate training for ranker, and 

ranker needs to be frozen in adversarial training, not update. SI-Ranker trains with the 
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generator and the discriminator, learning the intrinsic difference between the reconstructed 

and original images. 

3.3 Patch Distance Loss 

CX loss[48][49] cuts image features into patches and regards each patch as a vector. In 

the patch of the original image, for the patch of the reconstructed image, find the patch with 

the minor cosine similarity to guide the feature reconstruction. TV-TV loss [50],[51] obtains 

better edges by doing total variation(TV) on the reconstructed image and the residual 

between the reconstructed image and the original image. 

Patch Distance Loss (PDL) works in the high frequency of the image. PDL cuts the high-

frequency features into 4*4 patches and regards each patch as a vector. Because the image's 

high frequency is sparse, the response of image texture and structure in high frequency is 

usually continuous (the surrounding pixels are correlate). Therefore, we use cosine similarity 

to measure the distance between each patch to obtain more similar vectors. 

𝐶𝑆(𝐴, 𝐵) =
𝐴 ∗ 𝐵

||𝐴|| ∗ ||𝐵||
=  

∑ 𝐴𝑖 ∗ 𝐵𝑖
𝑛
𝑖=1

√∑ (𝐴𝑖)
2𝑛

𝑖=1 ∗ √∑ (𝐵𝑖)2𝑛
𝑖=1

 (6)  

𝐶𝑆(𝐴, 𝐵) is the cosine similarity of calculating vector 𝐴 and 𝐵, N is the length of the 

vector，𝐴𝑖 note the ith element in vector 𝐴. 

It is impossible to reconstruct an image perfectly, the distance between the reconstructed 

image patch and the HR patch can not be zero. When the distance between two vectors is 

stable, there are still many values for reconstructing the image feature vector. PDL 

compresses the value space by calculating the cosine similarity between the reconstructed 

image patch and multiple HR image patches. PDL express as: 

𝑃𝐷𝐿(𝐶𝑃, 𝐻𝑃) =
1

𝑘2
∑ ∑ |𝐶𝑆(𝐶𝑃𝑖 , 𝐶𝑃𝑗)

𝑘

𝑗=𝑖+1

− 𝐶𝑆(𝐻𝑃𝑖 , 𝐻𝑃𝑗)|

𝑘−1

𝑖=1

 (7)  

𝐶𝑃 is the patches from reconstructing images, and 𝐻𝑃 is the patches from the original 

image, k is the number of patches. 

3.4 Loss function 

Adversarial Loss: SIR-SRGAN base on SRGAN. G and D are consistent with SRGAN. 

Therefore, its adversarial loss function is the same as SRGAN. 
𝑚𝑖𝑛 𝑚𝑎𝑥
𝜃𝐺 𝜃𝐷

 𝔼𝐼𝐻𝑅~𝑃(𝐻𝑅)[log 𝐷𝜃𝐷
(𝐼𝐻𝑅)] + 𝔼𝐼𝐿𝑅~𝑃(𝐿𝑅)[log(1 − 𝐷𝜃𝐷

(𝐺𝜃𝐺
(𝐼𝐿𝑅)))] (8)  

for the G, its loss function is: 

𝐿𝑎𝑑𝑣 = log (𝐷(𝐺(𝐿𝑅))) (9)  

Perceptual Loss: Perceptual Loss often appears with GAN, and we follow [11] to 

calculate its loss using a feature graph from the last convolution layer of VGG19 before 

active. Represented as: 

𝐿𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙 = |𝑉𝐺𝐺195_4(𝐻𝑅) − 𝑉𝐺𝐺195_4(𝑆𝑅)|1 (10)  

Rank Content Loss: We want the reconstructed image to score lower in R, so it 

represents as: 

𝐿𝑟𝑎𝑛𝑘𝑒𝑟 = 𝜎(𝑅(𝐺(𝐿𝑅))) + 𝜎(𝐹𝑅(𝑉𝐺𝐺195_4(𝐺(𝐿𝑅)))) (11)  

Where 𝜎 is the sigmoid activation function, which allows the monotony of the score to 

remain the same while compressing the score range to make it easier to optimize. R is the 
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image ranker, and FR is the feature ranker. 𝑉𝐺𝐺195_4  represents the feature map after 

activation of the last convolution of VGG19. 

Patch Distance Loss: PDL will act on both RGB images and high frequency. 

𝐿𝑃𝐷𝐿 = 𝑃𝐷𝐿(𝐺(𝐿𝑅), 𝐻𝑅) + 𝑃𝐷𝐿(𝐷𝑊𝑃𝑇(𝐺(𝐿𝑅)), 𝐷𝑊𝑃𝑇(𝐻𝑅)) (12)  

DWPT is the Haar discrete wavelet packet transform; while discarding the separated image 

low frequency. Finally, we can get the G’s loss function is: 

𝐿𝐺 = 𝜗𝐿𝑎𝑑𝑣 + 𝛽𝐿𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙 + 𝛾𝐿𝑟𝑎𝑛𝑘_𝑝𝑖𝑥𝑒𝑙 + 𝛿𝐿𝑟𝑎𝑛𝑘_𝑓𝑒𝑎𝑡𝑢𝑟𝑒 + 𝜏𝐿𝑃𝐷𝐿 (13)  

𝜗, 𝛽, 𝛾, 𝛿, 𝜏 are trade-off parameters. 

4. Experiment 

4.1 Train Details 

Datasets and Evaluation Metrics: We use DIV2K[32] and Flicker2K[33] as our 

training set. In training, our batch size is 8, and LR’s patch size is 64x64; the corresponding 

high-resolution image size is 256x256. We used set5[34], set14[35], BSD100[36],G100[47], 

Urban100[37] and PIRM2018[38] for the test set. LR is obtained by HR using bicubic 

downsampling in MATLAB. We use PSNR, SSIM[39], PI[40], LPIPS[46]as the metric. The 

higher the PSNR and SSIM, the better, and the lower the PI and LPIPS. 

Train Details: During training, it is an epoch every 1000 iterations. The trade-off 

parameters are 𝜗 = 0.003, 𝛽 = 1, 𝛾 = 0.02, 𝛿 = 0.02, 𝜏 = 1. R update five times(mt=5), 

then G and D are updated once. and 𝛼 are [0, 0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]. So, this will 

cost three times than SRGAN. However, the generator did not make any changes. The 

learning rates of Discriminator and Generator initialized with 10−4 , the two Rankers’ 

learning rate initialized with 10−3. All those learning rates will be half of the previous at 

[50,125,200,300] epoch. A total of 800 epochs were trained. Same with the previous 

approach, we use PSNR-Orient trained networks to initialize the generator. Generators, 

discriminators, and ranker optimize by Adam[43], and 𝛽 = 0.9. A total of 20 days of 

training on an NVIDIA V100. 

4.2 Comparison with the-state-of-the-arts 

Quantitative Analysis: We compare our methods quantitatively with SRGAN[8], SFT-

SRGAN[44], Rank-SRGAN[13], ESRGAN[11], NatSR[12]. The generators of ESRGAN 

and NatSR are much larger than other models. The results of PSNR, SSIM, PI, and LPIPS 

are showing in Table 1. The best metrics for each row mark in red, the second-best indicator 

mark in blue, and the third in green.  

We can find that SIR-SRGAN achieved the best PSNR and SSIM in all models with 

SRRes-Net and weaker than NatSR in comparisons of larger generator models; this shows 

that SIR-SRGAN can improve the consistency of the reconstructed image with the original 

image. 

There are differences in performance between PI and LPIPS, which emphasize the visual 

quality of images. On PI, SIR-SRGAN is better than SRGAN but weaker than Rank-SRGAN 

and SFTGAN. On LPIPS, SIR-SRGAN performs best with ESRGAN. Rank-SRGAN uses 

NIQE to sort Images, Which makes an advantage in PI. SIR-SRGAN focuses on the 

difference between the reconstructing image and the original image, so it performs better on 

the reference metrics like LPIPS, PSNR and SSIM. Further, SIR-SRGAN is superior to 

NatSR on both PI and LPIPS. In summary, SIR-SRGAN improves the consistency of the 

reconstructed image with the original image in pixels and features to improve image quality. 
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Visual Quality Comparison: We also compared the visual quality of the recons

tructed image, some of the results shown in Figure 3.  

 
Image 280 from PIRM2018 

 
HR 

 
Cubic 

 
SRGAN 

 
RankSRGAN 

PSNR/LPIPS 23.94/0.4712 22.26/0.2989 22.43/0.3017 

 
Ours 

 
SFTGAN 

 
ESRGAN 

 
NatSR 

23.30/0.2767 22.10/0.2977 21.15/0.3043 23.93/0.3295 

 
Image 225 from PIRM2018 

 
HR 

 
Cubic 

 
SRGAN 

 
RankSRGAN 

PSNR/LPIPS 30.39/0.2916 31.78/0.1954 31.16/0.2075 

 
Ours 

 
SFTGAN 

 
ESRGAN 

 
NatSR 

32.85/0.1809 31.47/0.2059 32.44/0.1848 33.05/0.2085 

 
Image 038 from General100 

 
HR 

 
Cubic 

 
SRGAN 

 
RankSRGAN 

PSNR/LPIPS 30.88/0.3299 32.52/0.2065 32.28/0.2323 

 
Ours 

 
SFTGAN 

 
ESRGAN 

 
NatSR 

33.30/0.1902 30.96/0.2169 31.01/0.1880 32.91/0.2105 

 
Image 68 from BSD100 

 
HR 

 
Cubic 

 
SRGAN 

 
RankSRGAN 

PSNR/LPIPS 27.41/0.2286 30.87/0.1797 31.89/0.1623 

 
Ours 

 
SFTGAN 

 
ESRGAN 

 
NatSR 

33.12/0.1245 31.85/0.1389 32.65/0.1242 33.35/0.1278 

Figure 3. Visual comparison with state-of-the-art perceptual-driven SR methods. The 
result shows that SIR-SRGAN improves the visual quality while the model has the same 
generator. 
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Easy to find that the reconstruction results of SIR-SRGAN are closer to the original, which 

has the same generator. Its reconstructed images have fewer artifacts and noise, which is 

why they have higher PSNR. Further, SIR-SRGAN has better performance in the image 

structure, which we think is why SIR-SRGAN performs better on LPIPS. Compared with 

ESRGAN and NatSR, SIR-SRGAN is better than NatSR, the same as LPIPS. The visual 

quality comparison proves that the method we propose is feasible; it improves the quality of 

the reconstructed image without changing the generator. 
Dataset Metric Cubic SRGAN SFTGAN Rank Ours Esrgan NatSR 

BSD100 

PSNR 25.96 25.19 25.52 25.51 26.39 25.34 26.39 

SSIM 0.6699 0.6408 0.6557 0.6487 0.6875 0.6511 0.6844 

PI 7.00 2.55 2.38 2.17 2.49 2.48 2.78 
LPIPS 0.5249 0.2998 0.2729 0.284 0.2644 0.2612 0.2987 

U100 

PSNR 23.13 24.38 24.01 24.52 25.14 24.35 25.45 

SSIM 0.6596 0.7312 0.7158 0.7281 0.7536 0.7335 0.7614 

PI 7.9377 3.70 3.61 3.33 3.63 3.77 3.65 

LPIPS 0.3528 0.2441 0.2566 0.2510 0.2280 0.2200 0.2512 

G100 

PSNR 28.02 29.26 29.01 29.13 30.09 29.39 30.35 

SSIM 0.8284 0.8102 0.8056 0.8002 0.8292 0.8094 0.833 

PI 7.9368 4.43 4.29 3.85 4.35 4.32 4.63 

LPIPS 0.3528 0.1964 0.2328 0.2061 0.1812 0.1814 0.209 

Set14 

PSNR 26.10 25.83 25.91 26.15 26.98 26.03 26.96 

SSIM 0.7850 0.6933 0.6977 0.7003 0.733 0.6977 0.73 

PI 7.03 3.09 2.91 2.61 3.02 2.93 3.11 

LPIPS 0.4393 0.2712 0.2745 0.253 0.2383 0.2372 0.2751 

PRIM 
2018 

PSNR 26.47 25.43 25.00 25.47 26.50 25.04 26.95 

SSIM 0.6898 0.6598 0.6361 0.6561 0.6966 0.6452 0.7088 
PI 6.79 2.18 2.58 1.95 2.16 2.44 2.3773 

LPIPS 0.3899 0.2698 0.2987 0.2671 0.2483 0.258 0.2881 

Table 1. Average PSNR, SSIM, PI, LPIPS on BSD100, Urban100, General100, Set14, 
PIRM2018Test. 

User Study: In addition, we used User Study to compare the differences in perception 

between SRGAN, Rank-SRGAN, and SIR-SRGAN in the human eye. Participants in the 

test saw both reconstructed images from the three models and the original images, sorted by 

the visually closest images to the original, a total of 20 participants, each of whom observed 

20 randomly selected images. The results show in Table 2: 

 SIR-SRGAN Rank-SRGAN SRGAN 

Rank-1 51.25% 45.75% 3% 

Rank-2 45.75% 46.75% 7.75% 

Rank-3 3% 7.5% 89.25% 

Table 2. User study in SRGAN, Rank-SRGAN, and SIR-SRGAN on BSD100. 

According to feedback, Rank-SRGAN’s images were sharper in the background and 

performed better on hair. On the other hand, SIR-SRGAN’s reconstructed image’s feature 

is closer to the original image without over-sharpening and has minor artifact and noise. This 

result also shows that Rank-SRGAN has different characteristics from SIR-SRGAN. 

4.3 Ablation study 

PDL: Figure 4 shows the visual comparison of SRGAN, CX, and PDL with different 

patch sizes. PDL reduces the artifacts of the reconstructed image and improves the visual 

quality. Table 3 shows the performance of CX and PDL on BSD100. Although CX performs 

better on PI, the reconstructed image of CX has poor consistency with HR in pixel(PSNR) 

and features(LPIPS). Although the performance of using PDL is similar to that of SGRAN 

on PI, the visual feeling of the reconstructed image is better by suppressing artifacts and 
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improving the similarity of high frequency between reconstructed image and HR. 

Meanwhile, the consistency between reconstructed images and HRs is better by suppression 

o artifacts and improve the similarity of high-frequency features.  

 SRGAN SRGAN_CX SRGAN-PDL 
SIR-

SRGAN(MAE) 
SIR-SRGAN 

SIR-SRGAN 

Random Rank 

PSNR 25.19 24.59 26.29 26.07 26.39 26.06 

SSIM 0.6408 0.6439 0.6834 0.6770 0.6875 0.6747 

PI 2.55 2.36 2.52 2.48 2.49 2.72 

LPIPS 0.2998 0.3105 0.2739 0.2627 0.2644 0.2985 

Table 3. PDL and SI-Ranker impact on the results of the BSD100 dataset reconstruction. 

The effect of patch size on PDL is significant. As analyzed above, a larger patch size will 

increase the dimension of the vector, thus increasing uncertainty and reducing the 

performance of PDL. 

HR SRGAN CX PDL(8*8) PDL(16*16) PDL(4*4) 

      
PI/LPIPS 1.93/0.3033 1.94/0.3118 2.24/0.2777 2.32/0.2696 2.31/0.2587 

      
PI/LPIPS 2.22/0.2982 2.16/0.3152 2.61/0.3004 3.10/0.3096 2.77/0.2795 

      
PI/LPIPS 3.01/0.1826 3.33/0.1983 3.33/0.1798 3.07/0.1734 3.62/0.1485 

Figure 4. Visual quality comparison between CX and PDL. 

SI-Ranker: The choice of interpolation factor will affect the quality of reconstructed 

images. The interpolation factor we propose to use is a fixed value rather than random 

selection in [0,1).  

  
a. The distribution of interpolated images with different 

interpolation factors. 
b. The distribution of interpolated images’ features with 

different interpolation factors. 
Figure 5. The distribution of pixels and features of interpolated images with different 
interpolation factors. 
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We found that the distribution difference between the interpolated image and the original 

image will not decrease with the decrease of the interpolation factor when 0.6 ≤ 𝛼 ≤ 1. 

Figure 5.a shows the distribution of interpolated images, and Figure 5.b shows the 

distribution of interpolated image features extract by VGG19. 

In addition, the number of times(mt) R needs to update before updating G and D also affect 

ranker's performance. Figure 6 shows the effect of different mt on the reconstructed image. 

At the same time, we also tested the effect of training ranker with incorrect ranking on the 

reconstructed image with mt=5. 

PDL? × √ √ √ √ 
mt 0 1 3 5 Random rank 

 
Image 100 of BSD100      

 
Image 013 of Set14      

 
Image 059 of BSD100      

 
Image 296 of PIRM      

Figure 6. Overall visual comparisons for showing the effects of each component in SIR-
SRGAN. 

5. Conclusion 

For supervised, perceptive single image super-resolution, we propose a SIR-SRGAN 

independent of the generator’s structure. It is using a ranker to sort the interpolated images 

of the reconstructed image from the original image. The ranker we proposed does not require 

any IQA but focused directly on reconstructing the intrinsic differences between the image 

and the original image and improving the consistency of the reconstructed image with the 

original image. Further, we propose PDL, which constrains the reconstruction of an image 

by cutting the image and calculating the cosine distance between two. Extensive experiments 

have proved that SIR-SRGAN is a practical framework; when using the same generator, 

SIR-SRGAN can effectively improve the consistency of the reconstructed image with the 

original image on pixels and features. 
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