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Abstract

Almost all images are compressed to be transferred or stored, exhibiting various vi-
sual artifacts. For this reason, identifying the compression quality level with only visual
cues is the starting point to enhance the image quality. This paper introduces a compres-
sion quality prediction method, named Q1Net, which yields a single quality level with
over 99%-accuracy in a matter of milliseconds on mobile devices regardless of the image
resolution. This real-time and high-accurate performance is attributed to the observation
that most image compression methods are based upon transform coding on small blocks
of different characteristics. To separately investigate and exploit the distinct visual defor-
mations induced by one transform coding, our method measures the compression quality
level on various image patches containing a basic coding block and its neighboring pix-
els. Our approach then elaborately selects promising candidate patches that can indicate
the compression quality reliably through CNN-based statistical confidence estimation.
In order to make a final decision, the proposed method fuses the prediction results from
a selected number of input patches, which makes it scalable and operable on mobile de-
vices with varying computational capabilities. According to the extensive experiments
on the DIV2K dataset and an off-the-shelf smartphone, our block-wise confidence-aware
Q1Net achieves better performance in compression quality prediction than other well-
known CNN-based methods in terms of speed and accuracy.

1 Introduction
Many online service providers, such as social media platforms and instant messaging ser-
vices, present numerous images to users. As such, they should reduce cloud storage costs
by storing image data in as little space as possible. Also, in order for users to view im-
ages without delay, the media transmission speed should be increased. One obvious solution
to kill two birds with one stone is to apply transform-based image compression techniques
[4, 6, 15, 16, 17, 18, 22]. Table 1 shows various JPEG [19] quality levels adopted by dif-

Table 1: JPEG quality levels used by different services
Google Photos Facebook Pinterest Kakao Talk [27]

Level 60–85 88–92 80 90, 95
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Figure 1: Illustrative toy example of predicting the compression quality level using block-
wise confidence-aware CNN, coined Q1Net. In this simplified example, the given com-
pressed image is assumed to be small enough that only nine input patches can be examined
across the image. Each of the input patches contains a compression coding block. To lever-
age the GPU parallelism, the patches are uniformly sampled and then fed to Q1Net for batch
prediction, yielding nine pairs of quality and confidence. Among the nine pairs, only seven
high-confidence qualities are harnessed to calculate the mean value (85) as the final quality
level in this example.

ferent services to reduce storage and speed up the transmission. The values in Table 1 were
measured using the proposed method in this paper. The level ranges from 0 to 100, with
a higher number indicating better quality in terms of the quantization table adopted by the
libjpeg-turbo library [2]. The quantization table controls the size and visual quality of the
compressed image.

Unfortunately, the benefits of image compression do not come for free. Its quantization
process inevitably causes various degradations such as blocking and ringing artifacts [24],
even to high-definition photos captured with modern cameras. Arguably, the very first step
to enhance the image quality is to determine the compression quality level reliably. Suppose
a system is well aware of the compression quality of an image. In that case, it can decide
whether the artifacts should be reduced or not, avoiding as many heavy tasks of image-
to-image translation as possible. When an enhancement task is found to be required, the
predicted quality level again can serve as a significant hint that allows the following method
of artifact reduction to pinpoint and eliminate the prevalent patterns of artifacts particularly
occurring at that level. The better an image is understood, the more accurately it can be
enhanced.

Despite its importance, there have not been many studies on quality level prediction of
image compression. Chances are that the compression quality level is thought to be easily or
naturally revealed during the decompression phase. However, an essential requirement for
sensible image quality prediction is to utilize only image pixels, excluding any metadata such
as quantization tables. In many practical situations, a file header containing original metadata
is not available due to crop operations, format conversions (to PNG or BMP), or any other
modifications. Uchida et al. [28] proposed a CNN-based estimation method that generates
a JPEG quality level map for fake image detection. Recently, Kim et al. [11] proposed an
integrated method of compression artifacts reduction in which a pixel-wise quality level map
controls latter artifact removal networks. The previous studies share a similar insight with
ours that compression quality prediction is essential to deal with a variety of alterations to
compressed images in the real world. However, rather than resorting to the quality level map
by Uchida et al. [28] and Kim et al. [11], our method focuses on identifying a representative
and reliable compression quality level for an efficient image enhancement. In fact, the same
quantization rule is applied to every block of an image for JPEG compression. Even though
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visual artifacts vary over blocks due to each block’s characteristics, each block basically
undergoes the same amount of quantization deformation.

To overcome the loss of prediction accuracy caused by spatially varying artifacts, our
method exploits the concept of confidence. In a worst-case scenario, if a particular image re-
gion contains only low-frequency components not affected by different quantization schemes
at a different quality level, the training and prediction of a machine learning model become
unreliable. Unfortunately, previous studies [11, 28] do not actively incorporate strategies
to cope with these challenges. In this paper, we design our method of compression qual-
ity prediction to be highly selective so that it can go with strongly informative and reliable
blocks. Naturally, it enables precise image analysis while dramatically reducing the amount
of computation. Nowadays, images with a resolution of more than 12 megapixels are read-
ily available on smartphones, so making a quality level map by applying CNN to all image
blocks would require excessive time and energy. If all pixels in an image are degraded by
the same mechanisms, yielding a single representative number that explains the reason for
degradation would be more efficient. To this end, our method predicts a single compression
quality level by an end-to-end training of a model that not only inspects the compression
quality of uniformly sampled blocks but also estimates their confidence scores. Especially,
we establish a formula for statistically approximating the prediction confidence, applying
this to the loss function and the output layer of CNN. Many studies [5, 7, 8, 11, 14] have
shown that an inverse CNN model of frequency quantization can be trained to reasonably
pick and remove distinctly noticeable artifacts exhibiting on a specific compression quality
level. This means that Q1Net can play an essential role in compression artifacts removal by
providing accurate quality information to the existing methods.

Our contributions can be summarized as follows:
1. We present a quick and accurate block-wise prediction method of compression quality

level that is able to account for the nature of block transform coding. The patch size for
the CNN input is set to factor in a coding block necessarily and sufficiently. Generally,
the smaller a receptive field is, the faster a CNN inference is.

2. In order to increase the accuracy when consolidating the prediction results for each
block, our CNN architecture, called Q1Net, is constructed to additionally compute the
confidence indicating which prediction results are more trustworthy. The proposed
architecture is trained in an end-to-end fashion.

3. Our method can adapt to different devices with different computing capabilities. This
is because the number of blocks being sampled can be scaled according to the device’s
computational power.

Fig. 1 shows the overall inference flow of the proposed approach.

2 Proposed Method

2.1 Motivation of Confidence Estimation
Transform-based image encoders perform the transform and quantization block-wise, with
a global quality parameter controlling how much to compress an image. Although unlike
JPEG, some video encoding technologies adopt the adaptive block quantization scheme, the
quality variation still centers around the global target quality. Thus, theoretically, investi-
gating just one coding block and its neighboring boundaries will give some insight into the
compression quality of the entire image. This task of block investigation can be naturally
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Figure 2: Illustrative example to show the motivation of this work: (a) Compressed image
with the quality level 50. (b) Zoomed-in view of (a). There are three black-dotted 16× 16
pixel rectangles, representing candidate patches being fed to CNN. This input patch is merely
an extended block of an inner-center, blue-dotted rectangle representing the 8× 8 JPEG
coding block. This size enlargement is to consider boundary parts between neighboring
blocks. Among b1, b2, and b3, which image patch stands out in terms of the possibility
to tell the true compression quality? Our research answers this block selection question
using confidence estimation. (c) Real examples of input patches and their confidence scores
measured by Q1Net. The lower the row, the higher the confidence.

recast as a regression problem. However, a typical regression model has the drawback of
having to answer no matter what the input is. In other words, a traditional regression task
does not consider whether inputs have distinctive features for reliable outputs or not. Here is
an example: Fig. 2 shows an enlarged image compressed with the quality level 50. Among
image patches of (b1), (b2), and (b3) in Fig. 2, which one is least likely to report the true
compression quality? Here, an image patch represents an extended block of an 8×8 JPEG
coding block. The uncompressed version of the solid color patch shown in Fig. 2(b2) is more
likely composed of similar color pixels containing mainly the direct current (DC) component
in the discrete cosine transform (DCT) domain. Therefore, it would generate similar com-
pressed block outputs for even other compression quality levels, confusing the regression
network. Results from this kind of input should be appropriately excluded. This is where
confidence estimation for quality prediction comes into play.

Using prior knowledge of image compression and edge detection, one might conjecture
that having sufficient image gradient is one of the criteria to become a viable input candidate.
However, mere edge strength calculation cannot explain all the complicated cases when it
comes to computing the confidence of quality predictions. A great deal of time and effort
will also be required for researchers to manually come up with other types of criteria to
identify a block as eligible or ineligible for quality prediction. Therefore, it is necessary to
pick and choose blocks that can reliably indicate the compression quality through machine
learning and statistical analysis. In this way, we can increase the possibility that confidence
can be measured based on even color and edge pattern as well as edge strength.

2.2 Confidence-aware CNN
For the CNN training, the ground-truth label of the compression quality can be easily pro-
vided by compressing raw images with a certain level. However, there is no ground-truth
confidence score for quality prediction. This section discusses how to practically estimate
the confidence of predicted quality levels for each candidate patch.

Assuming that a trained CNN model G(·) can accurately predict the compression quality
q̂ = G(x) of a given input patch x, the true confidence observation ci of the given block xi
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can be approximated as follows:

ci = m−|qi− q̂i| , (1)

where q̂i is the predicted quality of a given ith input xi and qi is the true quality, and m is
the maximum quality level. For example, m is set to 100 for libjpeg-turbo [2] and 51 for the
FFmpeg [1] constant rate factor.

Therefore, using the quality prediction network G(·) and the loss function (1), we can
train another confidence estimator,

ĉ = H(x), (2)

where ĉ is the estimated confidence for the input x. When L1 loss is employed for training
of H(·), the network will end up estimating a median number z that has the smallest average
deviation from the confidence measurements for each type of the candidates:

argmin
z

Ec{|z− c|}. (3)

However, this method of using two networks, G(·) and H(·), leads to inefficiency in that
it requires two learning stages and two inferences. Since the two tasks of quality prediction
and confidence estimation are expected to share many common features, we come up with
more efficient and viable F(·) that can output both quality and confidence in one network as
follows:

{q̂, ĉ}= {F(x)1,F(x)2}= F(x), (4)

where F(x)1 and F(x)2 are the first and second output units of F(x), respectively. As a result,
the following loss function is adopted:

argmin
θ

E(x,q){|Fθ (x)1−q|+λ |Fθ (x)2− c|}, (5)

where Fθ is a confidence-aware CNN with a parameter set θ . We experimentally set the
parameter λ , which reflects the relative importance of confidence as opposed to quality, to
0.5. However, we found that other values of λ (such as 0.25 or 1) still achieve comparable
results, as indicated in Table 3.

The problem with this one-stage network learning is that the proposed CNN model F(·)
is immature at the initial stage of training. Consequently, the quality prediction ability of
F(·) is also unstable, resulting in erratic confidence measurements according to (1). One
strategy to solve this problem is to train G(·) first and then acquire H(·). We empirically
found that, however, even without the two-stage CNN learning, (5) converges to an optimum
in the end, establishing true end-to-end learning. Fig. 2(c) presents examples of estimated
confidence scores for some compressed input patches in the DIV2K dataset [3]. Interest-
ingly, Q1Net is not explicitly trained to assign higher confidence to the patches with stronger
gradients, but it naturally infers this fact through (1). The overall design of the architecture is
illustrated in Fig. 3, where the numbers of filter channels and output units are determined by
the parameters k and α , respectively. Note that pooling layers are not used in our architecture
since the receptive field is small, as discussed in the following section.

2.3 Scalable and Real-time Block-based Approach
A realistic and practical approach should support not only the latest devices but also those
with limited computational capabilities. Q1Net is designed to accept a variable number of
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Figure 3: Network architecture of the proposed confidence-aware Q1Net: GAP, Conv, and
Dense mean global average pooling, convolution layer, and fully connected layer, respec-
tively. The Bottleneck block is basically a residual block [10]. The output shapes of each
layer are specified in the format of ‘height × width × (number of channels)’. In the base-
line network architecture, the parameter k that controls the number of channels is 8, and the
number of output units α is 2.

blocks and adapt to devices with different computing power. That is, by default, a total of
256 (16×16) blocks are uniformly sampled. However, on low-end mobile devices, a smaller
number of blocks can be extracted from the image to make a balance between accuracy and
computational cost.

As shown in the example inputs of Fig. 2(b), Fig. 2(c), and Fig. 3, our method tries to
adopt the minimal size of the receptive field. In the case of JPEG, the patch size is set to
16×16, which is necessary and sufficient for taking into account a basic 8×8 coding block
and the boundaries with its surrounding neighbors. Due to the resulting low computational
complexity, it is possible to maximize GPU parallelism by batch prediction of multiple input
patches at once. The confidence threshold τ , which decides whether a prediction result of
each block will contribute to the final calculation, is obtained by grid search on a validation
dataset. The final quality level is determined by calculating the median from the selected
prediction results.

3 Experimental Results
3.1 Experimental Settings
We compare Q1Net with MobileNetV2 [21], EfficientNet [26], ShuffleNet [31], LCNN [13,
29], JQE [28], and Q-EST [11]. For EfficientNet, the most compact model B0 is used.
For ShuffleNet, we set the bottleneck ratio to 1 : 2 and the number of groups to 8 [31].
LCNN is an enhanced version of the Light CNN architecture by Lavrentyeva et al. [29]. The
comparison methods of JQE and Q-EST are implemented to evaluate the quality map-based
methods by Uchida et al. and Kim et al., respectively, discussed in Section 1. The other
experimental settings are the following:

Datasets and compression method. All methods are trained and evaluated on 700 train-
ing, 100 validation, and 100 test images from 900 high-resolution (HR) images of the DIV2K
dataset [3]. The DIV2K dataset is chosen for this research because it retains rich details and
no compression artifacts stored in the PNG lossless image format [3]. We compressed each
image with libjpeg-turbo [2] 1 by changing the compression quality level from 1 to 100.

1Experimental results using H.264 [20] and FFmpeg [1] are presented in the supplementary material.

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Sandler, Howard, Zhu, Zhmoginov, and Chen} 2018

Citation
Citation
{Tan and Le} 2019

Citation
Citation
{Zhang, Zhou, Lin, and Sun} 2018

Citation
Citation
{Lavrentyeva, Novoselov, Tseren, Volkova, Gorlanov, and Kozlov} 2019

Citation
Citation
{Wu, He, Sun, and Tan} 2018

Citation
Citation
{Uchida, Tanaka, and Okutomi} 2019

Citation
Citation
{Kim, Soh, and Cho} 2020

Citation
Citation
{Zhang, Zhou, Lin, and Sun} 2018

Citation
Citation
{Wu, He, Sun, and Tan} 2018

Citation
Citation
{Agustsson and Timofte} 2017

Citation
Citation
{Agustsson and Timofte} 2017

Citation
Citation
{lib} 

Citation
Citation
{Richardson} 2004

Citation
Citation
{ffm} 



KIM, YANG: COMPRESSION QUALITY PREDICTION VIA CONFIDENCE-AWARE Q1NET 7

Accordingly for evaluation, a total of 10,000 compressed images are iterated over by each
method.

Training settings. Image patches with the size of 16× 16, 224× 224, and 256× 256
pixels are randomly sampled from the training datasets. Since there is already a great deal of
small patches in an image of DIV2K, data augmentation is not adopted. The proposed CNN
is implemented using TensorFlow on a Titan Xp GPU. We trained our models by Adam
optimizer [12] with the default TensorFlow parameters of β1 = 0,9, β2 = 0.999,ε = 10−7.
The mini-batch size is set to a large number of 2048 thanks to the small number of model
parameters as indicated in Table 2. The initial learning rate is set to 10−3. The confidence
threshold τ is set to 96 by grid search on 100 validation images split from the training dataset.

Evaluation environment and metrics. The inference latency is measured in Tensor-
Flow Lite on the Qualcomm Adreno 660 Mobile GPU of Samsung Galaxy S21. The predic-
tion performance is evaluated by MAE (Mean Absolute Error) and SDE (Standard Deviation
of Error).

3.2 Results and Analysis
For a fair comparison, all evaluated methods are set up to process a similar amount of image
pixels. The input sizes of all methods are 256× 256 except for MobileNetV2 and Shuf-
fleNet, whose input sizes are 224× 224. Q1Net also extracts 16× 16 patches of 16× 16
pixels, investigating the similar input space with comparison methods. For evaluating the
conventional networks, input patches are extracted from the central region of images accord-
ing to popular belief that the center location often holds rich visual information. Indeed, the
DIV2K test dataset (0801.png to 0900.png) retains rich visual textures in the central part.

Table 2: Performance comparison on DIV2K [3] with the input size of about 256×256
Method MobileNetV2 EfficientNet ShuffleNet LCNN JQE JQE-like Q-EST Q1Net

[21] [26] [31] [13, 29] [28] [28] [11] (Baseline)

MAE 1.16 2.24 2.04 1.76 4.06 1.60 1.22 0.40
SDE 1.43 2.29 2.29 1.61 2.46 1.49 1.34 0.39
Time 7 ms 12 ms 11 ms 12 ms 3.2 s 6 ms 6 ms 10 ms
#Params 2.32 M 4.13 M 3.71 M 1.47 M 188 K 217 K 213 K 125 K

Performance comparison on DIV2K dataset. Table 2 compares each method’s MAE,
SDE, latency, and model size, summarizing the main experimental result with about 256×
256 input pixels. In this task of predicting the quality level from 1 to 100, MobileNetV2
achieves better prediction performance with an MAE of 1.16 with only 7 ms processing
time compared to other well-known real-time networks. JQE is a quality map-generating
model trained and made publicly available by Uchida et al. [28]. This kind of quality map-
based method predicts the compression level by averaging the entire quality map. However,
we observed that the accuracy is reduced due to potential outlier blocks, as indicated in
the evaluation result of JQE. In addition, JQE is much slower than other methods due to
the cost of constructing a map of 256× 256 via convolution operations. Therefore, rather
than comparing map-based algorithms by Uchida et al. [28] and Kim et al. [11] as they are,
we built JQE-like and Q-EST regression networks, respectively, mainly using dilated and
standard convolution layers following the design principles of each paper [11, 28]. JQE-
like and Q-EST show comparable performance to MobileNetV2 with a small number of
parameters through max-pooling and average-pooling [30]. Compared with other methods,
the baseline of Q1Net (α = 2, k = 8, λ = 0.5) shows state-of-the-art performance in terms of
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(c) Q1Net (baseline)

Figure 4: Comparison of confusion matrices [25] on 10,000 compressed images of 100 cate-
gories (quality levels): the confusion matrix (c) obtained by Q1Net presents higher diagonal
values than the matrices obtained by MobileNetV2 [21] and JQE [28]. It is recommended to
zoom in this figure in an electronic copy of this paper.

MAE and SDE. What is more, this is achieved with fewer model parameters. Q1Net’s latency
is slightly inferior to MobileNetV2, JQE-like, and Q-EST, but it can be further improved by
variably changing the number of input patches as suggested in Table 4.

Comparison of confusion matrices. To verify the performance of Q1Net as a classifier,
we rounded off the prediction results to derive a confusion matrix [25] for 100 categories
and compared it with the results of MobileNetV2 and JQE. In the confusion matrix of Fig. 4,
the diagonal elements represent the number of correct classifications, while off-diagonals
are incorrect predictions. The diagonal line of Fig. 4(c) generated by Q1Net is thicker than
Fig. 4(a) and 4(b), indicating higher prediction accuracy.

3.3 Ablation Study: Contribution of Each Innovation in Q1Net
We conduct an ablation study to demonstrate the impact of each design choice of Q1Net.
The results with 16×16 input patches are shown in Table 3.

Table 3: Ablation study of block-wise CNN with different settings on DIV2K [3]

Method
Setting Result

α λ k Loss BB Confidence MAE SDE Time #Params

Q1-Regressor 1 8 MAE X 1.28 5.79 9 ms 125 K
Q1-Classifier 100 8 CCE X 1.68 7.69 10 ms 125 K
Q1-LambdaQ 2 0.25 8 (5) X X 0.39 0.38 10 ms 125 K
Q1-Lambda1 2 1.0 8 (5) X X 0.36 0.39 10 ms 125 K
Q1-Light 2 0.5 6 (5) X X 0.44 0.44 7 ms 71 K
Q1-Heavy 2 0.5 12 (5) X X 0.26 0.29 19 ms 280 K
Q1-No-BB 2 0.5 8 (5) X 0.87 0.89 5 ms 49 K
Q1-Sobel 1 8 MAE X X 0.46 0.50 14 ms 125 K
Q1-Softmax 100 8 CCE X X 0.52 0.67 10 ms 125 K
Baseline 2 0.5 8 (5) X X 0.40 0.39 10 ms 125 K

We investigated the impact of confidence-aware loss (5) by replacing it with different
loss functions. A simple regression model, Q1-Regressor, trained with the single output
unit achieves comparable performance to MobileNetV2 [21] and Q-EST [11] in terms of
MAE. However, its high SDE of 5.79 indicates that its prediction model is unreliable for
certain images and suffers from outliers. We also train a standard CNN classification model,
Q1-Classifier, using softmax activation and categorical cross-entropy (CCE) loss with 100
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classes. Q1-Classifier achieves an MAE of 1.68 and an SDE of 7.69. Considering its higher
SDE, the classification model suffers from weaker outliers than the regression model in our
experiments. Unlike MAE loss, CCE loss does not consider the amount of error for the
wrong classification during training. For example, the classification model treats two differ-
ent predictions with the error of 1 and 99 just as the same incorrect classification. Thus, the
classification model was hardly trained in our experiments, converging to a local minimum.
We derived the CCE result in Table 3 by leveraging transfer learning and fine-tuning that
incrementally increases the network’s output units (α), extending it from easy binary classi-
fication to complex 100-class classification. On the other hand, other models with MAE loss
and (5) were trained without multi-stage transfer learning because the error proportional to
the wrong amount can be directly propagated backward during training.

In Table 3, except for Q1-Regressor and Q1-Classifier, all others are results to which the
concept of confidence is applied. Note that once confidence measurements are introduced,
MAE and SDE drop dramatically below 1.0. When λ in (5) is changed from 0.5 (baseline) to
0.25 or 1, the performance remains similar. Since the confidence-aware CNN Fθ is trained
with plenty of raw and compressed image pairs in our experiments, both terms in (5) are
eventually minimized regardless of λ . We also measure the performance variation according
to the model size. As expected, the larger k, the lower the MAE and SDE. When k is 12,
the SDE drops to 0.26. Q1-No-BB is a model in which all BottleNeck blocks (BBs) [10]
are removed from the baseline model in Fig. 3. It is observed that BBs reduce MAE and
SDE to less than 50%. Q1-Sobel is basically the same model as Q1-Regressor, but it ad-
ditionally measures the confidence of input patches by Sobel operator-based edge detection
[23] to eliminate unreliable predictions. That is, Q1-Sobel does not use the input patches
with weaker gradients to calculate the final quality level. Since edge detection can read-
ily determine the existence of high-frequency components, Q1-Sobel is highly effective in
eliminating outliers, achieving comparable performance to the baseline of Q1Net. However,
Q1-Sobel takes 4 ms more than the baseline due to the additional convolution operations
on the CPU. Furthermore, using edge-detection is similar to extracting hand-made features,
hardly generalizing to other image analysis tasks. Q1-Softmax uses softmax scores from the
softmax layer of Q1-Classifier to reject outliers. We obtained the lowest MAE and SDE for
Q1-Softmax by thresholding the softmax scores using a grid search. Q1-Softmax has the
benefit of conveniently measuring confidence. However, it achieves higher MAE and SDE
than the baseline of Q1Net, possibly due to the aforementioned difficulties of model train-
ing. Also, different from thresholding of softmax probabilities, the second loss term in (5)
of Q1Net can be applied to regression problems. Based on our ablation study in this section,
we argue that confidence estimation by Q1Net allows for robust predictions of compression
quality by reducing bias from outliers.

Table 4: Performance evaluation of the baseline model at different block numbers
#Blocks 4×4 8×8 12×12 16×16 20×20 24×24

MAE 0.82 0.50 0.42 0.40 0.37 0.36
SDE 0.86 0.47 0.42 0.39 0.38 0.37
Time (ms) 2 4 6 10 15 21

Q1Net evaluation at different block numbers. Table 4 shows that the number of input
patches of Q1Net can be adjusted to reduce latency further while maintaining predictive
performance. It is important to note that using even 4×4 blocks achieves better performance
than other compared methods in terms of accuracy and speed.
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Figure 5: Level prediction of Photoshop-generated JPEGs for 0804.png in DIV2K [3]

3.4 Universal Compression Quality Level
Different compression encoders use different quantization tables and chroma subsampling
schemes. Therefore, we investigated how the Q1Net classifier trained using libjpeg-turbo
classifies the images compressed by the JPEG encoder of Photoshop at each quality level.
Photoshop supports a total of 13 levels of JPEG compression from 0 to 12. For this experi-
ment, images in the DIV2K validation dataset were compressed by each compression quality.
As a representative result shown in Fig. 5, the compression quality levels of the two different
encoders are found to be correlated to a great extent. However, between Photoshop quality
level 6 and level 7, the prediction results of Q1Net are reversed, which contrasts with our
expectations. It turns out that Photoshop quality level 7 and above do not perform chroma
subsampling, so Photoshop quality level 7 quantizes the luminance more aggressively than
level 6 does [9]. Since the human visual system is more sensitive to luminance than chromi-
nance components [20], it makes sense for Q1Net to estimate level 7 as lower quality than
level 6. It is also observed in Fig 5 that peak signal-to-noise ratio (PSNR) of a compressed
image at level 7 is less than that at level 6. Based on the findings of this experiment, we argue
that if the compression level range of an encoder is fine-grained enough to represent most
possible variations, then the corresponding level can be found in the compression output of
another encoder.

4 Conclusions
The first order of business in true automation of image enhancement is to evaluate the image
quality accurately and rapidly. If the presence and type of image degradation are deter-
mined, then a system may inform users of the identified issues. Alternatively, it may suggest
a new version after enhancing images through the evaluation result. As the old saying goes,
Knowledge is power so the better we understand an image, the more wisely we can en-
hance it. This paper introduces Q1Net, which predicts a single compression quality level
that clarifies how heavily an image is compressed. To this end, our method evaluates uni-
formly sampled blocks, whose size is theoretically determined to capture the deformation
by a block transformation and quantization stage. Moreover, to effectively eliminate outliers
in the prediction results, Q1Net is end-to-end trained with a novel loss function that allows
estimating the confidence of each quality prediction.

With various experiments on the DIV2K dataset and a commercial Samsung Galaxy S21
smartphone, the capabilities of Q1Net were demonstrated to be accurate, real-time, explain-
able, and scalable. We hope that the proposed approach will serve as a solid baseline not only
in the task of compression quality prediction but also in other types of quality measurement
tasks such as noise level prediction and blurriness detection.
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