
UWC: UNIT-WISE CALIBRATION TOWARDS RAPID NETWORK COMPRESSION 1

UWC: Unit-wise Calibration Towards Rapid
Network Compression

Chen Lin1

linchen7@hikvision.com

Zheyang Li12

lizheyang@hikvision.com

Bo Peng1

pengbo7@hikvision.com

Haoji Hu2

haoji_hu@zju.edu.cn

Wenming Tan1

tanwenming@hikvision.com

Ye Ren1

renye@hikvision.com

Shiliang Pu1

pushiliang@hikvision.com

1 Hikvision Research Institute
Hangzhou, China

2 Zhejiang University
Hangzhou, China

Abstract

This paper introduces a post-training quantization (PTQ) method achieving highly
efficient Convolutional Neural Network (CNN) quantization with high performance.
Previous PTQ methods usually reduce compression error via performing layer-by-layer
parameters calibration. However, with lower representational ability of extremely com-
pressed parameters (e.g., the bit-width goes less than 4), it is hard to eliminate all the
layer-wise errors. This work addresses this issue via proposing a unit-wise feature recon-
struction algorithm based on an observation of second order Taylor series expansion of
the unit-wise error. It indicates that leveraging the interaction between adjacent layers’
parameters could compensate layer-wise errors better. In this paper, we define several
adjacent layers as a Basic-Unit, and present a unit-wise post-training algorithm which can
minimize quantization error. This method achieves near-original accuracy on ImageNet
and COCO when quantizing FP32 models to INT4 and INT3.

1 Introduction
Network compressions [10, 13, 15, 18, 28, 29, 30] are essential techniques when deploying
Deep Neural Networks (DNNs) to edge devices such as smartphones or wearable devices. Re-
cent compression works could be roughly divided into two categories: structure simplification
and quantization. Structure simplification reduces the float point operations (FLOPs) and the
memory footprint of DNNs by tensor factorization [8, 31], sparse connection [13], weight

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{He, Zhang, and Sun} 2017

Citation
Citation
{Huang and Wang} 2018

Citation
Citation
{Li, Kadav, Durdanovic, Samet, and Graf} 2016

Citation
Citation
{Luo, Wu, and Lin} 2017

Citation
Citation
{Uhlich, Mauch, Cardinaux, Yoshiyama, Garcia, Tiedemann, Kemp, and Nakamura} 2020

Citation
Citation
{Ullrich, Meeds, and Welling} 2017

Citation
Citation
{Wang, Liu, Lin, Lin, and Han} 2019

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Wang and Cheng} 2017

Citation
Citation
{Huang and Wang} 2018

2 UWC: UNIT-WISE CALIBRATION TOWARDS RAPID NETWORK COMPRESSION

pruning, neuron pruning, channel pruning [10, 15], etc. Among them, channel pruning is a
simple but effective approach which is applied in various applications, it directly removes re-
dundant connections and re-trains the pruned network structure. Quantization [24, 28, 30, 35]
is another practical approach. It reduces the complexity of network by approximating full
precision weights and activations to low-bit ones. In this paper, we investigate quantization to
achieve extremely efficient implementations of CNNs.

To achieve guaranteed performance, the quantization users usually perform a Quantization-
aware Training (QAT) [30, 31, 32, 35, 35] process. These approaches are not practical
solutions in industry for at least two reasons. The long time re-training and requirements
of full training data consumes unacceptable computation and storage resources, leading
to a tedious deployment pipeline. Moreover, the requirements of full dataset may involve
privacy issues. To avoid above issues, the PTQ methods [3, 14, 20, 21, 34] that efficiently
turns float-point model to fixed-point counterpart with only a small calibration set, become
prevalent in industry. PTQ is fast and light, while predominant approaches simply applying
Rounding-to-nearest suffer performance degradation when the compression rate goes higher
(e.g. the bit-width goes less than 4 bits).

To retain the accuracy, some layer-wise reconstruction-based algorithms (e.g. AdaRound [21],
Bit-Split [23], AdaQuant [14]) are proposed. These methods greatly improve the 4-bit
quantization accuracy because the layer-wise reconstruction loss implicitly leverages the
interaction between weights in each layer to reduce the error incurred due to quantization.
However, the parameters space of a single quantized layer is much smaller than the original
layer’s. When the compression rate goes higher, the layer-wise features in quantized network
are not well-fitted to the original counterparts, leading to the accumulation of error through
networks. Recently, BRECQ[16] proposes a block-wise reconstruction algorithm implicitly
leveraging the cross-layer interaction in a block. Nevertheless, when quantizing compact
models (e.g., MobileNet), it still remains a non-negligible gap in accuracy with original model.
Since the weights in different blocks are never jointly optimized, the ignorance of some
important cross-block interactions might hinder them to achieve higher accuracy. Different
from Brecq [16], this paper divides the network into several overlapped units, which will not
miss the interaction information between blocks.

In this paper, we formulate PTQ problem as follows. Given a calibration set with 128 to
1024 instances and a well-trained neural network, our algorithm is directed toward a twofold
goal: (1) In terms of performance, the quantized model remains near original performance
while weights are turned to lower than 4 bits. (2) In terms of efficiency, the whole process is
expected to be quick enough to be applicable in production lines (e.g., within 30 minutes).

• To achieve goal (1), we theoretically analyze the impact on the task loss due to quanti-
zation based on a second series Taylor expansion. This analysis inspires us to explicitly
extract the interaction matrix between adjacent layers to enhance the performance.
Then, a unit-wise reconstruction objective embedded with above interaction is proposed
to eliminate the quantization error.

• To achieve goal (2), we further propose an arguable two-stage search space simplifi-
cation which makes the unit discrete space much smaller and differentiable to make
the stochastic gradient descent (SGD) strategy feasible. After that, the complexity of
unit-wise optimization is reduced to a reasonable range.

Experiments well demonstrate that our proposed unit-wise algorithm possesses not only high
performance, but also great compression ratio. A near original model performance is achieved

Citation
Citation
{He, Zhang, and Sun} 2017

Citation
Citation
{Li, Kadav, Durdanovic, Samet, and Graf} 2016

Citation
Citation
{Rastegari, Ordonez, Redmon, and Farhadi} 2016

Citation
Citation
{Uhlich, Mauch, Cardinaux, Yoshiyama, Garcia, Tiedemann, Kemp, and Nakamura} 2020

Citation
Citation
{Wang, Liu, Lin, Lin, and Han} 2019

Citation
Citation
{Zhou, Wu, Ni, Zhou, Wen, and Zou} 2016

Citation
Citation
{Wang, Liu, Lin, Lin, and Han} 2019

Citation
Citation
{Wang and Cheng} 2017

Citation
Citation
{Wang, Hu, Zhang, Zhang, Liu, and Cheng} 2018

Citation
Citation
{Zhou, Wu, Ni, Zhou, Wen, and Zou} 2016

Citation
Citation
{Zhou, Wu, Ni, Zhou, Wen, and Zou} 2016

Citation
Citation
{Cai, Yao, Dong, Gholami, Mahoney, and Keutzer} 2020

Citation
Citation
{Hubara, Nahshan, Hanani, Banner, and Soudry} 2020

Citation
Citation
{Meller, Finkelstein, Almog, and Grobman} 2019

Citation
Citation
{Nagel, Amjad, van Baalen, Louizos, and Blankevoort} 2020

Citation
Citation
{Zhao, Hu, Dotzel, Sa, and Zhang} 2019

Citation
Citation
{Nagel, Amjad, van Baalen, Louizos, and Blankevoort} 2020

Citation
Citation
{Peisong, Chen, He, and Jian} 2020

Citation
Citation
{Hubara, Nahshan, Hanani, Banner, and Soudry} 2020

Citation
Citation
{Li, Gong, Tan, Yang, Hu, Zhang, Yu, Wang, and Gu} 2021

Citation
Citation
{Li, Gong, Tan, Yang, Hu, Zhang, Yu, Wang, and Gu} 2021

UWC: UNIT-WISE CALIBRATION TOWARDS RAPID NETWORK COMPRESSION 3

even when quantizing FP32 models to INT3. The rest of this paper is organized as follows.
Section 2 analyze current network compressions in quantization. The motivation and the
proposed unit-wise optimizing algorithm is introduced in Section 3.1 and 3.2. Section 4
performs extensive experiments on several benchmarks with in-depth analysis.

2 Related Work

Standard implementation of DNNs is inefficient in memory storage and consumes consider-
able computational resources. Many network compression techniques tried to simplify and
accelerate DNNs. Quantization is one of the most effective ways of saving the consumption
of neural networks during inference by converting the high precision operations into lower
precision ones. There are two main regimes of network quantization: Quantization-Aware
Training and Post-Training Quantization.

Quantization-Aware Training. Previous works mainly insert quantization operation in
the re-training process to retain high performance, which is called quantization-aware training
(QAT). [2] uses a straight through estimator to pass through the gradients of quantization
operations. After that, many methods extended these training frameworks, e.g. [4] trains
parameterized clipping thresholds for quantized network. [7] uses a differentiable tanh
function to gradually quantize the network. [28] learns the quantization interval as well as the
bit-width per layer for mix-precision networks. Although QAT gains good performance, it
usually costs long training times as well as numerous energy spent during network training.

Post-Training Quantization. Post-training quantization (PTQ) is a lightweight approach
since it doesn’t require the original training pipeline. ACIQ [1] fits Gaussian and Laplacian
models to the distribution for optimal clip threshold. [34] leverages model expansion to
improve quantization. [23] split the bits of weight to compensate quantization error. [21]
optimizes the rounding operation to improve the final loss. BRECQ[16] proposes a block-
wise reconstruction algorithm implicitly leveraging the cross-layer interaction in a block.
In most cases, PTQ methods are sufficient for achieving near-original accuracy under 8-bit
quantization, while the performance reduction becomes non-negligible when the bit-width
goes less than 4-bit.

Notation. We use capital bold letters and small bold letters denoting matrices (or ten-
sors) and vectors, respectively. For instance, W and w represent the weight tensor and
its flatten version. All vectors are considered to be column vectors. The bracketed super-
script and the subscript indicate the layer and the element indices, e.g., W(i)

a,b, x(i). For
deep neural network with L layers, we mark all the flattened parameters by w, where

w = vec
[
w(1),T , ...,w(i),T , ...,w(L),T

]T
is the concatenation of all layers’ weights. Quantiza-

tion turns the weights w ∈ Rd to discrete set ŵ ∈ Vd , where V= α×{−2b−1, . . . ,2b−1−1}
is the potential value space of each element, b is the bit width and α is the interval of
quantization.

3 Method

In this section, we will introduce our proposed approach centered around performance and
efficiency. In Section 3.1, we propose a Unit-wise Objective embedded with an interaction

Citation
Citation
{Bengio, Léonard, and Courville} 2013

Citation
Citation
{Choi, Wang, Venkataramani, Chuang, Srinivasan, and Gopalakrishnan} 2018

Citation
Citation
{Gong, Liu, Jiang, Li, Hu, Lin, Yu, and Yan} 2019

Citation
Citation
{Uhlich, Mauch, Cardinaux, Yoshiyama, Garcia, Tiedemann, Kemp, and Nakamura} 2020

Citation
Citation
{Banner, Nahshan, Hoffer, and Soudry} 2018

Citation
Citation
{Zhao, Hu, Dotzel, Sa, and Zhang} 2019

Citation
Citation
{Peisong, Chen, He, and Jian} 2020

Citation
Citation
{Nagel, Amjad, van Baalen, Louizos, and Blankevoort} 2020

Citation
Citation
{Li, Gong, Tan, Yang, Hu, Zhang, Yu, Wang, and Gu} 2021

4 UWC: UNIT-WISE CALIBRATION TOWARDS RAPID NETWORK COMPRESSION

Whole network

…U(1)C
o

n
v

1

C
o

n
v

2

C
o

n
v

3

C
o

n
v

4

C
o

n
v

L-2

C
o

n
v

L-1

C
o

n
v

L
U(L−2)

L

L

𝑤1

QS1 SS1

∆𝑤1

⌊•⌉

𝑤𝑛

⌊•⌉

…

QSn

① Search space shrink

SSn

∆𝑤n

…CP1

CPn

One hot P1

One hot Pn

*

*

SS1

∆𝑤1

SSn

∆𝑤n

② Optimization (b) Unit-wise Calibration

∆𝑤1

∆𝑤n

ෝw1

ෝwn

…
SS: shrunk space for ∆𝑤

• : round to nearest

CP: continuous probability

*: vector product

QS: quantization space

U(2)

…

…

Non-linear Non-linear Non-linear Non-linear Non-linearNon-linear

(a) Hessian

Figure 1: Overview of the proposed approach. The whole network is divided into several
basic optimizing units. For each unit, a unit-wise optimizing algorithm is applied. (a) shows
the whole Hessian H of an L-layer network. Ignoring the interaction between layers that are
non-adjacent, H becomes block tridiagonal matrix. Defining three connected layers as a basic
unit, the L-layer network is divided into L−2 units, u(1), u(2),· · · , u(L−2). The circled squares
are the corresponding Hessian of these units. (b) shows a two stage two-stage search space
simplification. In ¬ search space shrink, each quantized weight ŵi is suggested to select
one of the three quantization grids that are near the original weight wi. The size of ∆wi’s
search space SSi is shrunk to 3. In Optimization, the probability over SSi is first relaxed to
continuous values CPi, and then gradually pushed to a one-hot vector Pi. After optimization,
the optimal value of ŵi is selected.

matrix to enhance quantization performance. In Section 3.2, an efficient optimization strategy
is introduced based on a two-stage search space simplification.

3.1 Unit-wise Objective
Let’s begin with analyzing the increase in task lossL (e.g., cross-entropy loss for classification)
introduced by quantization. Quantization turns float-point weight w to fixed-point weight ŵ,
which inevitably adds a perturbation ∆w = ŵ−w on w. The expected increase in task loss
w.r.t. ∆w can be approximated by the second order Taylor series expansion

E [∆L(∆w)] = E(L(∆w+w,x,y)−L(w,x,y))

≈ ∆wT g(w)+
1
2

∆wT H(w)∆w,
(1)

where E is the expectation operator, g(w) and H(w) are the expected gradient and Hessian of
L w.r.t. ∆w. The first order term vanishes as the model converged to local minimal, i.e., g(w)
is close to zero.

Eq. (1) implies that different perturbed weights are interactive in terms of the task loss,
and H(w) defines the interaction. For example, consider two elements [wi,w j] in w, and the

hessian matrix of L w.r.t. [wi,w j] is
[

Hi,i Hi, j
H j,i H j, j

]
=

[
1 0.5

0.5 1

]
. Assume we only quantized

wi and ∆wi = 1, then its introduced increase in loss is ∆L(∆w1=1,∆w2=0) = Hi,i∆wi = 1. By
using the join impact of [∆w1,∆w2] on the loss ∆L(∆w1=1,∆w2) = (∆w2)

2 +∆w2 +1, we can
reduce the error due to ∆w1 by adjusting ∆w2, i.e., when ∆w2 = −0.5, the loss is reduced

UWC: UNIT-WISE CALIBRATION TOWARDS RAPID NETWORK COMPRESSION 5

to 0.75. This simple case inspires us that the quantization error can well be reduced if the
interaction of all weights are jointly considered. Therefore, we reformulate minimizing the
second order term as our objective,

minimize
∆w

∆wT H(w)∆w. (2)

(2) is a good proxy as it overall reduces the joint impact on the task loss of all the perturbed
weights. However, it is not tractable to directly optimize (2) because of the storage and
computation budget. For a network with n parameters (potentially millions of parameters),
O(n2) footprint is needed to store the Hessian and O(n3) computations are needed for each
optimization step.

Above analysis motivates us to leverage the interaction between weights to enhance
quantization. In the following, we will capture the main information of H(w) with some
approximations to constraints the complexity to a reasonable range. As the weight w is
the concatenation of all layers’ weights, H(w) = E(∂ 2L

∂w2) can be viewed as a L by L block

matrix, with the (i, j)-th block H(i, j) given by H(i, j) = E(∂ 2L
∂wi∂w j). And H(i, j) represents the

interaction between layer i and layer j.
As shown in Figure 1 (a), adjacent layers are higher interactive while non-adjacent layers

are lower interactive. This is explainable as computing g(i) only directly uses the input
information from layer i− 1 and the gradient information from layer i+ 1. To reduce the
budget, it is reasonable to ignore the interaction between weights of non-adjacent layers.
Therefore, assuming | j− i|> δ ,H(i, j) = 0, a fragment of u connected layers are considered
interactive, where u = 2δ +1. After that, as shown in Figure 1 (c), the Hessian H become a
block tridiagonal matrix. This motivates us to divide the model into multiple overlapped units
and optimize each unit sequentially.

Formally, we define u adjacent layers as a basic optimization unit vec[w(i),T , ..,w(i+u),T].
The overall objective Eq. (2) is then transformed to a set of unit-wise objectives. For i-th unit,
the unit-wise objective is formulated as

minimize
∆W(i),...,∆W(i+u)

u,u

∑
k=0, j=0

∆w(i+k),T H(i+k,i+ j)
∆w(i+ j). (3)

Although Eq. (3) greatly speed up Eq. (2) by the tridiagonal approximation of H, optimizing
Eq. (3) is still infeasible for the budget associated with block entry H(i+k,i+ j).

In the following, we will further simplify Eq. (3). To avoid repeatedly calculating each
block entry H(i+k,i+ j)(see [19]), we first reformulate Eq.(3) to make all block entries related
to the pre-activation HessianH(i+u)(see [16]),

u,u

∑
k=0, j=0

∆w(i+k),T J

[
z(i+u)

w(i+k)

]T

H(i+u)J

[
z(i+u)

w(i+k)

]
∆w(i+ j), (4)

where z(i+u) is the pre-activation of layer i+u, given by z(i+u) = W(i)x(i+u−1),H(i+u) is the
Hessian of L w.r.t. z(i+u), J

[
x
y

]
is the expected Jacobian matrix of x w.r.t. y. When optimizing

weights in a unit, we assume that elements in the unit outputs are not interactive, that is,
H(i+u) is diagonal. This assumption will not bring in large performance drop since the units
are overlapped. The interaction between the unit outputs will be considered when optimizing

Citation
Citation
{Martens and Grosse} 2015

Citation
Citation
{Li, Gong, Tan, Yang, Hu, Zhang, Yu, Wang, and Gu} 2021

6 UWC: UNIT-WISE CALIBRATION TOWARDS RAPID NETWORK COMPRESSION

the next unit. We end up with the following objective

minimize
∆w(i),..,∆w(i+u)

u

∑
k=0
||
√

diag(H(i+u))J

[
z(i+u)

w(i+k)

]
∆w(i+k)||F , (5)

where || · ||F is Frobenius norm. In Eq. (5), Mk =
√

diag(H(i+u))J
[

z(i+u)

w(i+k)

]
is the captured

interaction between weights in a unit. J
[

z(i+u)

w(i+k)

]
= E

[
x(i+k−1),T

∏
u
k B(i+k)W(i+k)

]
(see [19]),

where B(i+k) = diag(φ(z(i+k))′) is the gradient of activation function. Here, we introduce
some details in algorithm implementation. To avoid the second derivative, diag(H(i+u))

can be replaced by the diagonal Fisher Information matrix, that is,
√

diag(H(i+u))≈ ∂L
∂ z(i+u) ,

which is proven effective in [16] and [26].
Optimizing (5) does not suffer from complexity issue associated with H. The unit-wise

optimization is still the least square regression problem with discrete constraints. The search
space scales exponentially in the dimension of unit weights.

3.2 Unit-wise Calibration
Note that there are 2b− 1 possible values for each element, the combined solution space
size is (2b−1)nu

, where nu is the numbers of elements in the unit. It is not efficient to make
exhaustive search. Meanwhile, the widely used Straight Through Estimator (STE) [5] is not
effective in this case for the inaccurate gradients. To reduce the complexity of optimization
without performance degradation, we propose a two-stage search space simplification as
follows.

Search space shrink. Before optimization, we first initialize each quantized weight ŵinit
to its nearest quantization grid by applying round-to-nearest on w. The absolute value of
perturbation ∆ŵinit for each weight is smaller than 1

2 α , where ∆ŵinit = w− ŵinit , α a floating-
point scale factor, representing the quantization interval. α for each weight is calculated and
used like previous low-bit quantization method [4]. Since the added perturbations for all
weights in a unit are small values, we suggest that the optimal ∆ŵ will be selected around
∆ŵinit . Such that, we shrink the search space of ∆ŵ to V= {−α +∆ŵinit ,∆ŵinit ,α +∆ŵinit}.
The solution space size is shrunk to 3nu

.
Optimization. With a much smaller search space, we have to tackle the inaccurate

gradient estimation problem of STE in discrete set. Inspired by [33], we relax discrete
∆w to continuous value space and gradually push the solution into discrete space V during
optimization process. For each element ∆w in a unit, an auxiliary vector a ∈ Rm is created
to learn the distribution P of ∆w, where m is the size of search space V, here, m = 3. The
probability Pi for selecting i-th element in V is computed by

Pi =
expai/t

∑ j expa j/t , (6)

where t is a temperature factor designed to implicitly work as a regularizer. When t approaches
to zero, Pi will converge to 0 or 1. During optimizing, ∆w is displaced by a continuous
expectation of ∆we, and is calculated according to the probability over all the discrete values:

∆we = ∑
i

ViPi, (7)

Citation
Citation
{Martens and Grosse} 2015

Citation
Citation
{Li, Gong, Tan, Yang, Hu, Zhang, Yu, Wang, and Gu} 2021

Citation
Citation
{Singh and Alistarh} 2020

Citation
Citation
{Courbariaux, Bengio, and David} 2016

Citation
Citation
{Choi, Wang, Venkataramani, Chuang, Srinivasan, and Gopalakrishnan} 2018

Citation
Citation
{Yang, Wang, Han, Xu, Xu, Tao, and Xu} 2020

UWC: UNIT-WISE CALIBRATION TOWARDS RAPID NETWORK COMPRESSION 7

Both Eq. (6) and Eq. (7) are differentiable thus gradients will be accurately estimated. SGD
is applied on a to adjust the distribution of ∆w. By gradually decreasing the temperature t,
the distribution P will be pushed to one-hot vector.

3.3 Discussion
Although our work shares a general form of optimizing multiple layers with BRECQ[16], our
work is actually starkly different from theirs in many axes:
Motivation. Our method is always driven by the motivation, that is, fully making use of the
whole network interaction (the Hessian) to reduce quantization error. Due to the intractability
caused by the large Hessian, our method is developed to a set of overlapped unit-wise
objectives to extract the main information from the whole Hessian. Different from ours,
BRECQ is motivated to use the local Hessians from parts of the network. Their method is
designed to choose an optimal reconstruction granularity from 4 kinds of granularity, i.e.,
layer, block, stage, network.
Basis of optimizing granularity. The optimizing granularity of our method comes from the
assessment of interaction degree while their choice of block-wise optimization comes from
experiments. Each unit, in our method, jointly optimizes multiple layers which have strong
interaction, theoretically a sub-matrix with big values from the Hessian. This work sets three
adjacent layers, i.e., the most interactive, as a unit for keeping the implementation simple
to demonstrate the effectiveness of the interaction. Actually, our work can be extended to
figure out optimal units dividing strategy by cropping sub-matrices with bigger values in the
Hessian without constraints of layer numbers.
The approximation of the network Hessian. In our paper, the Hessian is simplified as a
tri-diagonal block matrix while BRECQ’s is diagonal block. Since the blocks are overlapped
in our method, the interaction of adjacent optimization units is added comparing with BRECQ.
The ignorance of some important cross-unit interactions might hinder them to achieve higher
accuracy.
Empirical performance. Results show our method outperforms BRECQ’s on ImageNet
which may mainly benefit from the addition of cross-unit interaction.

4 Experiments
In this section, we evaluate the effectiveness of our proposed method on various computer
vision tasks and models. Section 4.1 presents ablation study on the unit-wise optimization.
In Section 4.2, we compare unit-wise with other post-training quantization methods. In
Section 4.2, we present the performance of unit-wise calibration on object detection and
instance segmentation tasks.

Experimental setup. For all experiments we absorb batch normalization into the weights
of its previous connected convolutional layer. For all networks, the first layer and the last
layer are quantized to 8-bit. We apply symmetric per-channel quantization for weights and
symmetric per-tensor quantization for activations, which is a general and hardware-friendly
development mode. For all experiments, we sample images from the training dataset as a
calibration set. In optimization, the calibration data are cropped and resized into 224×224,
except for the InceptionV3 model whose input size is 299×299, which is same as the training
pipeline. We sequentially feed all the calibration data to the networks with the batch-size of
128. All optimizing and testing codes are built on Pytorch [22].

Citation
Citation
{Li, Gong, Tan, Yang, Hu, Zhang, Yu, Wang, and Gu} 2021

Citation
Citation
{Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga, etprotect unhbox voidb@x protect penalty @M {}al.} 2019

8 UWC: UNIT-WISE CALIBRATION TOWARDS RAPID NETWORK COMPRESSION

61

62

63

64

65

66

67

68

128 256 512 1024 2048 4096

A
cc

u
ra

cy
（

%
）

Number of Images

ResNet 18

1-layer

2-layer

3-layer

4-layer

40

45

50

55

60

65

128 256 512 1024 2048 4096

A
cc

u
ra

cy
（

%
）

Number of Images

MobileNet V2

1-layer

2-layer

3-layer

4-layer

Figure 2: The effect on ImageNet validation accuracy when setting different numbers of
layers for each unit under various data limitation.

4.1 Ablation Study

First, we determine the optimal number of layers for each unit and the size of calibration
data. Limiting the number of calibration data in the range from 128 to 4096, we quantize the
weights of ResNet18 and MobilenetV2 to 2-bit on ImageNet. To make sure the algorithm
accomplishes within 30 minutes (0.5 GPU hours), we optimize each unit 20000 rounds.
Figure 2 shows that when a unit contains 3 layers, the models outperform other options under
various data limitations. The possible reason for this phenomenon is, for a layer i, the most
interactive layers are the directly connected layer below (layer i−1) and layer above (layer
i+1). When the number of layers goes up to 4, more calibration data and optimization rounds
might be required for better performance. In the following experiments, we will set 3 layers
for each unit and set the number of calibration data to 1024.

Layer-wise vs Unit-wise. We investigate the benefits of our proposed unit-wise optimiza-
tion algorithm by comparing with layer-wise optimization algorithm. In our experiments,
five widely used convolutional models, including Resnet18, Resnet50, Resnet101 [8], Incep-
tionV3 [27], MobilenetV2 [11] and MobilenetV3 large [12] are used for comparison. All the
pre-trained models are trained on ImageNet [6] and loaded from torchvision. As a baseline, we
also perform a Layer-wise optimization to validate the effectiveness of cross-layer interaction,

Table 1: Comparison with Layer-wise reconstruction on ImageNet classification benchmark.
Top-1 and Top-5 accuracy (%) are reported. Post-training quantization are conducted on
weights and activations. Weights are quantized to 3 or 4 bits. Activations are quantized to 4/8
bits or remain un-quantized for comparison. Bold values indicates best results.

Algorithms Bits(W/A) Resnet18 Resnet50 Resnet101 InceptionV3 MobilenetV2 MobileV3-large
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

FP. 32/32 69.76 89.08 76.25 92.88 77.57 93.76 77.57 93.69 71.88 90.29 74.04 91.34

Layer-wise 4/32 69.09 88.65 75.34 92.22 76.13 92.86 76.23 92.34 64.34 83.35 67.84 87.40
Unit-wise 4/32 69.43 88.76 75.83 92.62 77.13 93.54 76.88 92.82 71.17 89.33 72.26 89.91
Layer-wise 4/8 69.01 88.55 75.17 92.08 76.08 92.75 76.10 92.24 64.03 82.92 67.52 87.43
Unit-wise 4/8 69.44 88.81 75.77 92.44 77.21 93.41 76.48 92.75 70.89 89.31 72.02 89.77

Layer-wise 3/32 66.12 86.87 74.68 91.82 74.88 92.28 73.85 90.10 55.81 73.12 58.65 80.31
Unit-wise 3/32 68.72 88.49 74.97 92.23 76.24 92.22 75.93 92.82 69.42 88.23 68.72 86.71
Layer-wise 3/8 66.08 86.82 74.51 91.75 74.67 92.05 73.58 89.88 53.94 72.73 58.01 80.22
Unit-wise 3/8 68.42 88.09 74.54 92.00 75.98 92.22 75.71 92.48 68.92 87.52 67.32 85.62

Layer-wise 4/4 65.16 86.11 71.93 90.31 72.75 90.04 72.17 90.74 60.75 80.19 49.49 73.94
Unit-wise 4/4 67.23 87.13 74.38 91.67 75.74 92.08 74.44 91.95 64.78 83.76 64.97 83.69

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Szegedy, Vanhoucke, Ioffe, Shlens, and Wojna} 2015

Citation
Citation
{Howard, Zhu, Chen, Kalenichenko, Wang, Weyand, Andreetto, and Adam} 2017

Citation
Citation
{Howard, Sandler, Chu, Chen, Chen, Tan, Wang, Zhu, Pang, Vasudevan, Le, and Adam} 2019

Citation
Citation
{Deng, Dong, Socher, Li, Li, and Fei-Fei} 2009

UWC: UNIT-WISE CALIBRATION TOWARDS RAPID NETWORK COMPRESSION 9

Table 2: Comparison with State-of-the-arts post-training quantization approaches on ImageNet
classification benchmark. Top-1 and Top-5 accuracy (%) are reported. Bold values indicate
best results (with the least accuracy drop). ‡ denotes the float point baselines of Brecq
are different from ours (see first two rows in table). Weights are quantized to 3 or 4 bits
and activations are remained un-quantized. ∗ denotes quantizing our baseline models by the
public released codes with our quantization space.

Algorithms W/A Resnet18 Resnet50 Resnet101 InceptionV3 MobilenetV2
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

FP. 32/32 69.76 89.08 76.25 92.88 77.57 93.76 77.57 93.69 71.88 90.29
FP.(Brecq) 32/32 71.08 - 77.00 - - - - - 72.49 -

Bit-split[23] 4/32 69.11 88.69 75.58 92.57 76.89 93.31 - - - -
AdaRound[21] 4/32 68.71 - 75.23 - - - 75.76 - 69.78 -
Brecq[16]‡ 4/32 70.70 - 76.29 - - - - - 71.66 -
Brecq[16]∗ 4/32 69.29 88.55 75.74 92.52 - - - - - -
Ours 4/32 69.43 88.76 75.83 92.67 77.13 93.54 76.88 92.82 71.17 89.33

Bit-split[23] 3/32 66.76 87.45 73.64 91.61 74.98 92.42 - - - -
AdaRound[21] 3/32 68.07 - 73.42 - - - - - 64.33 -
Brecq[16]‡ 3/32 69.81 - 75.61 - - - - - 69.50 -
Brecq[16]∗ 3/32 68.39 88.31 74.54 92.07 - - - - - -
Ours 3/32 68.72 88.49 74.97 92.23 76.24 92.22 75.93 92.82 69.42 88.23

Brecq[16]‡ 2/32 66.30 - 72.40 - - - - - 59.67 -
Brecq[16]∗ 2/32 66.02 86.63 71.14 89.79 - - - - - -
Ours 2/32 66.85 87.21 72.26 90.23 70.95 89.55 69.77 89.44 58.28 82.16

on these models. The results are shown in Table 1.
Shown in Table 1, the proposed unit-wise calibration method induces negligible accuracy

degradation on all models even on the less redundant models, e.g. MobilenetV2. Under
4 bit quantization of weights, our quantized networks only induce 0.4% to 1.2% Top-1
accuracy drop on various networks. For the more aggressive 3 bit quantization of weights,
our quantized networks only induce 0.5% to 1.7% Top-1 accuracy drop on most networks
except MobilenetV2. In Table 1, we also report the results when activations are quantized
to 8 bits and remained un-quantized, respectively. It is observed that 8 bits quantization for
activations will lead to negligible performance degradation on all models.

Besides, unit-wise method outperforms the layer-wise method on all models. Especially
on the comparison of 3 bits quantization of weights, the accuracy drop from layer-wise method
is much larger. Another phenomenon is that the gap becomes larger when the original model
becomes more compact, e.g. To evaluate the effectiveness on dynamic blocks implemented
with SE, we conduct our algorithm on mobilenetv3-large model on ImageNet loaded from
torchvision. In this experiment, each unit contains three adjacent layers not counting the
layers in SEs since a SE module only takes a small amount of calculation and produces several
scaling factors on features. The results show the superiority of unit-wise optimization.

We also evaluate our method under high compression rate for both weight and activation.
The scale factors of activation quantizers are optimized using PACT in each unit. Shown in
Table 1, when both activation and weights are quantized to 4-bit, unit-wise still outperforms
layer-wise optimization.

4.2 Comparison with State-of-the-arts

Here, we evaluate our algorithm and compare with the State-of-the-arts post-training quanti-
zation approaches, including Bit-split [23], AdaRound [21] and Brecq[16]. Bit-Spilt spilts
the multiple-bits quantization optimization problem into multiple ternary quantization sub-

Citation
Citation
{Peisong, Chen, He, and Jian} 2020

Citation
Citation
{Nagel, Amjad, van Baalen, Louizos, and Blankevoort} 2020

Citation
Citation
{Li, Gong, Tan, Yang, Hu, Zhang, Yu, Wang, and Gu} 2021

Citation
Citation
{Li, Gong, Tan, Yang, Hu, Zhang, Yu, Wang, and Gu} 2021

Citation
Citation
{Peisong, Chen, He, and Jian} 2020

Citation
Citation
{Nagel, Amjad, van Baalen, Louizos, and Blankevoort} 2020

Citation
Citation
{Li, Gong, Tan, Yang, Hu, Zhang, Yu, Wang, and Gu} 2021

Citation
Citation
{Li, Gong, Tan, Yang, Hu, Zhang, Yu, Wang, and Gu} 2021

Citation
Citation
{Li, Gong, Tan, Yang, Hu, Zhang, Yu, Wang, and Gu} 2021

Citation
Citation
{Li, Gong, Tan, Yang, Hu, Zhang, Yu, Wang, and Gu} 2021

Citation
Citation
{Peisong, Chen, He, and Jian} 2020

Citation
Citation
{Nagel, Amjad, van Baalen, Louizos, and Blankevoort} 2020

Citation
Citation
{Li, Gong, Tan, Yang, Hu, Zhang, Yu, Wang, and Gu} 2021

10 UWC: UNIT-WISE CALIBRATION TOWARDS RAPID NETWORK COMPRESSION

optimizations. After all the sub-optimizations, they stitch the multiple-bits into integers.
AdaRound optimizes the rounding-to-nearest operations to reconstruct the final loss. Both
Bit-Spilt and AdaRound fall into the layer-wsie reconstruction. Brecq proposes to choose
block as a base reconstruction unit. In all approaches, weights are quantized to 3 or 4 bits,
and activations are remained un-quantized. The results are shown in Table 2.

ImageNet Classification. Shown in Table 2, the proposed unit-wise calibration method
outperforms all competing methods for both 3 and 4 bits. Under 4 bit quantization of weights,
the compared methods still report good performance on the relatively redundant models, e.g.,
Resnets. However, for the more challenging networks, InceptionV3 and MobilenetV2, 4
bits quantization has a bigger impact. In this case, our method shows prominent superiority
comparing with Bit-split and AdaRound. When the bit of weight goes down to 3, Bit-split
and AdaRound result in more obvious performance degradation. Brecq achieves better results
than Bit-split and AdaRound, while still has larger accuracy drop than ours especially on
MobilenetV2. Our method outperforms Brecq since the cross-block interaction information
are considered. For Resnets, our method leads to the smallest accuracy drop within 1.3%.
For MobilenetV2, all other methods lead to un-tolerable performance degradation, while our
approach obtain the best result with only 2.46% drop in accuracy. In the more aggressive 2-bit
weights quantization, both ours and brecq’s show obvious loss of performance. However, the
increase of cross-block interaction helps us get higher accuracy.

Object Detection and Instance Segmentation. To validate the effectiveness and applica-
bility of unit-wise calibration, the experiments of object detection and instance segmentation
tasks are applied. Unit-wise calibration has been evaluated on object detection with one-
stage RetinaNet [17] and two-stage Faster R-CNN [25], Mask R-CNN [9], models. Also
we evaluate it on instance segmentation with Mask R-CNN model. For all networks, we
choose Resnet50 as backbone. MS COCO is adopted as the testing set to evaluate our method.
For calibration and validation data, we resize them to 1333×800. Since the input images
are much bigger than classification images, only 400 images are sampled as calibration
data. The bounding box AP for object detection and mask AP for instance segmentation are
reported in Table 3. According to Table 3, we can see that there are about 0.4% to 0.9% mAP
degradation without re-training the network, which demonstrate our method nearly achieves
near-to-original performance with 4-bit weight and 8-bit activation quantization.

Table 3: Object Detection and Instance Segmentation performance on COCO val set. The
first three lines report bounding box AP for object detection, and the last line reports mask
AP for instance segmentation.

Model Full Precision A8W4
Faster R-CNN[25] 36.6 36.2
RetinaNet [17] 36.2 35.3
Mask R-CNN[9] 36.6 35.8
Mask R-CNN[9] 33.9 33.2

5 Conclusions
In this paper, we proposed a unit-wise post-training quantization algorithm. To improve the
performance, the interaction between adjacent layers is extracted to eliminate quantization
error. To speed up the optimization, a two-stage search space simplification is also proposed.
The algorithm achieves near original accuracy using only 1024 samples within 0.5 GPU hours
when weights are quantized to INT3 on tasks of ImageNet and COCO.

Citation
Citation
{Lin, Goyal, Girshick, and He} 2017

Citation
Citation
{Ren, He, Girshick, and Sun} 2015

Citation
Citation
{He, Gkioxari, Dollár, and Girshick} 2018

Citation
Citation
{Ren, He, Girshick, and Sun} 2015

Citation
Citation
{Lin, Goyal, Girshick, and He} 2017

Citation
Citation
{He, Gkioxari, Dollár, and Girshick} 2018

Citation
Citation
{He, Gkioxari, Dollár, and Girshick} 2018

UWC: UNIT-WISE CALIBRATION TOWARDS RAPID NETWORK COMPRESSION 11

References
[1] R. Banner, Yury Nahshan, E. Hoffer, and Daniel Soudry. Aciq: Analytical clipping for

integer quantization of neural networks. ArXiv, abs/1810.05723, 2018.

[2] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating
gradients through stochastic neurons for conditional computation, 2013.

[3] Yaohui Cai, Zhewei Yao, Zhen Dong, Amir Gholami, Michael W. Mahoney, and Kurt
Keutzer. Zeroq: A novel zero shot quantization framework, 2020.

[4] Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang, Vijayalak-
shmi Srinivasan, and Kailash Gopalakrishnan. Pact: Parameterized clipping activation
for quantized neural networks, 2018.

[5] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training
deep neural networks with binary weights during propagations, 2016.

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR09, 2009.

[7] Ruihao Gong, Xianglong Liu, Shenghu Jiang, Tianxiang Li, Peng Hu, Jiazhen Lin,
Fengwei Yu, and Junjie Yan. Differentiable soft quantization: Bridging full-precision
and low-bit neural networks, 2019.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[9] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn, 2018.

[10] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep
neural networks. In Proceedings of the IEEE ICCV, pages 1389–1397, 2017.

[11] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, To-
bias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional
neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

[12] Andrew G. Howard, M. Sandler, Grace Chu, Liang-Chieh Chen, B. Chen, Mingxing
Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and
Hartwig Adam. Searching for mobilenetv3. 2019 IEEE/CVF International Conference
on Computer Vision (ICCV), pages 1314–1324, 2019.

[13] Zehao Huang and Naiyan Wang. Data-driven sparse structure selection for deep neural
networks. In Proceedings of the European conference on computer vision (ECCV),
pages 304–320, 2018.

[14] Itay Hubara, Yury Nahshan, Yair Hanani, Ron Banner, and Daniel Soudry. Improving
post training neural quantization: Layer-wise calibration and integer programming,
2020.

[15] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning
filters for efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

12 UWC: UNIT-WISE CALIBRATION TOWARDS RAPID NETWORK COMPRESSION

[16] Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei
Wang, and Shi Gu. Brecq: Pushing the limit of post-training quantization by block
reconstruction. arXiv preprint arXiv:2102.05426, 2021.

[17] Tsung-Yi Lin, Priya Goyal, Ross Girshick, and Kaiming He. Focal loss for dense object
detection. 2017.

[18] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for
deep neural network compression. In Proceedings of the IEEE International Conference
on Computer Vision (ICCV), Oct 2017.

[19] James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored
approximate curvature. In International conference on machine learning, pages 2408–
2417. PMLR, 2015.

[20] Eldad Meller, Alexander Finkelstein, Uri Almog, and Mark Grobman. Same, same but
different - recovering neural network quantization error through weight factorization,
2019.

[21] Markus Nagel, Rana Ali Amjad, Mart van Baalen, Christos Louizos, and Tijmen
Blankevoort. Up or down? adaptive rounding for post-training quantization, 2020.

[22] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch:
An imperative style, high-performance deep learning library. In Advances in neural
information processing systems, pages 8026–8037, 2019.

[23] Wang Peisong, Qiang Chen, Xiangyu He, and Cheng Jian. Towards accurate post-
training network quantization via bit-split and stitching. In Proceedings of the 37nd
International Conference on Machine Learning (ICML), pages 243–252, July 2020.

[24] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-
net: Imagenet classification using binary convolutional neural networks. In European
conference on computer vision, pages 525–542. Springer, 2016.

[25] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: towards real-time
object detection with region proposal networks. 2015.

[26] Sidak Pal Singh and Dan Alistarh. Woodfisher: Efficient second-order approximations
for model compression. ArXiv, abs/2004.14340, 2020.

[27] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew
Wojna. Rethinking the inception architecture for computer vision, 2015.

[28] Stefan Uhlich, Lukas Mauch, Fabien Cardinaux, Kazuki Yoshiyama, Javier Alonso
Garcia, Stephen Tiedemann, Thomas Kemp, and Akira Nakamura. Mixed precision
dnns: All you need is a good parametrization, 2020.

[29] Karen Ullrich, Edward Meeds, and Max Welling. Soft weight-sharing for neural network
compression. arXiv preprint arXiv:1702.04008, 2017.

UWC: UNIT-WISE CALIBRATION TOWARDS RAPID NETWORK COMPRESSION 13

[30] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. Haq: Hardware-aware
automated quantization with mixed precision. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 8612–8620, 2019.

[31] Peisong Wang and Jian Cheng. Fixed-point factorized networks. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 4012–4020,
2017.

[32] Peisong Wang, Qinghao Hu, Yifan Zhang, Chunjie Zhang, Yang Liu, and Jian Cheng.
Two-step quantization for low-bit neural networks. In Proceedings of the IEEE Confer-
ence on computer vision and pattern recognition, pages 4376–4384, 2018.

[33] Zhaohui Yang, Yunhe Wang, Kai Han, Chunjing Xu, Chao Xu, Dacheng Tao, and Chang
Xu. Searching for low-bit weights in quantized neural networks, 2020.

[34] Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Christopher De Sa, and Zhiru Zhang. Improving
neural network quantization without retraining using outlier channel splitting. In ICML,
2019.

[35] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-
net: Training low bitwidth convolutional neural networks with low bitwidth gradients.
arXiv preprint arXiv:1606.06160, 2016.

