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Abstract

Data augmentation addresses the critical challenge of limited data in medical imag-
ing. While generative adversarial networks (GANs) have been a popular choice in syn-
thesizing medical images, controlled generation targeting disease-specific semantic has
been difficult, partly due to the difficulty to disentangle local disease-specific semantic
factors from global disease-irrelevant factors. In this work, we present a semantic im-
age editing framework for medical image augmentation that is able to generate smooth
variations along the desired direction of disease attributes in user-defined regions of in-
terest. This is achieved by discovering the optimal trajectory on the latent manifold of
a pre-trained StyleGAN, guided by a mask of the region of interest and explicitly con-
strained by desired directions of semantic changes. We test the presented method on the
public Chest X-ray dataset. To evaluate the quality of the generated medical images, we
leverage both domain experts (pulmonologists) for qualitative assessments and present a
novel metric to quantify the ability of the presented method to generate progression of
disease severity in the synthesized images. We also show that data augmentation using
the presented method improves downstream classification tasks.

1 Introduction
Limited labeled dataset is one of the fundamental challenge for generalization in medical
imaging [11] [24]. Data augmentation is a standard approach to increase the sample size for
achieving generalizable models. While generative adversarial networks (GANs) have been
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a popular choice in synthesizing medical images [3, 5, 6, 15, 16, 19, 20, 22, 25], controlled
generation targeting disease-specific semantic has been difficult.

Outside medical image augmentation, GAN-based semantic image editing techniques
have been presented to provide better control over the generated samples by, for instance,
traversing over disentangled latent space [8, 21, 27]. Most existing approaches, however, are
global: the generated variations can potentially affect all the pixels in the image, unless the
latent direction for traversing is perfectly disentangled to a specific semantic factor/region of
interest. The latter is unfortunately challenging in medical images. As a result, while suc-
cessful in application domains of creativity and design, GAN-based image editing has been
little considered for medical image augmentation. In [10], disentangled latent codes obtained
by variational autoencoders (VAEs) were exploited to manipulate physical attributes such as
torso rotation and lobe size in X-ray images of the lung. The generated images by VAE how-
ever were low in resolution, and disease-specific semantic factors were reported to be more
difficult to disentangle in comparison to global disease-irrelevant factors (e.g., global torso
variations). In [18], synthetic X-ray images were generated by linear latent space traversal
along a semantic direction but only for cardiac silhouette manipulation.

Most recently, generating only local variations was shown possible by optimization over
the latent manifold of GAN guided by a mask of region of interest in the image space [27].
This provides an excellent candidate to augment medical images incorporating high-level
domain knowledge of disease-related features or anatomy within the image. The current
approach, however, is not able to discover directions for traversal that can result in smooth
semantic changes in the image space. This is fundamentally because low-dimensional man-
ifold learned by GAN is non-linearly related to the image space [4]. As a result, uncon-
strained optimization in the latent space will introduce variations in image samples in all
possible semantic directions, even when guided by a mask of region of interest.

In this paper, we present a semantic image editing framework for medical image aug-
mentation that is able to generate smooth variations along the desired direction of disease
attributes in user-defined regions of interest in medical images. This is achieved by dis-
covering the optimal trajectory on the latent manifold of a pre-trained StyleGAN, guided
by a mask of region of interest and explicitly constrained by desired directions of semantic
changes specific to task-related variations. For the semantic directions, we choose the princi-
pal components that results in maximum variations along the given disease-related features.
We then use this disease-specific semantic direction to guide the search for the optimal tra-
jectory on the latent manifold of a pre-trained GAN, which achieves smooth and monotonous
changes in the desired disease-related image attributes. To evaluate the quality of the gen-
erated medical images, we leverage both domain experts (pulmonologists) for qualitative
assessments, and present a novel metric to quantify the ability of the presented method to
generate progression of disease severity in the synthesized images. Finally, we demonstrate
that data augmentation using the presented method improves generalization for downstream
tasks (e.g., classification). We test the presented method on the public Chest X-ray dataset
[14], and focus our analyses on two super-class disease categories of cardiomegaly and lung
opacity. To summarize, the main contributions of this work include:

• We present a semantic image editing framework for producing disease-aware varia-
tions in user-defined local region of interest.

• We present an approach to optimize a trajectory on the latent manifold by explicitly
controlling the latent-optimization via the semantic directions of task-related features.
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Figure 1: Schematic diagram of a semantic image editing framework via latent-optimization
in a user-defined local region of interest (green bounding box). The baseline latent opti-
mization method generates images (top sequence) with non-smooth changes. The presented
method generates images (bottom sequence) with smooth and monotonous changes along
the desired semantic directions (denoted by u).

• For clinical validation, we employ domain experts (pulmonologists) and a novel metric
to evaluate the ability of the presented method to generate disease progression

To our knowledge, this work is the first to generate medical image samples with disease-
aware and localized variations for improving a downstream task.

2 Methods

We begin with a generative model StyleGAN [23], denoted as G, to generate state-of-the-art
high-resolution images and to offer controllable and editable latent features [1].

2.1 Disease-Aware Latent Optimization Framework

We first start with latent optimization for a given generated image x (hereafter referred to as
reference image) within a user-defined localized region. For x, we obtain latent vector z in
W+ space for StyleGAN architecture, and use a subset of it for optimization purpose. In
this framework, our objective is to find optimal points zi,∀i ∈ {1...n} in the latent space of G
such that the generated image xi = G(zi),∀i∈ {1...n} exhibit variations within a user-defined
rectangular masked region M over x.

Let us define xM as the image formed by cropping the masked region and x∗M as its
complement image (i.e., unmasked region). Following previous work [27], our optimization
framework for each xi = G(zi) first comprises of image-space based objective:

LX (x,xi;M) = |D(xM,xi,M)− c|+D
(
x∗M,x∗i,M

)
(1)

where D can be any pixel-wise distance (e.g., L1, L2 or SSIM [26]). This objective helps
us find the latent points with up to c units of variation in the masked region through the first
term, while conserving the unmasked part through the second term. We then consider latent-
space based objective where we apply spring loss to the discovered points zi in order create

Citation
Citation
{{T. Karras}, {S. Laine}, and {T. Aila}} 2018

Citation
Citation
{Abdal, Qin, and Wonka} 2020

Citation
Citation
{Yang, Rokeby, and Snelgrove} 2020{}

Citation
Citation
{Wang, Bovik, Sheikh, and Simoncelli} 2004



4 SABOO ET AL: LATENT OPTIMIZATION BASED EDITING

smoothly varying image samples:

Lspring (Z;k) =
n−k

∑
i=1

(‖zi− zi+k‖2− kσ)2 (2)

where σ is the rest length of springs between each vector in series, encouraging smooth
variation and k is length of the series. Combining variants of Eq.1 and Eq. 2, for a given
reference latent vector z, and masked region M, we get the following optimization objective:

Z̃ = argmin
Z

α

n

∑
i=1
LX (x,xi;M)+βLspring (Z;1)+ γLspring (Z;2) (3)

where α,β ,γ are the hyper-parameters. Optimization of objective function in Eq. 3 leads to
discovery of latent points with irregular variations in the masked region (demonstrated later
in the experiments) due to lack of information about the direction of the latent trajectory.
Therefore, in order to have controlled variations, we propose to include the direction of the
disease-specific variations in the optimization process.

Disease-Specific Semantic Directions: We identify important latent directions based on
Principal Component Analysis (PCA) applied on the latent representation of generated im-
ages to control latent-optimization semantics. We manually analyze each of the principal
components (PC) individually, and choose the PC that results in maximum variations along
the given disease-related features (e.g., increase in heart size for cardiomegaly). We denote
this direction as u. These principal components span the major variations expected in the
medical images, and often the latent factors are entangled together. This phenomenon has
been observed in the previous work, where principal components from StyleGAN have re-
sulted in the entanglement of facial attributes like gender and head rotation [13]. Although
it is desirable to have perfect disentangled directions, in our case we will show that it is not
necessary because these directions work only as a constraint during latent optimization.

Directional Latent Optimization: In order to guide the latent trajectory, we assume that
proper samples (which incur changes only in the masked region) lie in the neighborhood of
the entangled directions. Toward this, we add an angular margin loss [9] to follow latent
trajectory in the vicinity of the computed direction u. Formally, let the reference vector be
denoted as z and vectors to be optimized be denoted as zi ∀i ∈ {1, ...n}. We then compute
vi =

zi−z
|zi−z| and compute the following loss:

Langle =
1
n

n

∑
i=1

arccos(vi ·u)−θ
′

(4)

where θ
′
is the offset parameter. This loss encourages the optimization to stay in the vicinity

of the linear trajectory along the entangled direction. Overall we combine Eq. 4 with latent
optimization of Eq. 3 to achieve directional latent-optimization. Throughout this paper, we
consider latent-optimization without direction as a baseline and refer to it as Baseline LO,
while referring the presented method as LO + direction.

2.2 Metric for Assessing Disease Progression in Generated Images
Within computer vision literature, metrics like Frechet Inception Distance (FID) [12] are
commonly used to assess the overall quality of generated images by a generative model.
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Figure 2: Schematic of the proposed method pipeline demonstrated into three stages. STAGE
1: Training and sampling from StyleGAN, STAGE 2: Manual analysis of PCs inW space,
and STAGE 3: Computing coordinates (manually or with the help of an off-the-shelf lung
segmentor) and using the proposed method for image editing.

These metrics, however, are not suitable for evaluating minor, localized changes related to
disease progression in the images, as in our framework. In this work, we are motivated by
clinical metrics used for disease quantification, such as nonlesion lung volume (NLLV) (lung
volume - lesion volume) [7] and Computed Tomography (CT) severity score [28] which
fundamentally consider the ratio of abnormal to normal parts of the lung in order to provide
a reliable estimate of disease severity. While these clinical metrics are traditionally defined
for a single image, we extend them to a multi-image setting: specifically, we present a Pixel-
Variation(PV) metric to quantify the progression of specific diseases in user-defined region
of interest in an ordered sequence of generated images. We incorporate the following two
objectives into the design of the PV metric:

1. Smoothness: The sequence of images generated from the optimized latent space
should vary to a small degree.

2. Monotonicity: The changes taking place in the sequence of images should be in only
one direction i.e., either increase or decrease in pixel values.

For a sequence of generated images xi ∀i ∈ {1, ..n}, we first calculate two quantities
di

cmap = xi - xi−1 and di
rmap = xi - xref, respectively denoting consecutive difference map and

reference difference map,where xref = x1. Using these two pixel maps, we then separately
calculate the average of positive and negative pixel values resulting in four scalar values:
di

c+, di
c−, di

r+, and di
r−. Since we want change to happen only in the localized region, any

changes happening outside the mask are treated negatively. Using these four scalar values,
we then measure smoothness S and monotonicity M as:

S =
1
n

n

∑
i=1
|di

c+|+ |di
c−| and M =

1
n

n

∑
i=1

di
c++di

c−+di
r++di

r−

We want S to be as small as possible as it accounts for the absolute change in the consec-
utive images in the trajectory. As M captures the difference between the successive image
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Figure 3: Comparison of LO + direction in the last two rows against Baseline LO in the first
two rows. The direction (obtained via PCA analysis) used for the presented framework is
demonstrated in the middle row using linear translation. Row 3 corresponds to [13].

and the reference image, we want it to be as large as possible. As such, our proposed metric
PV is defined as the ratio between these two terms, i.e., PV = M

S .

3 Experiments
We consider publicly available CheXpert dataset [14] for this study. This dataset contains
224,316 chest radiographs of 65,240 patients. With this dataset, we train state-of-the-art
StyleGAN model[23] using all the samples except lateral images. We then use the presented
latent-optimization framework to semantically edit X-ray samples with two super-class dis-
ease categories of cardiomegaly (enlarged cardiac size) and lung opacity (e.g., consolidation,
pneumonia, etc.)[2]. Implementation details can be found in the supplementary material
(Section 1). Fig. 2.1 demonstrates the overview of the proposed pipeline.

3.1 Image-Editing Quality
In this section, we provide image quality assessment using expert clinical evaluation and
quantitative evaluation using the proposed PV metric. We begin with the qualitative results.
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Reference point

Reference point

Baseline LO LO + direction

Figure 4: UMAP of latent trajectory for lung opacity for Baseline LO (left) and the presented
LO + direction (right).

3.1.1 Qualitative Analysis

We demonstrate the capacity of our presented latent optimization framework in Fig. 3. In
the first column, we present the reference image. In the rest of the columns, we demonstrate
the sequence of generated samples after semantic editing in the pre-defined localized region
(green bounding boxes). Unlike most of the work often seen in medical imaging literature
[3, 6, 15, 16, 19, 25], the generated samples in this work are of high-quality with clear
chest and shoulder anatomy. We present results from the Baseline LO for cardiac size and
lung opacity in the first two rows. Although variations are captured in the localized region,
these variations are not controlled. As such, we observe irregular variations (e.g., random
increase or decrease in the heart size in the first row). In comparison, with the presented LO
+ direction (in the last two rows), we see a smooth variation for both cardiac size and lung
opacity. This allows us to use these edited samples directly as the augmented samples for the
respective disease category without manual labeling simply by choosing the last points of
the sequence as the monotonicity is maintained. In the third row, we show images generated
via linear translation along the directions used to guide the latent optimization As shown,
this direction is not perfectly disentangled with variations in both the left and right lobe.
Yet, with LO + direction, we can use it to guide our latent-optimization for the respective
localized region in each lobes. For other qualitative results, please refer to the provided
supplementary material (Section 2).

In Fig. 4, we visualize the trajectory of the latent vectors using UMAP [17] where, com-
pared to the zig-zag path taken by the Baseline LO, the presented LO + direction maintains
a coherent trajectory in the latent space.

In our experiments, we also observe that the naive application of Baseline-LO may result
in random and objectionable variations irrelevant to the disease of interest. We present one
such case in Fig. 5 where cardiac silhouette manipulation leads to collapse of the lung lobe,
and the image quality crumbles using Baseline LO. The presented LO + direction maintains
the quality of images and monotonous increase in the cardiac size for the same sample.

3.1.2 Clinical Evaluation

For the clinical evaluation, we selected 25 random images from two groups based on the
region of interest. The first group represents the bottom region on the left lobe for obtaining
cardiomegaly samples, and the second group represents different regions around the X-ray
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Figure 5: Comparison of the irrelevant variations resulted with Baseline LO (first row)
against plausible result from LO + direction (bottom row).

Table 1: Clinical evaluation: First and second column shows the percentage of correctly
classified images for each disease category. The third column shows the mean and standard
deviation of the overall quality rating (between 1-5) of all images.

Cardiomegaly Opacity Quality rating
Pulmonologist’s response 92.00 % 96.00 % 3.60 ± 0.67

for obtaining opacity samples. In total, we presented these 50 samples to a board-certified
pulmonologist to review the images for features appropriate to two super-class disease cate-
gories, namely cardiomegaly and lung opacity, classify them in either or both of the classes,
and rate the overall quality of the X-ray on a scale of 1-5 (the higher the better).

We present the overall clinical assessment in Table 1, and posit that the edited samples
resulted from our framework has a meaningful clinical interpretation. In Fig. 6, we present
several examples presented to the pulmonologist along with their ratings. As we can see,
the synthetic images show similar characteristics to real images, showing enlarged cardiac
silhouette in the case of cardiomegaly and opacity in the right lower lobe. This posits that
the synthetic images have well-grounded localized changes and can be reliably used for
downstream tasks.

3.1.3 Quantitative Results

Table 2 presents the obtained results from the presented PV metric for the Baseline LO
compared to the presented LO + direction. Note that a higher value of PV metric means
the generated samples are of the desired quality and monotonicity. Each value represents
the mean of the PV metric obtained from 50 different normal images subjected to the latent
optimization to generate 12 semantically edited images. Since each image’s disease region
could be located differently, we manually define each image’s bounding box. We analyze
the metric for 3 different spring-length values (σ ) and found that a lower σ value is better
suited for the Chest X-ray dataset. For σ values less than 1.0, we get better samples with
the presented LO + directions, compared to the Baseline LO for both cardio (representing
cardiac size) and lung opacity disease type. The FID value for 50K generated images is 50.2

3.2 Downstream Application: Chest X-ray Classification
To understand the effect of the synthesized sample, we consider the downstream application
of chest X-ray classification. Since we primarily focused our analyses on two super-class dis-
ease categories of cardiomegaly and lung opacity, we create an experimental setup first for
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Figure 6: Example of synthesized samples (S) presented to the board-certified pulmonolo-
gist along with the real samples (R) from the CheXpert dataset. (a) Cardiomegaly-R;(b)
Cardiomegaly-S;(c) Opacity-R;(d) Opacity-S. Markings in the figure are for demonstration
purposes only.

Table 2: Quantification of variations in the generated images using PV metric.
Spring-length Model-type Disease-type

Cardio Opacity
σ = 0.3 Baseline LO 0.017 ± 0.37 0.019 ± 0.27

LO+directions 0.51 ± 0.20 0.44 ± 0.14
σ = 1.0 Baseline LO -0.05 ± 0.41 -0.03 ± 0.34

LO+directions 0.32 ± 0.24 0.29 ± 0.16
σ = 2.0 Baseline LO -0.12 ± 0.14 -0.15 ± 0.19

LO+directions 0.11 ± 0.22 0.14 ± 0.19

three-way classification between normal X-ray (N), cardiomegaly (C), and opacity (O). We
consider 10K real samples for the normal image and 1K and 5K real samples for the disease
category. To investigate the benefit of generated samples, we augment 5K semantically-
edited samples (via LO + direction) to the real samples. We compare the presented approach
with two different settings: using only real samples and using commonly used random aug-
mentation techniques (rotation, shearing, Gaussian blur, horizontal and vertical flip) to create
another augmented set of 5K images. The classification results as presented in the second
column of Table 3 clearly demonstrate the benefits of augmented samples. Furthermore,
we combine the effect of samples synthesized from our framework and the random aug-
mentation (2.5K samples from each category) and observe the performance to be better to
using random augmentation samples alone. This may suggest these two approaches can be
combined for further improvement in the generalization performance. We further consider
two-way classification between N and C and between N and O. The results are presented in
the third and fourth column of Table 3. As before, the benefits of augmenting the synthe-
sized samples can be observed. Note that each value in Table 3 represents mean and standard
deviation over four runs with random-seed selection. We consider the same validation and
test set for each experimental setup (or each column).

3.3 Ablation Studies

In our experiments, we found σ to be the most important hyper-parameter, therefore we
present the ablation study on the effect of different values of σ for different classification
cases in Table 4. We observe that although σ = 1.0 performs better than random augmenta-
tions, it performs lower than σ = 0.3 and is statistically insignificant in some cases . Ablation
of the σ for quantifying variations in the generated images using PV metric is provided in
Table 2. For all the analyses, we obtain the best results with σ = 0.3 and θ

′
= 35◦.
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Table 3: Mean AUROC for three-label classification (normal, cardiomegaly, and opacity)
in the first column, and AUROC for binary classification in the second (normal vs. car-
diomegaly) and third (normal vs. opacity) column. 5K Aug. refers to the 5K synthesized
samples augmented while training the classifier. Values in bold are statistically significant
with 95% confidence w.r.t values for random augmentation.

10K Normal + (↓) N vs. C vs. O N vs. C N vs. O
1K Disease 75.64 ± 0.25 88.49 ± 0.22 87.73 ± 0.43
1K Disease + 5K Aug.(rand) 75.78 ± 0.29 88.43 ± 0.38 87.90 ± 0.32
1K Disease + 5K Aug. (ours) 76.60 ± 0.24 89.01 ± 0.21 88.60 ± 0.39
1K Disease+5K Aug.(ours+rand) 76.01 ± 0.22 88.83 ± 0.24 88.10 ± 0.34
5K Disease 77.28 ± 0.24 90.01 ± 0.15 90.92 ± 0.21
5K Disease + 5K Aug.(rand) 77.24 ± 0.31 90.10 ± 0.25 91.05 ± 0.25
5K Disease + 5K Aug. (ours) 77.96 ± 0.22 91.13 ± 0.12 91.80 ± 0.16
5K Disease +5K Aug.(ours+rand) 77.52 ± 0.21 90.64 ± 0.29 91.44 ± 0.35

Table 4: Mean AUROC for different values of σ . Values in red are statistically insignificant
with 95% confidence w.r.t their corresponding random augmentation values in Table 3

10K Normal + (↓) N vs. C vs. O N vs. C N vs. O
σ = 0.3 1K Disease + 5K Aug.(ours) 76.60 ± 0.24 89.01 ± 0.21 88.60 ± 0.39

5K Disease + 5K Aug.(ours) 77.96 ± 0.22 91.13 ± 0.12 91.80 ± 0.16
σ = 1.0 1K Disease + 5K Aug.(ours) 76.41 ± 0.27 88.90 ± 0.24 88.31 ± 0.23

5K Disease + 5K Aug.(ours) 77.80 ± 0.21 91.01 ± 0.28 91.51 ± 0.19
σ = 2.0 1K Disease + 5K Aug.(ours) 74.20 ± 0.34 87.1 ± 0.41 85.90 ± 0.23

5K Disease + 5K Aug.(ours) 75.11 ± 0.21 88.61 ± 0.23 89.30 ± 0.28

4 Conclusion
In this paper, we present a semantic image editing framework via latent-optimization with
explicit semantic directions for medical image augmentation producing disease-aware vari-
ations in the user-defined region of interest. We demonstrate the benefits of the presented
framework via the augmented samples, which we analyzed qualitatively, clinically and quan-
titatively using the presented novel PV metric, by improving the performance of a down-
stream disease classification task. Finally, finding a suitable disentangled direction for se-
mantic editing is an active area in medical imaging. We believe this framework also provides
a stride in this direction. Future research could include studying disease progression by con-
sidering smooth variations of augmented samples generated by our framework.

While the proposed method demonstrated some benefits in medical imaging, it does
comes with some limitations. First, it assumes that StyleGAN can generate a diversity of
images. StyleGAN may have trouble discovering points that can generate latent images
with the desired changes in the masked region if trained with a truncation trick. Second the
latent optimization has a high run time, taking up to a minute till convergence, a significant
hurdle for large-scale adoption. Third, the performance of the proposed pipeline depends on
whether the latent point is placed in a well-behaved region of the latent space. This limitation
could cause an unwanted artifact in the generated images due to the discovery of suboptimal
latent points. One such example can be observed in Fig. 3 (row 4), which has a bright
circular region on the upper left lobe as artifacts. Such ill-positioned latent points may also
hamper the overall optimization as well such as negligible changes in the masked region.

Overall, addressing these challenges could be an interesting future avenue.
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