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Abstract
Single image deraining is a fundamental pre-processing step in many computer vi-

sion applications for improving the visual effect and analysis performance of subsequent
high-level tasks in adverse weather conditions. This study proposes a novel multi-scale
residual aggregation network, to effectively solve the single image deraining problem.
Specifically, we exploit a lightweight residual structure subnet with less than 10-layers
as the deraining backbone network to extract fine and detailed texture context at the orig-
inal scale, and leverage a multi-scale context aggregation module (MCAM) to augment
the complementary semantic context for enhancing the modeling capability of the overall
deraining network. The designed MCAM consists of multiple-resolution feature extrac-
tion blocks to capture diverse semantic contexts in different expanded receptive fields,
and conducts progressive feature fusion between adjacent scales with residual connec-
tions, which is expected to concurrently disentangle the multi-scale structures of scene
content and multiple rain layers in the rainy images, and capture high-level represen-
tative feature for reconstructing the clean image. Moreover, motivated by the fact that
the adopted pooling operation and activation function in deep learning may considerably
affect the prediction performance in high-level vision tasks such as image classification
and object detection, we delve into a generalized pooling and activation method taking
into consideration of the surrounding spatial context instead of pixel-wise operation and
propose the spatial context-aware pooling (SCAP) and activation (SCAA) for incorpo-
rating with our deraining network to boost performance. Extensive experiments on the
benchmark datasets demonstrate that our proposed method performs favorably against
state-of-the-art (SoTA) deraining approaches.

1 Introduction
Visibility degradations arising from adverse weather such as rain, haze, and fog, significantly
affect the quality of the captured images and lead to great loss of the desirable information
for different computer vision applications, where the accurate surrounding context is indis-
pensable to provide acceptable performance in real vision systems such as aerial robots,
autonomous vehicles and surveillance [1]. To conquer adverse effect of the deteriorated im-
ages on the vision systems, removal of the existed rain, raindrop, or haze in the contaminated
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observation is a fundamental and important low-level vision task and has been extensively
studied in recent years [2, 3, 4, 5, 6].

With the simple assumption of the linear mapping transformation for rainy image com-
posite model, the observed image: O is generally expressed as a linear summation of the
clean rain-free background: B, and the rain layer: R:

O = B+R (1)

The goal of deraining is to recover the clear image B from O via removing R. Since the
variable number in the under-estimating components: B and R are much larger than those
in the single observation, there exist infinite feasible solutions, and causes it to be a highly
ill-posed problem. To restrict the solution space to valid/natural image recovery, traditional
methods [4, 7, 8, 9, 10] leverage various handcrafted priors based on empirical observations
to regularize the linear mapping transformation model and employ effective optimization
strategy for robust image recovery. Although these prior-based methods illustrate acceptable
deraining performance to some extent under controlled conditions, they usually smooth out
the texture and edge details, and then cause the blurred image results. Furthermore, these
methods require to conduct optimization procedure for each under-studying image, which
has a high time consumption.

Recently, motivated by the great success of the deep convolutional neural network (DCNN)
on image classification [11, 12, 13], object detection [14, 15, 16] and semantic segmenta-
tion [17, 18, 19], DCNN has widely applied for single image deraining as learning based
paradigm [5, 8, 20, 21, 22, 23]. Benefiting from the great modeling capability and the
stronger feature representation ability, the DCNN-based learning methods demonstrate re-
markable performance progress for image deraining. Current effort mainly focus on design-
ing deeper and complicated network architectures to pursue better deraining performance,
and many work manifests superior deraining results with the elaborated network structure
and advanced optimization (training) strategies. However, network evolution in depth and
complexity unavoidably leads to substantial difficulty for practical implementation and ro-
bust model training, and also greatly increase inference time. Moreover, most current CNN
models serially pile up plenty of convolutional blocks (Conv layer and activation function
pairs) to learn representative features, and the increased deep stage possibly capture seman-
tic context in large respective field. However, these deep serially connected network cannot
explicitly capture the multi-scale features and context for different layers of rain, which
is the latent attributes of the existed rain in observation. To handle this issue, several re-
searchers [24, 25, 26] propose to leverage multi-scale deep framework for modeling rep-
resentative features in multiple layers of rain and rich structure in the latent clear image.
Unfortunately, these exploitations basically design several branches of subnets for capturing
different scales of contexts, and thus result in more complicated network architectures and
large model size. Moreover, current deraining work concentrates on pursuing the efficient
connections among different convolutional blocks while the activation function and pooling
operation [27, 28, 29, 31, 32], which have been proven to be a important aspect affecting
vision task performance [33, 34, 35] , are usually un-touched and simply follow the strate-
gies designed for high-level vision tasks. As we know that the common activations such as
ReLU [27], LeakyReLU [28] and PReLU [29] usually operate on individual feature value
without consideration of the surround context, and similarly the popular pooling strategy
such as max pooling [31] naively take the maximum value regardless to the overall state in
the target region. Although these activation and cooling functions demonstrate superior per-
formance in the high-level vision tasks, where most existing vision systems are developed
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for dealing with the clear images without heavy deterioration by adverse weather, it is dif-
ficult to profess that they would be suitable for the low-level image restoration task. With
the rainy images as the inputs to the deraining network, the learned features are avoidably
deteriorated by some artifacts, and thus operations on the individual feature values without
taking account of surround context as in conventional activation and pooling would greatly
degrade the learning capability and the deraining performance.

To overcome the above limitations, this study proposes a novel multi-scale residual ag-
gregation deraining network (MRADN) with spatial context-aware pooling and activation.
We adopt a lightweight residual structure with no-so-many convolutional blocks as the de-
raining backbone for reducing computational cost, which focus on extracting the fine and
detail texture context at the original scale. Whilst regard to the vital global semantics in
the under-studying image, we exploit a multi-scale context aggregation module (MCAM) to
augment the complementary semantic features for enhancing the modeling capability of the
overall deraining network. Specifically, the proposed MCAM is composed in an encoder-
decoder structure with multiple-resolution feature learning blocks to capture multi-scale tex-
ture and semantic contexts in diverse receptive fields. The multi-scale architecture of the
MCAM is expected to concurrently disentangle the multi-scale structures of scene content
and multiple rain layers in the rainy images. With the learned diverse features in both encode
and decoder paths, we further conduct progressive fusion between the corresponding scale
blocks of encoder-decoder paths and the adjacent-scale blocks using simple skip connections
to capture high-level representative feature for reconstructing the clean image. Moreover, to
suppress the potential affect of the noise and artifact on the learned feature maps with the
to-be-removed rainy input, we delve in an artifact-attenuating pooling and activation method
by taking consideration of the surrounding spatial context instead of pixel-wise operation,
and propose the spatial context-aware pooling (SCAP) and activation (SCAA) for incor-
porating with our deraining network to boost performance. We conducted experiments on
several benchmark datasets under different types of rains, and demonstrate the significant
superiority of our method over SoTA CNN-based deraining method.

In summary, our main contributions are three-fold:
1) A novel multi-scale residual aggregation deraining network, i.e. MRADN is proposed,

where the lightweight residual backbone extracts fine and detail context in the original scale
while a multi-scale module learns the semantic context to complement the deficient informa-
tion in the deraining backbone.

2) We design a novel multi-scale context aggregation module (MCAM) for disentangling
the multi-scale structures of scene content and multiple rain layers in the rainy observation,
and conduct not only the intra-module context aggregation but also integrate the aggregated
multi-scale features captured in MCAM into the backbone for boosting deraining perfor-
mance.

3) We propose a novel artifact-attenuating pooling and activation method via taking
into account of the surrounding spatial context, dubbed as the spatial context-aware pooling
(SCAP) and activation (SCAA), which is expected to be integrated into any deep learning
network architecture only the available noisy input only for boosting performance.

2 Proposed multi-scale residual aggregation network
2.1 Overview
In this section, we detail the proposed multi-scale residual aggregation deraining network
(MRADN). MRADN mainly consists of the residual backbone architecture, which is com-



4 K. YAMAMICHI, X-H. HAN: MRAD NETWORK

Figure 1: Conceptual architecture of our proposed MRADN.

posed with multiple residual blocks for extracting the representative features of the original
resolution (0-order scale), and the multi-scale context aggregation module (MCAM), which
is configured with encode-decoder structure to extract multi-scale contexts for augmenting
the complementary modeling capability of the backbone. Moreover, in all blocks of the
backbone and MCAM, we integrate the proposed spatial context-aware pooling (SCAP) and
activation (SCAA) for emphasizing the essential features while attenuating the contaminated
ones by noise or artifact instead of the conventional pooling and activation layers with point-
wise operations. The conceptual structure of our proposed MRADN is shown in Fig. 1. As
illustrated at the top-branch of Fig. 1, the residual backbone contains the shallow block with
two convolution layers, the early-term module with four residual blocks, the late-term mod-
ule with four residual blocks and a final reconstruction block with one convolution layer. In
detail, the residual block consists of two convolution layers with kernel size 3×3 following
the spatial context-aware activation after each, and then conducted element-wise addition
with the input feature map as the output. The detail structure of the residual block is given
in Fig. 1.

In overall, an input rainy image first passes through two shallow convolution layers fol-
lowing a SCAA function after each layer to transform the channel dimension from image to
feature, and then the transformed features are inputed into early-term residual module to fur-
ther extract more representative contexts at the 0-order scale of the input. Whilst the output
of the early-term module is imported to the proposed MCAM with encoder-decoder structure
for extracting multi-scale contexts involving information of diverse receptive fields, which is
expected to disentangle the confused rain streaks and scene content in the observation, and
further are progressively aggregated for being forwarded back to the residual backbone. At
last, the late-term residual module and reconstruction block are seriealy adopted to trans-
form the fused features of the early-term module and MCAM to the clear image. Next, we
would describe the multi-scale context aggregation module (MCAM) and the proposed spa-
tial context-aware pooling and activation layer for mining essential feature while attenuating
noise.

2.2 Multi-scale context aggregation module

Motivated by the possible existence of the multiple decomposed rain layers especially un-
der heavy rain conditions and aplenty of scene contents with diverse scales, the multi-scale
representative context learning are preferred for reconstructing more robust clear images.
As described above, the backbone network in MRADN aims to learn the detail contexts at
0-order scale (the original resolution of the input) with multiple residual blocks while cannot
capture more discriminative contexts for distinguishing the rain structures and scene con-
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tents in large scale. Thus, this study investigates a multi-scale context aggregation module
(MCAM) with encoder-decoder architecture to exploit and disentangle the confused rain
and scene structures for extracting the discriminating and essential representation features.
Specifically, the MCAM operates as a plug-and-play module to learn the complementary
discriminating features with the extracted detailed contexts in the backbone network, and
then automatically aggregate the essential contexts in different scales to be forwarded to the
backbone again for reconstructing the clear image.

Without bells and whistles, we integrate the MCAM after the early-term module of the
backbone network. In detail, given the output Xe of the early-term module, MCAM first
adopts the spatial context-aware pooling (SCAP) to down-sample the representative features
at the 0-th order scale to the first-order scale of feature X1

i = fSCAP(Xe), which is the input
to the first-order scale of the encoder path. In overall, both encoder and decoder paths in
MCAM are divided into S blocks, and each block contains 3 convolution layers with 3*3
kernels following the proposed spatial context-aware activation function after each layer.
The channel number of the learned feature maps is block-wisely doubled while the spatial
size is halved with the scale increasing in both encoder and decoder. The detail structure of
the MCAM is shown in the light-blue background part of Fig. 2.

Let’s denote the input and output of the s− th order scale block in the encoder path as Xs
i

and Xs
o, and in the decoder as Ys

i and Ys
o, respectively, the relation of the input and output of

the s− th scale block can be formulated as:

Xs
o = FConv(Xs

i ,θ
s
X ),Y

s
o = FConv(Ys

i ,θ
s
Y ) (2)

where fConv(·) represents the transformation function of 3 convolution-activation layers with
the learned parameters θ s

X and θ s
Y , respectively. The input of the (s+1)− th scale block in

the encoder path is a down-sampled version from the output Xs
o of the s− th scale block via

the proposed SCAP, and is expressed as:

Xs+1
i = FSCAP(Xs

o) (3)

where Xs+1
i has the half size in spatial direction and double channel number of Xs

o. Whilst
the input of s− th scale block in the decoder path is the fused context from the outputs of
the s− th scale block in the encoder path and the up-sampled output of the (s+1)− th scale
block in the decode path, which is formulated as:

Ys
i = fCat [Xs

o, fUP(Ys+1
o )] (4)

where fCat(·) denotes the simple concatenation operation for aggregating the feature maps
in the corresponding scale of the encoder path and the previous larger scale of the decoder
path while fUP simply conduct bilinear up-sample operation. From Eqs. 3 to 4, the feature
maps in adjacent scale blocks of the encoder path are connected using the SCAP module,
and input feature maps in the decoder path are obtained by progressively aggregating the
feature in the previous larger scale with the features in encoder. Thus, the final output Y1

o of
the first-order scale block in the decoder path would own the aggregated multi-scale contexts
with diverse receptive fields. At last, Y1

o is up-sampled to the resolution of the 0− order
scale for augmenting the complementary representation of the backbone network, which is
aggregated with learned feature maps Xe of the early-term module as:

X̄e = fCat [Xe, fUP(Y1
o)] (5)

where X̄m represents the input to the late-term module of the backbone network.
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2.3 Spatial context-aware pooling

As introduced in section 2.2, the feature maps in the s−order scale of the MCAM’s encoder
path are required to be spatially reduced (usually half size) for extracting representative
context in larger receptive fields. The generic method for decreasing spatial size in most
high-level vision tasks such as image classification and object detection popularly adopt the
average or max pooling layer and their variants, and verify impressive performance in dif-
ferent applications with the clear inputs. The conventional pooling methods simply conduct
comparison on multiple values of a local spatial region without taking into account of the
possible contamination by noise. However, in our under-study deraining scenario, the inputs
are the rainy images, and thus may lead to the learned feature maps in the network to be
polluted by worthless artifact.

This study aims to exploit a spatial context-aware pooling strategy to decrease influence
of the noise on the spatial size reduced maps. Specifically, with a feature map X ∈ℜW×H×C,
we want to aggregate multiple features in a spatial local region to produce a more compact
representation. The widely used max pooling layer simply takes the maximum value to
capture most salient activation such as giving one maximum of 4 activations in a 2×2 local
region. Although the compact feature reflects the active status of a local region, it may
be activated by the unwanted interference such as the rain streak in our deraining scenario.
Instead of conducting max operation by comparison of the individual values, we firstly adopt
a convolution layer with kernel size 2× 2 and stride 2, which aggregates the features of
the local region with a learnable weights into one representative activation, and produce a
compact representation X̂ ∈ℜW/2×H/2×C as follows:

X̂ = fk2s2(X) (6)

Moreover, to integrate more spatial contexts in a larger scale, we further exploit a depth-
wise convolution layer with kernel size 3× 3 on X̂, and then conduct element-wise max
operation on X̂ and its depth-wise convoluted feature maps, which is formulated as follows:
.

X̃ = max(X̂, fDW (X̂)) (7)

where X̃ ∈ℜW/2×H/2×C is the resulted compact feature maps with our proposed SCAP. The
conceptual structure of the SCAP is shown in the light-green background part of Fig. 1.

2.4 Spatial context-aware activation: SCAA

Activation function is an essential component in the modern CNN network, and our derain-
ing network also employs activation layers after all convolution layers. Thus, an effective
activation function for the low-level vision task with the noisy inputs such as confused rain
streak in the inputs would be critical aspect to affect deraining performance. Given the
feature map Xc extracted by a convolution layer, the widely used ReLU activation simply
maintains the positive features and sets all negative features as zero, which cannot fully ex-
plore the surrounding spatial context to produce a robust activation, and is mathematically
expressed as:

XReLU = max(Xc,0) (8)

where 0 denotes a matrix of the same size with Xc, and all elements are 0. To incorporate the
surrounding context into consideration, our SCAA firstly adopts a depth-wise convolution on
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Xc to produce spatial context aggregated feature map: fDW (Xc), and then conduct element-
wise max operation on Xc and fDW (Xc), as shown in the magenta background part of Fig. 1.
The formula of the SCAA is expressed as

XSCAA = max(Xc, fDW (Xc)) (9)

We integrate the proposed SCAA in all convolution blocks of our deraining network.
Since only one depth-wise convolution layer is additionally acquired, the parameter increas-
ing due to the SCAA can be neglected compared with the overall network’s parameters.

3 Experimental Results
In this section, we will conduct extensive experiments to demonstrate the effectiveness of
our proposed multi-scale residual aggregation deraining network. we first introduce the ex-
perimental setting including the used datasets, evaluation metrics and detail implementation,
and then provide the comparisons with the state-of-the-art deraining methods and ablation
study.

Table 1: Average PSNR and SSIM comparison on the synthetic datasets Rain1200,
Rain200L, Rain200H, and Rain800. Red and blue colors are used to indicate top 1st , 2nd

performance.
Methods Rain1200 Rain200L Rain200H Rain800 #.ParametersPSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Rainy 23.64 0.727 26.71 0.834 13.79 0.367 22.18 0.663 -
DDN[5] 23.39 0.832 34.46 0.957 26.11 0.792 22.78 0.803 58,175
DIDMDN[36] 29.66 0.899 35.40 0.962 26.61 0.824 22.53 0.812 135,800
RESCAN[41] 30.54 0.879 36.09 0.970 26.75 0.835 24.99 0.830 499,668
UMRL[42] 30.57 0.909 33.83 0.957 23.01 0.744 24.99 0.869 984,356
PReNet[43] 31.49 0.910 37.25 0.978 28.57 0.887 24.79 0.849 168,963
SPANet[44] 31.94 0.902 35.79 0.965 26.27 0.865 22.41 0.838 283,716
MSPFN[25] 32.06 0.913 31.64 0.925 27.39 0.843 27.01 0.851 15,823,424
MPRNet [45] 32.94 0.914 35.72 0.962 29.49 0.887 29.61 0.874 3,637,249
MCGKT-Net[46] 32.91 0.916 37.13 0.973 28.71 0.873 28.73 0.868 14,761,155
MRADN 34.33 0.931 39.44 0.985 29.69 0.900 29.66 0.897 8,306,051
LW-MRADN (Common) 32.65 0.919 36.13 0.974 28.65 0.871 28.97 0.879 3,420,547
LW-MRADN 34.76 0.937 39.54 0.986 29.92 0.904 29.70 0.896 3,420,547

3.1 Experimental setting
Datasets: We carry out experiments on three deraining datasets: Rain1200 [36], Rain200L [37],
Rain200H [37], and Rain800 [38]. Rain1200 dataset includes 12000 images for training and
1200 images for testing, and the rainy images are generated with different levels of rainy
density under light, medium and heavy rain conditions. The images in Rain200L has light
rain and is relatively easy dataset. The training subset contains 1800 image pairs and the
test subset has 200 images. Rain 200H has the same number of training and testing images
but being contaminated by more heavy rain with different shapes, directions, and sizes, and
thus is the most challenging dataset in deraining community. Rain800 consist of in total
800 images with 700 rainy/clean pairs as the training samples and the remainders as testing.
The rainy images in Rain800 are synthesized by adding fine rain streak to the clean images
following the guidelines mentioned in [20], and have the fine-grained streaks with noise-like
structures.

Evaluation metrics: We adopt two commonly used evaluation metrics: i.e. peak signal
to noise ratio (PSNR) and structure similarity index (SSIM [39]) to assess the performance
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Figure 2: Qualitative comparison with the state-of the-art methods. The first to forth rows
are the results of four images from the synthetic datasets while the fifth row manifests the
recovered results of a real rainy image [6] without the corresponding ground-truth image.

of our deraining method quantitatively. SSIM evaluates the image structure difference and
is more consistent with human perceptual measure. Note that as the human visual system is
sensitive to the Y channel of a color image in YCbCr space, we calculate PSNR and SSIM
with the converted luminance (Y) channel only.

Training details: We use Keras with TensorFlow backbend to train and test our proposed
method. In the training process, we crop 256× 256 patches from the training samples, and
adopt Adam [40] to optimize our network. The networks are trained with 500 epochs and
the learning rate is set as 2×10−4. The MAE between the network reconstructions and the
ground-truth clear images is used as the loss function for network training.

3.2 Evaluation comparisons with state-of-the-art

We compare our proposed MRADN with the state-of-the-art methods, including deep de-
tail network (DDN) [5], density-aware deraining (DIDMDN) [36], recurrent squeeze-and-
excitation context aggregation net (RESCAN) [41], progressive deraining network (PreNet)
[43], spatial attentive network (SPANet) [44], multi-scale progressive fusion network (MSPFN)
[25], multi-stage progressive restoration network (MPRNet) [45], and multi-level context
gating knowledge transfer network (MCGKT-Net) [46].

The deraining models are separately trained with the training pairs in the datasets: Rain200H,
Rain200L, Rain800 and Rain1200, and the quantitative results are calculated with the learned
model under the corresponding dataset, respectively. The quantitative metrics of our and the
compared deraining methods are manifested in Table 1. It is obvious that our proposed
MRADN has illustrated the highest SSIM and PSNR in all datasets. Compared with the
state-of-the-art methods, our approach achieves a great improvement over most methods. In
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Figure 3: The compared feature maps using the conventional pooling/activation and the
proposed SCAA/SCAP.

addition, it can observe that our proposed model needs more parameters than some SoTA
methods, which are resulted from MCAM according to our analysis. Thus, to decrease the
model parameters, we replace the vanilla convolution layers in the MCAM using the Ghost-
Conv layer [47], and exploited a lightweight MCAM to form our LW-MRADN. The com-
pared performance and model parameter are also illustrated in Table 1, which demonstrates
that LW-MRADN can achieve better performance than the model with similar size such as
(MPRNet) [45]. In addition, to produce a common model with high generalization capabil-
ity, we further combined different types of rain image datasets to train our LW-MRADN,
named as LW-MRADN (Common), and then recover the clear images for all four datasets.
The quantitative performance of all four datasets using the common model are also provided
in Table 1. Further, the common model is also adapted for recover the clear image for a real
dataset (15 images) [6]. The visualization examples with our network and different SoTA
methods have been shown in Fig. 2 on both synthetic images and a real image. From Fig. 2,
we can see that the proposed model can restore clearer results.

Table 2: Ablation study w/o the SCAP and SCAA.
SCAA × X × X LReLU PReLU X X
SCAP × × X X X X AP WP

Rain200H PSNR 29.02 29.58 29.46 29.69 29.45 29.33 29.54 29.59
SSIM 0.891 0.901 0.895 0.900 0.896 0.897 0.900 0.901

Rain200L PSNR 38.73 39.11 38.38 39.44 39.28 39.26 39.14 39.34
SSIM 0.983 0.985 0.982 0.985 0.984 0.985 0.984 0.985

#. Parameters(M) 8.00 8.03 8.27 8.31 8.27 8.27 8.03 9.51

3.3 Ablation Studies
In this section, we evaluate the effectiveness of different proposed modules. Especially,
we utilize the simple network consisting of multiple residual blocks as the baseline mod-
ule (the top branch in Fig. 1), and conduct two kinds of ablation studies for verifying
the contributions of the proposed SCAP and SCAA, and the MCAM with different scales
(s = 1,2,3). Basically, we consider the max pooling (MP) and the ReLU activation as
the default method, and further conducted other pooling operations such as average pool-
ing (AP) and Wavelet-based pooling (WP) [48] as well as other activation function such
LReLU(LeakyReLU) and PReLU for comparison. Table. 2 manifests the compared quan-
titative values of our MRADM with the proposed SCAP/SCAA or the conventional activa-
tions (ReLU/LReLU/PReLU) and the pooling layers (MP/AP/WP) for feature map down-
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Table 3: Ablation results integrating the SCAA and SCAP with different CNN models on
the Rain200H dataset.

(a) Ablation results integrating the SCAA

Methods Default (ReLU) SCAA
PSNR SSIM PSNR SSIM

DDN[5] 26.11 0.792 27.13 0.796
UMRL[42] 23.01 0.744 24.25 0.752

MCGKT-Net[46] 28.71 0.873 29.08 0.894
(b) Ablation results integrating the SCAP

Methods Default (MaxPooling) SCAP
PSNR SSIM PSNR SSIM

UMRL[42] 23.01 0.744 23.95 0.749
MCGKT-Net[46] 28.71 0.873 28.88 0.889

Table 4: Ablation study w/o the MCAM and different scales in the MCAM.
Scale Baseline(s=0) MCAM (s=1) MCAM (s=2) MCAM (s=3)
PSNR 28.12 29.01 29.47 29.69
SSIM 0.870 0.888 0.897 0.900

#. Parameters(M) 0.34 0.72 2.26 8.31

sampling in MCAM module, which shows that the integration of the SCAP and SCAA
instead of the conventional methods do not greatly increase the network parameters while
stably improve the restoration results with almost 1dB PSNR for Rain200L dataset. Table.
3 demonstrates the compared results by integrating the SCAA/SCAP with different CNN
models. Moreover, Fig. 3 provides some learned feature maps using the conventional max-
pooling, ReLU activation and our proposed SCAA and SCAP layers, which in turn manifest
our proposed SCAA/SCAP can alleviate the noise and artifact. Table. 4 provides the com-
pared result w/o MCAM modul and different scales in the MCAM module, and validate
that the aggregation with large scale in MCAM is capable of gradually boosting the restora-
tion performance. Compared with the baseline module, the introduced MCAM improve the
PSNR about 1.57 and SSIM about 0.03.

4 Conclusion
In this work, we proposed a novel multi-scale residual aggregation network, to effectively
solve the image deraining problem. Specifically, we exploited a residual subnet with a few
blocks as the backbone architecture and a multi-scale context aggregation module (MCAM)
to augment complementary semantic context for enhancing capability of the network. Futher-
more, we delved in a generalized pooling and activation method taking consideration of the
surrounding spatial context instead of pixel-wise operation, and propose the spatial context-
aware pooling (SCAP) and activation (SCAA) for incorporating with our deraining network
to boost performance. Extensive experiments on the benchmark datasets demonstrated that
our proposed method performs favorably against state-of-the-art deraining approaches.
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