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Abstract

Image-to-image translation models, such as StarGAN v2, have enabled the transla-
tion of diverse images over multiple domains in a single framework. However, Star-
GAN v2 is computationally expensive making it challenging to execute on resource-
constrained environments. To reduce the computation requirement of StarGAN v2 while
maintaining accuracy, we propose a novel cross distillation method that is specially de-
signed for knowledge distillation (KD) of multiple networks in a single framework. By
leveraging this new KD method, the knowledge of a multi-network large teacher Star-
GAN v2 can be effectively transferred to a small student TinyStarGAN v2 framework.
Without losing the quality and diversity of generated images, we reduce the size of the
original framework by more than 20× and the computation requirement by more than
5×. Experiments on CelebA-HQ and AFHQ datasets show the effectiveness of the pro-
posed method.

1 Introduction
Recently, the image-to-image translation problem has received considerable attention under
rapid improvement in the resolution and quality of images produced by generative adversar-
ial networks (GANs) [7]. Multi-modal multi-domain image-to-image translation [4, 5, 19]
refers to the process of generating diverse images across multiple domains given a single in-
put image. Generally, the output images look similar to the original image in some attributes
(e.g. pose, identity) yet reflecting certain attributes of the target domain (e.g. gender, hair
color). The current state-of-the-art method for multi-modal multi-domain image-to-image
translation is StarGAN v2 [5], which generates images with rich styles across multiple do-
mains. However, StarGAN v2 has a computation bottleneck at a parameter count of more
than 50M and consumes more than 60G MACs (Multiply-Accumulate Operations to quan-
tify computation cost, 1 MAC = 2 FLOPs) to produce one 256× 256 image, preventing its
widespread adoption.

Immense efforts have been made recently to compress and speed-up GANs. For ex-
ample, GAN Compression [14] utilized neural architecture search (NAS) [20] via weight
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sharing and knowledge transfer of intermediate representations of original model to obtain
a compressed model. Autogan-distiller [6] performed differentiable NAS under a target
compression ratio, which preserves the original GAN generation quality via the guidance
of knowledge distillation [9]. GAN Slimming [16] integrated model distillation, channel
pruning and quantization together with the GAN minimax objective that can be efficiently
optimized from end to end. Distilling portable GANs for image translation [3] developed on
the idea of minimizing the pixel-wise and perceptual difference between images generated
by student and teacher networks. Co-evolutionary compression for unpaired image trans-
lation [15] obtained compact and effective generators by iteratively pruning least important
convolution filters in a dual generator setting. Compressing GANs based on knowledge dis-
tillation [1] used mean square error between the images generated from the student and the
teacher along with regular GAN training as a joint student training loss.

Although these approaches can provide very high compression and speed-up ratios with
slight degradation in performance, they are not straightforwardly applicable to StarGAN v2,
because of the following two major reasons:

1. StarGAN v2 is a multi-network framework [5] and existing techniques [1, 3, 6, 14, 15,
16] can only compress a single generator network.

2. Most methods [3, 6, 14, 15, 16] work on deterministic generator networks whereas
StarGAN v2 generates diverse multi-modal images from a single source image using
random Gaussian noise.

As a solution to this problem, we propose Tiny-StarGAN v2, which achieves similar
performance to StarGAN v2 while requiring a smaller computation budget. To the best of
our knowledge, we are the first to compress a multi-network non-deterministic framework
using knowledge distillation. Our contributions are three-fold:

1. We design efficient networks composed of Depthwise separable convolution [10] lay-
ers with reduced channels.

2. We develop a combination of different cross distillation losses operating on differ-
ent modules of StarGAN v2 to be used along with the original objective in a GAN
minimax optimization setting.

3. We achieve outstanding results on benchmark datasets.

2 BACKGROUND

2.1 StarGAN v2
StarGAN v2 [5] generates diverse images across multiple domains. The framework of Star-
GAN v2 comprises of four modules.

• Generator transforms an input image to an output image reflecting the input style
code of a specific domain.

• Discriminator recognizes input image as genuine or fake for multiple domains.

• Style encoder extracts the style code from an input image and its domain label, allow-
ing the generator to perform reference-guided image synthesis.
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• Mapping network converts latent code sampled from Gaussian noise into style codes
for multiple domains, allowing the generator to perform latent-guided image synthesis.

All the modules but the generator are multi-headed, with number of heads equal to the
number of domains.

2.2 Knowledge Distillation
Knowledge distillation [9] is a powerful knowledge transfer method that enables a single
network with a relatively low number of parameters to learn from an ensemble of networks
or from a network with large number of parameters. The bigger model is referred as the
teacher and the smaller model as the student. Several methods leverage response-based
knowledge distillation for compressing GANs [3, 6, 14, 15, 16]. The main idea of response-
based knowledge distillation is to directly mimic the final response of the last output layer of
the teacher model.

3 METHOD
Proposed methodology has following three stages:

1. Developing a style discriminator.

2. Designing efficient architectures for generator, style encoder and mapping network.

3. Training the networks using a combination of cross knowledge distillation losses and
the original objective.

3.1 Style Discriminator
We introduce the style discriminator in order to transfer knowledge from teacher to student
mapping network via adversarial learning [2]. It is a multi-task network which contains
multiple linear output branches, one for each domain as seen in Figure 1. As shown in
Figure 1, each branch of the style discriminator learns a binary classification that determines
if the style code is created by adversarial loss by the teacher mapping network or the student
mapping network of its domain. The style discriminator capacity is close to the student
mapping network. For non-linear activation Leaky-ReLU layers are used in intermediate
layers.

3.2 Efficient Architecture Design
Knowledge distillation is most successful when there is a high degree of correlation between
teacher and student model architectures. Therefore, we use the original generator, discrimi-
nator, style encoder, and mapping networks as our baseline architectures. Since our primary
aim is to obtain memory efficient networks for resource constrained environments, we focus
on altering the baseline architectures in the following ways:

• Mobile Residual Blocks. Residual blocks (ResBlk) are used extensively in StarGAN-
v2 framework for both encoding and decoding in the generator and the style encoder
networks. In mobile residual blocks (MobileResBlk) we replace the full convolution
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Figure 1: Style Discriminator. The input domain specific style code is classified as originated
from teacher or student mapping network.

layers of the residual blocks with depthwise separable convolution layers on account
of their better performance-computation trade-off [6, 10, 14]. We use mobile residual
blocks in place of all the residual blocks for the encoding parts of all the modules of
StarGAN-v2.

• Reduced channels. In order to control the capacity of the whole framework we restrict
the maximum number of channels in convolution layers and the maximum number of
hidden nodes in linear layers for all the networks. The restriction is parametric named
as a single global parameter α ∈ [64,96,128,256]. The value of α is determined from
empirical results on standard benchmark datasets.

Table 1 shows the alterations done on the baseline Generator architecture to obtain an
efficient Generator network. Similar changes are done to the Style Encoder and the Mapping
Network.

3.3 Cross Distillation Losses
Inspired by the success of knowledge distillation in recent works [3, 6, 15, 16], we add mul-
tiple model distillation losses to enforce efficient student modules to mimic the behaviour of
original networks of StarGAN-v2 framework. We do not use a pre-trained teacher discrimi-
nator in our training. Denoting our pre-trained teacher generator as GT , style encoder as ET ,
mapping network as FT and similarly, student generator as GS, style encoder as ES, mapping
network as FS, image discriminator as D, and style discriminator as DS.

Let X , Y be the sets of images and possible domains and Z be the set of all possible
latent codes. During training, we randomly sample an image x ∈ X with its original domain
label y ∈ Y , two latent codes z1 ∈ Z , z2 ∈ Z , and a target reference image x̃ ∈ X with its
target domain label ỹ ∈ Y . We generate target style codes using teacher networks:

sz1 = FT (z1, ỹ) sz2 = FT (z2,y)

sx̃ = ET (x̃, ỹ) sx = ET (x,y)

Cross Image Adversarial Losses ( L1
GS,D

, L2
GS,D

). We generate images from GT and
GS using sz1 , sx̃, and x. The image discriminator D learns to assess the divergence between
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Original Generator Efficient Generator
(maximum channel width 512) (maximum channel width 128)
Output Shape Layer Layer Type Layer Output Shape
256×256×3 RGB Image Input RGB Image 256×256×3

256×256×64 Conv1×1 - Conv1×1 256×256×64
128×128×128 ResBlk Encoding Conv1×1 128×128×128

64×64×256 ResBlk Encoding MobileResBlk 64×64×128
32×32×512 ResBlk Encoding MobileResBlk 32×32×128
16×16×512 ResBlk Encoding MobileResBlk 16×16×128
16×16×512 ResBlk Intermediate MobileResBlk 16×16×128
16×16×512 ResBlk Intermediate MobileResBlk 16×16×128
16×16×512 ResBlk Intermediate ResBlk 16×16×128
16×16×512 ResBlk Intermediate ResBlk 16×16×128
32×32×512 ResBlk Decoding ResBlk 32×32×128
64×64×256 ResBlk Decoding ResBlk 64×64×128

128×128×128 ResBlk Decoding ResBlk 128×128×128
256×256×64 ResBlk Decoding ResBlk 256×256×64
256×256×3 Conv1×1 - Conv1×1 256×256×3

Table 1: Architecture comparison of the Generator from StarGAN v2 and TinyStarGAN v2
frameworks.

images generated by GT and GS. D maximizes the divergence, while GS minimizes it. In
this way, GS learns to mimic GT implicitly.

L1
GS,D = Ex,z1,ỹ[log(Dỹ(GT (x,sz1))+ log(1−Dỹ(GS(x,sz1)))] (1)

L2
GS,D = Ex,x̃,ỹ[log(Dỹ(GT (x,sx̃))+ log(1−Dỹ(GS(x,sx̃)))] (2)

Cross Style Adversarial Losses (L1
FS,DS , L2

FS,DS ). We generate style codes from FS using

z1, z2, y, and ỹ. The style discriminator DS learns to assess the divergence between style codes
generated by FT and FS. DS maximizes the divergence, while FS minimizes it. In this way,
FS learns to mimic FT implicitly.

L1
FS,DS = Ez1,ỹ[log(DS

ỹ(sz1))+ log(1−DS
ỹ(FS(z1, ỹ)))] (3)

L2
FS,DS = Ez2,y[log(DS

y(sz2))+ log(1−DS
y(FS(z2,y)))] (4)

Cross Style Utilization Losses (L1
GS,ES

, L2
GS,ES

). The student style encoder ES learns to
extract style code similar to target style codes over the images generated by GS using sz1 ,
sx̃, and x. Meanwhile, GS learns to utilize target style codes. This objective is similar to
previous approaches [5, 11, 19].

L1
GS,ES

= Ex,z1,ỹ||sz1 −ES(GS(x,sz1), ỹ)||1 (5)

L2
GS,ES

= Ex,x̃,ỹ||sx̃−ES(GS(x,sx̃), ỹ)||1 (6)
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Cross Source Attributes Preservation Losses (L1
GS

, L2
GS

). The student generator learns
to preserve the domain invariant characteristics of input image x while generating images
using sz1 and sx̃. We employ the cycle consistency loss [4, 13, 18] by reconstructing the
source image from generated images using sx.

L1
GS

= Ex,z1,ỹ||x−GS(GS(x,sz1),sx)||1 (7)

L2
GS

= Ex,x̃,ỹ||x−GS(GS(x,sx̃),sx)||1 (8)

3.4 Full Objective
The full objective utilizes the original training losses of StarGAN v2 (Lorg) [5] and our
distillation losses combined into minimax optimization setting.

min
GS,ES,FS

max
DS,D

[Lorg +L1
GS,D +L2

GS,D +L1
FS,DS+

L2
FS,DS +L1

GS,ES
+L2

GS,ES
+L1

GS
+L2

GS
]

(9)

3.5 Evaluation metrics
We use Frechét Inception Distance (FID) [8] and Learned Perceptual Image Patch Similar-
ity (LPIPS) [17] to measure the visual quality and the diversity of generated images on test
data as done previously in [5]. We follow the original evaluation protocols from StarGAN
v2 to compute FID and LPIPS on validation set. We calculate the metrics for every pair
of image domains within a dataset and report their average values. We use the total num-
ber of Multiply-Accumulate Operations (MAC) required in a single forward pass and the
total number of parameters in generator, style encoder, and mapping network combined to
quantify the computation cost and size of each framework.

3.6 Implementation Details
Details regarding the training parameters, data augmentation and pre-trained teacher net-
works is given below:

Training parameters for our method are same as the StarGAN v2 training framework.
We use a batch size of 8 and train for 100K iterations. We store a checkpoint after each 10K
iterations. All the networks are trained using Adam optimizer with β1 = 0 and β2 = 0.99.
We set the learning rate for all the networks to 10−4. We evaluate our method with different
values of α ∈ [64,96,128,160]. For each value of α we evaluate all the checkpoint networks
on test images and select the best scoring checkpoint. We keep the random seed fixed to 777
for all our experiments.

Data Augmentations are applied on the images of both source and target domains. Im-
ages are horizontally flipped with a probability of 0.5. A random crop of Size ∈ [0.8,1.0]
and Aspect Ratio ∈ [0.9,1.1] is extracted from original image and resized to 256×256.

Pre-trained teacher networks are obtained from the StarGAN v2 training framework
by using default parameters. The learning rate for generator, discriminator, style encoder is
10−4, while that of mapping network is set to 10−6. The dimensions of the latent code, the
maximum channels of hidden layer, and the style code are 16, 512, and 64 respectively.
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4 EXPERIMENTS

4.1 Datasets
We use the CelebA-HQ [12] and the AFHQ [5] datasets for our evaluations. The CelebA-
HQ dataset is divided into two domains of male and female while the AFHQ dataset contains
three domains of cat, dog, and wildlife. We follow the train and validation splits as shown in
Table 2. All the images are resized to 256×256 as originally used in StarGAN v2.

CelebA-HQ AFHQ
Male Female Cat Dog Wildlife

Train 10057 17943 5153 4739 4738
Val 1000 1000 500 500 500

Table 2: Train-Validation splits for CelebA-HQ and AFHQ datasets.

4.2 Analysis of Cross Distillation Losses
We evaluate each cross distillation loss proposed in our method by adding them to the
original StarGAN v2 losses and training each configuration to completion. The best FID
and LPIPS scores of each experiment are compared for both Latent-Guided synthesis and
Reference-Guided synthesis. Efficient architectures with network capacity at α = 128 are
trained on the AFHQ dataset in each experiment from scratch with all the training parame-
ters kept the same. The baseline configuration trained with the original StarGAN v2 losses
without any distillation loss produced high FID scores, which is expected to be the case due
to the limited capacity of the networks. We first improve the baseline by adding cross image
adversarial losses to let the efficient student generator and the image discriminator learn the
distribution of images produced by the original heavy teacher StarGAN v2 framework. We
further enhance the training stability by applying style adversarial losses which helps the stu-
dent mapping network mimic the original latent style code distribution. To enable the student
style encoder network to produce the latent style codes similar to the original style encoder
we added cross style utilization losses. The fourth component of the cross distillation forces
the student generator to preserve the domain invariant characteristics of input image while
utilizing the original latent style codes.

Loss Components

Latent Reference
Guided Guided

Synthesis Synthesis
FID LPIPS FID LPIPS

A Original StarGAN v2 Losses 24.06 0.514 33.13 0.484
B (A) + Cross Image Adversarial Losses 23.59 0.478 25.12 0.433
C (B) + Cross Style Adversarial Losses 21.76 0.459 23.00 0.419
D (C) + Cross Style Utilization Losses 20.81 0.456 21.78 0.416
E (A) + All Cross Distillation Losses 20.69 0.437 21.60 0.415

Table 3: Quantitative Performance Evaluation of various cross distillation losses configura-
tions on AFHQ dataset at α = 128. FID indicates the distance between two distributions of
real and generated images (lower is better), while LPIPS measures the diversity of generated
images (higher is better).
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As can be observed in Table 3 with the addition of each loss component the FID per-
formance improves however, the LPIPS performance degrades. Since LPIPS measures how
diverse images are in a set, the more sporadic the artifacts are in the images the more di-
verse they become and that may show better LPIPS performance. We speculate that the high
LPIPS scores in the baseline configuration is due to poor translation of input images causing
spurious artifacts in the output images.

5 RESULTS

5.1 Quantitative Results

Dataset Method

Latent Reference Parameter
Count (M)
(E+G+F)

MACs (G)
(E+G+F)

Guided Guided
Synthesis Synthesis

FID LPIPS FID LPIPS

AFHQ

Original 16.09 0.451 19.73 0.431 58.10 65.30
Proposed
α = 64 26.65 0.492 30.49 0.448 0.81 (71×) 5.37 (12×)
α = 96 23.52 0.446 24.21 0.425 1.62 (35×) 8.54 (7×)

α = 128 20.69 0.437 21.60 0.415 2.71 (21×) 11.53 (5×)
α = 160 20.95 0.421 21.32 0.408 3.94 (14×) 13.47 (4×)

CelebA
HQ

Original 13.76 0.451 23.88 0.388 66.82 62.03
Proposed
α = 64 20.69 0.423 27.17 0.381 0.89 (75×) 5.35 (11×)
α = 96 19.30 0.425 26.23 0.382 1.79 (37×) 8.09 (7×)

α = 128 18.41 0.417 25.18 0.385 3.00 (22×) 10.92 (5×)
α = 160 18.91 0.419 26.24 0.380 4.40 (15×) 12.49 (4×)

Table 4: Quantitative Evaluation of the proposed method at different α values on validation
set. We use FID (the lower the better) and LPIPS (the higher the better) for both latent and
reference guided synthesis. We accumulate the individual size and MACs of generator (G),
style encoder (E), and mapping network (F). At α = 128, our method can compress original
StarGAN v2 framework by more than 20× in size and by more than 5× in MACs, with
minor performance degradation.

Table 4 shows a summary of evaluation scores on test images by using our proposed
method with different values of α on both CelebA-HQ and AFHQ datasets. At α = 64 and
96 we can see huge increase in FID scores, whereas at α = 128 and α = 160 the scores are
close to the original method. As α increases the images produced by our approach look more
realistic which is reflected in FID scores. However, the LPIPS performance degrades with
increasing α . We speculate that the high LPIPS scores in lower α values are due to spurious
artifacts in the output images. LPIPS measures how diverse images are in a set, the more
sporadic the artifacts are in the images the more diverse they become and that may show
better LPIPS performance. Since we care about the diversity of realistic images, therefore,
we need to compare both FID and LPIPS together against the original method for a holistic
view. We obtain a higher compression rate at α = 128 compared to α = 160, thus achieving
a better balance of compression and performance.
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Original on AFHQ Proposed (α=128) on AFHQ

Original on CelebA-HQ Proposed (α=128) on CelebA-HQ
Figure 2: Reference-guided image synthesis. The first row of each sub-figure contains real
source images and the first column of each sub-figure contains real reference images. The
rest are fake images generated using generator and style codes produced using style encoder.

5.2 Qualitative Results
In Fig. 2 and 3, we do a visual comparison of images generated by the original and our
proposed method for reference-guided and latent-guided image synthesis on test images.
Our method produces images with high quality and diverse styles across all domains on both
CelebA-HQ and AFHQ datasets as good as the original StarGAN v2. On the AFHQ dataset
the proposed method renders distinctive styles (e.g. breeds) of each domain as well as its fur
pattern and eye color. Similarly, on the CelebA-HQ dataset diverse hair colors, hair styles
and skin tones are produced effectively using the proposed method. However, there are a few
differences in the quality of generated images. The images of the original method, have more
contrast whereas, the images produced by the proposed method are a little smooth. Also, in
a few cases the shape of the body parts, are not developed properly by the proposed method.
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Original on AFHQ Proposed (α=128) on AFHQ

Original on CelebA-HQ Proposed (α=128) on CelebA-HQ
Figure 3: Latent-guided image synthesis. The first row of each sub-figure contains real
source images. The rest are fake images generated using generator and style codes produced
using mapping network from randomly sampled latent codes.

6 CONCLUSION

We proposed Tiny-StarGAN v2, a method to address the computation bottleneck problem of
StarGAN v2. The core contribution of our work is in defining an end-to-end training algo-
rithm to distill the knowledge from a multi-network framework. We trained efficient archi-
tectures for generator, style encoder, and mapping network under the guidance of knowledge
distillation. Extensive experiments showed that our method preserved the visual quality and
style diversity of generated images while compressing StarGAN v2 framework massively.
Additionally, we examined the performance of networks at different network capacities and
observed that the FID score improvements reduces upon increasing the capacity, a potential
drawback to the proposed approach.
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