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Abstract

The goal of pool-based active learning is to judiciously select a fixed-sized subset of
unlabeled samples from a pool to query an oracle for their labels, in order to maximize
the accuracy of a supervised learner. However, the unsaid requirement that the oracle
should always assign correct labels is unreasonable for most situations. We propose an
active learning technique for deep neural networks that is more robust to mislabeling than
the previously proposed techniques. Previous techniques rely on the task network itself
to estimate the novelty of the unlabeled samples, but learning the task (generalization)
and selecting samples (out-of-distribution detection) can be conflicting goals. We use
a separate network to score the unlabeled samples for selection. The scoring network
relies on self-supervision for modeling the distribution of the labeled samples to reduce
the dependency on potentially noisy labels. To counter the paucity of data, we also deploy
another head on the scoring network for regularization via multi-task learning and use an
unusual self-balancing hybrid scoring function. Furthermore, we divide each query into
sub-queries before labeling to ensure that the query has diverse samples. In addition to
having a higher tolerance to mislabeling of samples by the oracle, the resultant technique
also produces competitive accuracy in the absence of label noise. The technique also
handles the introduction of new classes on-the-fly well by temporarily increasing the
sampling rate of these classes. We make our code publicly available at https://
github.com/shubhangb97/PAL_pretext_based_active_learning

1 Introduction

In spite of their unprecedented accuracy on several tasks involving image analysis, a hurdle
in using convolutional neural networks (CNNs) for many real problems is their requirement
of large labeled datasets. Labeling and annotations are laborious and costly for several do-
mains, such as medical imaging, where expertise or follow-up is required. Strategies to
reduce the number of labels include transfer, semi-supervised, few-shot, and active learning.
Active learning algorithms are used to decide whether or not to send an unlabeled sample for
labeling to an oracle (e.g., a radiologist for x-ray images), such that the increase in the task
performance (e.g., classification accuracy) is maximized with respect to a labeling cost.

In pool-based active learning, training progresses iteratively in rounds or queries starting
from an unlabeled pool of samples. In each query, up to a budgeted number of N additional
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samples can be selected from the unlabeled pool for labeling [8, 27, 29]. After a random
initial selection of samples for labeling, the query selection strategy is usually based on
picking novel and diverse samples from the unlabeled pool. Novelty (a.k.a. uncertainty
and confusion) refers to selecting samples that are least similar to the previously labeled
samples in order to maximize the information gain by getting them labeled. The samples
in a query should also be diverse in order to maximize the collective information gained by
their labeling.

While oracles are assumed to be ideal, in a realistic scenario we cannot expect the oracle
to label all samples correctly. Therefore, we need to reduce the dependence of the query
selection on the labels as well as on the task network (CNN that is trained to perform the
task, e.g., classification) that models the distribution of the labeled data. Secondly, it recently
became clear that the task network is a poor estimator of its own uncertainty on unlabeled
samples that are unlike the labeled samples [16]. While we also model the distribution of
the labeled data in order to select the samples for a query, our main contribution is to do so
using a self-supervised learning (SSL) task (Section 3.1) that reduces the dependence on po-
tentially noisy labels. Additionally, we perform the query selection using a second network
— the scoring network — in order to exercise greater control over query formation [32], unlike
most of the previously proposed active learning methods that rely on the task network itself
for estimating uncertainty [2, 8, 10, 29].

In other words, we use the extent to which an unlabeled sample gives a wrong prediction
on the SSL task as an indicator of its novelty. The self-supervision labels can be generated
inexpensively for testing the uncertainty of the unlabeled samples, compared to several other
techniques. Due to the use of the pretext (SSL) task, we call this scheme pretext-based active
learning (PAL).

Additionally, we regularize the scoring network to counter the paucity of labeled data by
adding a classification head for multi-task learning. Finally, we ensure diversity among the
N samples selected during a query by breaking it into K sub-queries. For each sub-query, we
pick samples that are novel with respect to the previous sub-queries, which ensures diversity
among the samples of the query itself. We tune only the self-supervision head between the
sub-queries, so that we do not incur the labeling cost until the entire query is formulated
(Section 3.3).

Due to its reliance on self-supervised learning, PAL seems to be significantly more robust
to partial mislabeling of the training data by the oracle (Section 4.2). PAL also showed
an accuracy that is competitive with the state-of-the-art [10, 27, 29] on benchmark image
recognition and segmentation datasets, without using a computationally expensive training
scheme (Section 4.1). We also tested PAL for a scenario called biased initial pool, in which
certain classes may be underrepresented (or absent) in the initially labeled data. As desired,
PAL over-samples the previously underrepresented classes and ramps up the performance on
them in the first few queries itself, and then returns to balanced sampling (Section 4.3).

2 Related Work

2.1 Active learning

There are several settings for active learning, such as membership query synthesis and stream-
based sampling. In the former, the learner generates new samples to query the oracle
[1, 19, 34], while in the latter the unlabeled dataset is presented as a stream, and is evaluated
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online [6, 7]. However, unlike these settings, the proposed method is pool-based sampling,
which makes a complete use of labeled and unlabeled data pools, when the latter is also
available [10, 27, 29]. In this setting, starting with a set of labeled samples, a budgeted
number of unlabeled samples are selected for querying the oracle.

Pool-based active learning techniques aim to pick samples that are novel and diverse.
Novelty (a.k.a., uncertainty, confusion, non-triviality, out-of-distribution, and informative-
ness) refers to an unlabeled sample’s ability to provide new information, if labeled, indepen-
dently of other samples selected. Some of the early measures of novelty have known issues.
For example, entropy of the estimated class probability mass function [28] is prone to calibra-
tion error [16], discordance between a committee of classifiers [12] can be computationally
expensive, and distance from a linear decision boundary [30] is not directly applicable to
CNNs because of their complex decision boundaries. Distance from an adversarial example
has been proposed as an approximation of distance from decision boundary [8], but it re-
quires computationally expensive gradient descent on image pixels. Surprisingly, no one has
used the difficulty of solving a self-supervised (pretext) task as a measure of novelty, which
requires only up to one additional network to be trained in parallel with the task network.

Methods based on diversity (a.k.a. representativeness and coverage) seek to select sam-
ples that can represent the unlabeled data distribution well. If the samples selected in a query
are individually novel with respect to the previously labeled samples but collectively similar
to each other, then the joint information gained from their labels as a query group may not
be maximized. A method based on identifying a core-set has been proposed that models the
empirical loss over the set of labeled samples on the empirical loss over the whole dataset
[27]. However, this approach suffers when the representations are high-dimensional, be-
cause the Euclidean distance is a poor local similarity estimator in high dimensional spaces.
An alternative approach called variational adversarial active learning (VAAL) aims to learn
a good representation using a variational autoencoder (VAE) trained adversarially using a
discriminator that tries to predict if a sample is already labeled [29]. However, this is also a
computationally expensive technique due to VAE training.

2.2 Self-supervised learning

Self-supervised learning (SSL) has shown great promise in learning usable data representa-
tions without needing explicit data labels. Many SSL techniques automatically create a su-
pervised pretext task by degrading an unlabeled image, and train a neural network to recover
the original image. Some commonly used randomized degradations on an image for SSL are
removing color [21], reducing resolution [22], occluding parts of an image [25], jumbling
the spatial order of its sub-images [24], and applying random geometric transforms [11].
Several other recent SSL techniques are based on contrastive learning, like SimCLR[4] and
MoCol[15] instead focus on making a CNN learn image representations that are closer for
augmented versions of the same images compared to those of the others.

If a CNN trained using an SSL task can correctly solve the SSL puzzle on a test image,
it can be interpreted that the test image is similar to some of the training images [13, 18].
Since training the scoring network using SSL on labeled samples does not require the oracle’s
labels, which may be noisy, we use the difficulty of solving the SSL task as a robust measure
of the novelty of unlabeled images.
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3 Method: Pretext-based Active Learning

Our method is an instance of pool-based active learning, essence of which can be described
as follows. Let the pool of the currently labeled samples be Dy, and the pool of unlabeled
samples be Dy. A task network fy(x;) parameterized by 6 is trained on all samples x; € Dy..
The active learning algorithm selects a budgeted set of N or fewer samples from Dy in
each query. The queried samples are then labeled by an oracle (assumed ideal, although
unrealistic), added to D;, and removed from Dy. The task network is retrained on the
expanded Dy and its increase in accuracy is examined. This process is repeated until a
specified number of samples |D; | are labeled or a desired accuracy level is achieved.

We use a different neural network than task network for our selection strategy, which
we refer to as the scoring network hereafter. The scoring network has two heads, one for
self-supervision and another for classification, whose outputs are used to assign a confusion
score S to an unlabeled image x,,.

3.1 Self-supervision head

The self-supervision head of the scoring network estimates the likelihood of the unlabeled
data under the distribution of the labeled samples. We quantify this likelihood using the
self-supervision score Sg, which we formulate for two self-supervised techniques, namely
the prediction of randomized rotation for classification (SSL)[11], and SimCLR based on
contrastive learning [4].

In the rotation task, we rotate the images by 90i° for i € {0,1,2,3} and train a network
8¢ parameterized by ¢ to predict i on only the images from Dy, so that the head learns the
distribution of the labeled data. Using the self-supervised head, the following confusion
score Sy is assigned to each unlabeled image x,,:

Ss(xu)=— Y. go(rotog;(xy));, (1

ie{0,1,2,3}

where rotgg;(.) is the rotation function and g¢(.); is the estimated probability of the i" ro-
tation angle. We hypothesize that an image x, € Dy for which Sy is closer to its minimum
possible value of —4 will likely be similar to the labeled points in Dy, and will fetch little
extra information, if labeled. Conversely, for novel points Sg will be closer to 0.

In SimCLR [4], random transformations, including crops, resizes, and color jitter, are
applied to the images. The network g, is then trained to reduce the distance between em-
beddings of two such transformed versions of the same image. We train the network g4 in
this manner only on images belonging to Dy, making the network learn the distribution of
the labeled data. Specifically, for the semantic segmentation task, we use the embedding ob-
tained from the bottleneck layer of the segmentation architecture to perform our contrastive
learning task. Using the self-supervised head, we define the confusion score Sy, assigned to
each unlabeled image x,, as:

SS(XH) :Sim(gﬁb(xu,l)agd)(xu@)) 2)

where x,, | and x,, » are transformed versions of x,,, and sim(a, b) denotes the cosine similarity
between 2 vectors a and b. An image x,, € Dy which has Sg closer to 1 will most likely be
similar to points in Dy, and will fetch less extra information. Other self-supervised tasks
can also be used to generate a suitable estimate Sg for each unlabeled data image. In our
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experiments, we use the score defined in equation | for sample selection when the task is
to perform classification, and the score in equation 2 when the task is to perform semantic
segmentation.

3.2 C(lassification head and hybrid score

A scoring network trained only using the self-supervised pretext task might still be unable
to model the labeled data distribution accurately. Its performance can be further augmented
by the addition of a classification head to it, which is trained using the already available
(though possibly noisy) labels of Dy.. It would help overcome the limitation of having a small
initially labeled dataset by helping regularize the network. It would also help mitigate the
unreliability of the score Sg for certain kinds of images, for example images having rotational
symmetry. So, we introduce a classification head /iy (x,) parameterized by  in the scoring
network. We compute the degree to which the outputs of £y, for an unlabeled sample x,, are
close to a uniform distribution U, using KL divergence (or relative entropy) [17], as a second
measure of confusion S¢(Xy), to give a hybrid confusion score S(x,), as shown below:

S(xy) = Ss(x4) + ASc(xy), where 3)
Sc(xu) = —KL(U || hy(xu)),

where A > 0 is a relative importance hyperparameter. When applying PAL to semantic
segmentation, we calculate S¢ pixel-wise and average it to get Sc for the sample.

Although, the entropy of class probabilities is a more popular measure of confusion [28],
its range is finite. Had it been used as Sc in place of the negative of KL divergence in
Equation 3 it would not have been able to counter-balance the effect of Sg (Equation 1) when
it fails (e.g., in case of rotational symmetry). On the other hand, when the class prediction
by hy is very confident and KL-divergence is high, that means, as desired,we would rely
less on the SSL task, and combined score will self-adjust due to the infinite range of the
KL-divergence.

An added advantage of using a multi-task setting for the scoring network is getting better
ordinal estimates of a true latent score due to an ensemble-like effect. We select the N most
informative samples from Dy with the highest S(x,,) as per Equation 3 in each query round,
after finding a good setting for the hyperparameter A > 0 based on validation.

3.3 Diversity score

To ensure that the N samples in a query are diverse to cover the unlabeled data distribution,
we divide the query into K sub-queries with % samples each. For selecting the first sub-
query, we select the top % samples using the confusion score S from Equation 3. For the
next sub-query, we fine-tune the scoring network on the samples from previous sub-query, in
a self-supervised manner without asking the oracle for the labels in the middle of the main
query. This fine-tuned network is then used to generate a score Sp, which is the same as
the Sg defined in Equation 1, but with g4 in place of g4. Here, g4/ are the parameters of
the self-supervision head of the scoring network gy after fine-tuning. Sp promotes diversity
as it would be small for data points which are similar to the points already selected in the
previous sub-queries.
Now, we define an updated score S:

S(Xu) = SS (Xu) + afISC (Xu) + 2'2SD (Xu> (4)
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where Ss(x,) and Sc(x,) are the previously defined confusion score components as in equa-
tion 3 and are calculated for all unlabeled samples using g4, the scoring network before
fine-tuning. Using Equation 4 we select another sub-query of % samples, and the process
repeats until we have N samples.

The process of selecting the query samples Dy for one query round is described in Algo-
rithm Box 1 (refer Appendix A) dubbed pretext-based active learning (PAL). In each query
round, the scoring network is trained using the cross entropy loss and the corresponding
loss for the self-supervised technique in a multi-task framework, while the task network is
trained using the cross-entropy loss. While gy is fine-tuned during a sub-query, all networks
are trained from scratch using the cross entropy loss £ only after the oracle labels Dg.

4 Experiments and Results

We performed experiments on four datasets: (1) SVHN [23] : 10 class classification task on
color images of house number digits (2) CIFAR-10 [20] : 10 class classification task on color
images (3) Caltech-101 [9] : 101 class classification on color images and (4) Cityscapes [5]
where semantic segmentation has to be performed on images of size 2048 x 1024, with each
pixel needing to be classified into one of 19 classes.

We compared the performance of our approach with the following active learning strate-
gies. (1) Random sampling: This is the simplest but nevertheless a strong baseline involving
randomly picking samples to be labeled. (2) Entropy: This is a classical method where the
sample uncertainty is modeled as the entropy of its predicted class probabilities. (3) VAAL:
This technique uses a VAE to learn a feature space and then adversarially trains a discrimina-
tor on it [29]. (4) DBAL: This method uses Bayesian CNNss to estimate uncertainty (novelty)
of unlabeled points [10]. (5) Core-set: This is a representation-based method for selecting
the samples most different than the labeled samples and seeks to maximize the diversity of
the samples to be picked for labeling [27].

Comparison between various active learning techniques was performed using a common
experimental schema, in line with prior works [27, 29]. All techniques were used to itera-
tively expand the labeled dataset for training a common classifier architecture — VGG16 [33]
or a common semantic segmentation architecture- Deeplabv3 [3] with a MobileNetv2 [26]
backbone — from scratch during each query round. For the scoring network of the proposed
PAL approach, we used a ResNet-18 [14] architecture. The average accuracy of five ran-
dom initializations were computed. The initial labeled pool of samples was shared by all
techniques. For the image classification datasets, the initial labeled pool comprised 10% of
the whole dataset, and each query round added an additional 5% of the samples selected by
the individual active learning technique. For semantic segmentation, the initial labeled pool
consisted of 5% of the total dataset, each query round added an additional 1% samples to
the labeled dataset, and mean intersection over union (mloU) was used as the performance
metric.

4.1 Performance with error-free labels

Figure 1 compares the mean performance over five random initializations of different tech-
niques for different fractions of the data labeled. Our PAL strategy outperformed random
sampling by a wide margin and seems to consistently outperform VAAL [29], DBAL [10],
and core-set [27]. For instance, PAL requires only 20% of labeled SVHN images to achieve
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performance equal to that achieved by VAAL and DBAL using 30% labels, or a potential
savings of 33% labels. Additionally, PAL requires only about 2 hours per query round to
train on a single 11GB GPU for SVHN, whereas more computationally expensive methods
such as VAAL [29] take more than 24 hours for the same. Out of the techniques compared
only core-set [27] was faster than PAL, but its relative accuracy was quite variable across the
datasets. Similar trends can be observed for semantic segmentation on CityScapes.

CIFAR1O SVHN
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Figure 1: Performance of random sampling, entropy, VAAL [29], DBAL [10], and core-
set [27] compared with PAL (proposed) on CIFAR-10, SVHN, Caltech-101, and Cityscapes
(segmentation). Markers show mean accuracy of five runs, and vertical bars show standard
deviation (some are too small to be visible). *Note that VAAL takes prohibitively long to train
due to the use of a VAE. Therefore, we did not train VAAL on Caltech-101 and CityScapes.

4.2 Robustness to sample mislabeling

We simulated labeling errors for classification by randomly assigning incorrect labels to a
subset of the labeled pool and the queried set. We performed experiments on the SVHN
and CIFAR-10 datasets, corrupting 20% of the data labels. In Figure 2, we observe that our
technique clearly fares better compared to the others tested. We attribute this robustness of
PAL to the use of the pretext task in the scoring network.
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Robustness on SVHN with 20% label noise Robustness on CIFAR-10 with 20% label noise
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Figure 2: Active learning techniques compared with 20% label noise on SVHN (left) and
CIFAR-10 (right).Markers show mean accuracy of five runs, and vertical bars show standard
deviation.
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Figure 3: PAL performance with biased initial pool of only eight out of ten classes: The
accuracy of PAL trained with biased pool quickly catches up with that of the trained without
the biased initial pool (left), because it temporarily oversamples the newly introduced two
classes that it finds novel but the random sampling does not (right).

4.3 Introducing new classes on-the-fly

We performed experiments with a biased initial pool consisting of only eight out of the
ten classes in the SVHN dataset. After the initial training, the algorithm was given access
to unlabeled samples from all the ten classes to check its behavior. As seen in Figure 3,
PAL rapidly ramped up the performance when it was allowed to sample from the previously
missing classes after the initial 10% labels. In fact, it quickly caught up with its own strong
performance on the unbiased initial pool case (i.e., the upper-left graph of Figure 3 is same as
that of SVHN results in Figure 1). PAL was able to temporarily over-sample the previously
missing classes. On the other hand, the representation of the two missing classes remains
around 20% for random sampling, once those classes are made available for queries, as ex-
pected. We observed similar trends for semantic segmentation on the Cityscapes dataset,
where we started off with 17 out of the 19 classes and observed that PAL was able to se-
lect images which had upto seven times higher pixel area corresponding to missing classes
compared to random (Figure 4).
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Sampling new classes on Cityscapes
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Figure 4: On CityScapes semantic segmen-
tation dataset, we start with 17 classes out
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Figure 6: Comparing coverage (blue circles) of the unlabeled data (orange points) from
CIFAR-10 using VGG-16 and PAL-based query points (blue points) selected (a) without
diversity, shows crowding and (b) with diversity, shows better coverage

4.4 Ablation study

We examined the effect of the different components of the proposed score in Equation 4
used to formulate the query by performing an ablation study. We compared performance
by dropping the diversity score Sp (A2 = 0,A; > 0), dropping both the diversity score Sp
and the supervision score S¢ (A; = 0,4, = 0), dropping the self-supervision score and the
diversity score (A; > 0,4, = 0,Ss removed), and the original scenario with both diversity
and supervision included (A; > 0,4, > 0). We observed that using uncertainty estimates
from both the pretext and classification tasks gave a much better performance. Adding the
diversity score resulted in a further improvement in the performance. These results are shown
in Figure 5, suggesting that all the three components are important.

We visually show that dividing the query into sub-queries indeed increases the diversity
of the query. Figure 6 shows two t-sne embedding plots [31] for CIFAR-10 dataset using
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a VGG-16 network trained on 10% of data. The unlabeled samples are shown in orange
color and the selected query points in blue. A blue circle of arbitrary but same radius for
both figures was included for each query point centered at its location to visualize its sphere
of coverage. Without diversity, there are gaps in coverage in some areas whereas crowding
in some other areas. With diversity, the query points are more spread out providing better
coverage of the unlabeled points.

5 Conclusions

We proposed a new pool-based active learning method that is robust to partial mislabeling of
the training data, while also giving competitive results for the correctly labeled data. It uses
a separate sample scoring network that is dedicated to uncertainty estimation and is trained
using self-supervised learning to reduce the dependence on potentially mislabeled data. This
work also presents evidence that over-reliance on only one measure of uncertainty may not
be judicious. Towards this end, it takes a multi-task approach by introducing a classification
head in the scoring network. It also strikes a needed balance between novelty and diversity
by ensuring the latter between sub-queries. In general, the separate goals of pursuing novelty
and diversity for active learning need more careful integration in future studies.
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