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Abstract
Unsupervised pretraining is an approach that leverages a large unlabeled data pool to

learn data features. However, it requires billion-scale datasets and a month-long train-
ing time to surpass its supervised counterpart on fine-tuning in many computer vision
tasks. In this study, we propose a novel method, Diffeomorphism Matching (DM), to
overcome those challenges. The proposed method combines self-supervised learning
and knowledge distillation to equivalently map the feature space of a student model to
that of a big pretrained teacher model. On the Chest X-ray dataset, our method alle-
viates the need to acquire billions of radiographs and substantially reduces pretraining
time by 95%. In addition, our pretrained model outperforms other pretrained mod-
els by at least 4.2% in F1 score on the CheXpert dataset and 0.7% in Dice score on
the SIIM Pneumothorax dataset. Code and pretrained model are available at https:
//github.com/jokingbear/DM.git

1 Introduction
Deep Learning (DL), in particular, supervised learning, generally requires large-scale and
high-quality labeled datasets to achieve human-level of accuracy. However, obtaining these
datasets is costly and time-consuming in the medical domain. This is due to the expertise
required to label a large amount of data, and doctors’ consensus cannot be reached easily.
In order to avoid those issues, transfer learning from a pretrained model was adopted to
train a high-performance model without a massive amount of available labeled data. Several
approaches in medical image analysis showed that using the ImageNet pretrained models
substantially outperform their trained from scratch counterpart on many tasks [19].
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Recently, unsupervised pretraining approaches remove the barrier of having annotation
in pretext tasks. In MoCo [4], the authors showed that unsupervised pretraining a model
on a billion-scale dataset outperforms its supervised counterpart. However, acquiring such a
large dataset in medical imaging is impractical due to complicated paperwork procedures and
costs. Furthermore, current approaches to unsupervised pretraining require lots of computa-
tional resources [3, 7, 8]. This paper proposes a novel method, Diffeomorphism Matching
(DM), to tackle those issues. Our motivation is based on the equivalence of feature spaces be-
tween a big pretrained teacher model and a much smaller randomly initialized student model.
The teacher model is pretrained on the billion-scale natural image dataset IG-1B [20]. We
use the language of differential geometry to model the equivalence between feature spaces.
Our method reduces the need to acquire a billion-scale radiograph dataset. Experiments
show that our pretrained model outperforms other supervised and unsupervised pretrained
models in downstream tasks such as classification and segmentation. Compared to other
unsupervised pretraining methods, ours requires less computational resources to train and
reduce training duration by 20 times. In summary, our contributions are as followed:

• We proposed a loss function that makes the feature space of a randomly initialized
student model equivalent to that of a teacher model using the language of differential
geometry.

• Our proposed loss combined with distillation loss function and a big pretrained model
results in an unsupervised pretraining procedure that is faster, more stable, and requires
less computation resource than contemporary unsupervised pretraining approaches.

• We conducted extensive experiments on Chest X-ray datasets for classification and
segmentation tasks. Compared to other pretrained models, ours outperform them in
fine-tuning. This increment in fine-tuning performance shows that our approaches
reduce the need to acquire a billion-scale dataset in Chest X-ray imaging.

2 Related Works

Contrastive Learning. Instead of training a classification model to extract features in pretext
tasks, Contrastive Learning compares different views of the same image to extract invariant
features without any usage of annotation. In order to compare images, current approaches
leverage Siamese networks to extract features from two different views of images to form a
pair. A positive pair consists of two different views of the same image, and a negative pair
consists of views of different images. The objective is to increase feature similarity between
positive pairs and decrease the similarity for negative pairs. In doing so, the model learns
to extract view-invariant and discriminative features of the input data. In SimCLR [3], the
authors proposed using the contrastive loss with large batch size, strong data augmentations,
and long training time to achieve a good pretrained model. MoCo 1 and 2 [4, 8] use a running
dictionary that gets updated after each backward propagation step to reduce the batch size
while keeping a big negative pool for contrastive loss. In BYOL [7], the authors only com-
pare positive pairs. In order to avoid collapsing to a trivial solution, they remove the gradient
of a feature in a pair to create an asymmetry in the similarity objective function. SimCLR,
MoCo, and BYOL achieved comparable performances on transferring to downstream tasks
compared with supervised pretraining when trained on ImageNet [6] dataset.
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Knowledge Distillation. Our approach is inspired, in part, by knowledge distillation. RE-
FILLED [31] treats models as two parts, the embedding and the top-layer classifier. The
teacher first distills its knowledge to the student by bridging the gap between non-overlapping
label spaces in the top-layer classifier. In the second stage, the local embedding centers of the
teacher further improve training for the student. In Factor Transfer [15], the authors proposed
using convolutional modules as paraphrasers and s for knowledge transfer between teacher
and student model. The paraphraser and the translator extract teacher and student factors
respectively to calculate the factor transfer loss, which is then minimized during training.
Jing et al. [30] uses adaptive instance normalization to transfer the learned feature statistics
back to the teacher to determine whether such statistics learned by the student are reliable.
Recently, Li et al. [17] proposed using a student model with the same architecture as the
teacher but without residual paths. The student model’s outputs at each resolution stage are
the inputs for the teacher’s next resolution stage. The whole pipeline is trained using clas-
sification loss and final layer feature matching loss. The approach allows gradient to flow
through the teacher model, which can be very computationally expensive. Therefore, the
method has limited application to big model regimes. In addition to matching feature maps
at the same resolution, Chen et al. [2] proposed using feature maps at different resolutions as
an additional guide to the distillation process. However, the feature matching process can be
computationally expensive for a big teacher model due to having different resolution feature
maps for each resolution.

3 Method

3.1 Motivation
To learn features from a big pretrained model, we first define the equivalence between net-
works. Our definition is motivated by [23]. However, the definition in [23] is restrictive since
it only deals with the same output dimensions architectures. To overcome such restriction,
we create a more generalized definition using the language of differential geometry. Let M
be a manifold consists of all data points of a dataset, a Convolutional Neural Network (CNN)
F with Batch Normalization [12] and skip connections can be treated as a C1 mapping from
M to some feature manifold F(M). It is possible to treat F as a C1 mapping because of
the Lipschitz condition enforcing of Batch Normalization [24] and empirically smoothing of
skip connection [18] present in all of the standard CNN architectures. We also treat F(x) as
a local coordinate of F(M) for each data point x ∈ M. Then the new equivalent definition
can be stated as follows.

Definition 1 CNN T and CNN S are equivalent when ∀ x,y ∈M, S(x) = S(y) if and only if
T (x) = T (y).

Definition in [23] is a special case of Def. 1 because for any 2 data points x, y, we have T (x)=
S(x) and T (y) = S(y), hence when T extracts the same feature on x and y, S will extract the
same feature on those data points. Moreover, Def. 1 has a nice mathematical property when
T and S are constant rank mappings, there exists a manifold structural equivalent mapping
between T (M) and S(M), i.e., a diffeomorphism.

Theorem 1 ([16]) If T and S are constant rank C1 mappings from M to some feature mani-
folds T (M) and S(M), such that ∀x,y ∈M T (x) = T (y) if and only if S(x) = S(y), then there
exists a diffeomorphism between T (M) and S(M).
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Figure 1: A chest X-ray image and its slight variation in brightness and contrast version.
The features are extracted using the pretrained ResNext-32x48d-WSL [20]. Their features
Euclidean distance is approximately 5× 10−3 which is very closed considering the high
dimensionality of the feature space. a. Original Image. b. The same image with small
variation in brightness and contrast.

3.2 Diffeomorphism Matching
Def. 1 may not hold precisely in practice due to the high dimensionality of the extracted
features, i.e., 2 data points with the same features are likely to be the same. In addition to
that, The requirement of constant rank mapping for a CNN may not hold because of the
black-box nature of deep learning models. However, Fig. 1 shows that an image and its
slight variation in brightness and contrast version can have features that are very closed to
each other (Euclidean distance on order of 10−3). We treat this case as approximately equal
in practice. Furthermore, as can be shown, to make two networks equivalent as in Def. 1,
one only needs to make sure that their image is equivalent and their mapping diagram is
commutative (see Fig. 2).

Figure 2: Mapping diagram of 2 CNNs, T and S are equivalent CNN, H and H−1 are their
diffeomorphic mapping and its inverse.

Theorem 2 if T and S are C1 mapping from data manifold M to some feature manifolds
T (M) and S(M) such that there exists a diffeomorphism H with the property H ◦S = T and
H−1 ◦T = S, then T and S are equivalent (proof in supplementary material).

Based on Theorem 2, we propose a loss function that consists of 2 parts: commutative and
identity.

LDM = Lc +Lid, (1)
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where Lc is for ensuring that Fig. 2 is commutative, and Lid is to constraint the mapping H
between S(M) and T (M) to be diffeomorphic. More specifically,

Lc = ∑
x∈D
‖HS(x)−T (x)‖2

2 +‖H−1T (x)−S(x)‖2
2, (2)

Lid = ∑
x∈D
‖H−1HS(x)−S(x)‖2

2 +‖HH−1T (x)−T (x)‖2
2, (3)

where D is the training dataset, T is a pretrained teacher CNN, S is a randomly initialized
student CNN, and H, H−1 are modeled by two 3-layers fully connected networks. Since a
diffeomorphism mapping is, at the very least, a C1 mapping, we use the smooth activation
function ELU [5] in both H and H−1 to constraint them to have continuous derivative, hence
making it easier to approximate a diffeomorphism. Furthermore, as shown in [34], low-level
features learned by pretrained networks contain meaning such as corner and edge extrac-
tion. Therefore, we add a feature transfer loss LFT [9] to guide the student model to learn
meaningful low-level representation.

LFT = ∑
i

{
0 if r(S′i)≤ T ′i ≤ 0.
(r(S′i)−T ′i )

2 otherwise.
(4)

where i runs over all of feature map width, height, and channel, S′ and T ′ are the last fea-
ture maps at each resolution of S and T respectively, and r is a 1x1 Convolution layer that
transforms the feature S′ to match the dimension of T ′. LFT weakly matches the feature map
T ′ and S′ by aligning positive regions and negative regions where S′ is bigger than T ′. More
details description of LFT can be found in [9]. The final loss function is

L= LDM +λLFT. (5)

Fig. 3 shows the overview of our training process. S and T models’ intermediate features
are matched together using LFT while their final global features are matched together using
LDM. During the training process, there’s no gradient flowing back to the T model.

4 Experimental Result

4.1 Implementation Details
We leverage both public and private chest X-ray datasets in pretraining. For public datasets,
we make use of CheXpert [13], MIMIC-CXR [14], PadChest [1], and ChestX-ray14 [28].
For private dataset, we collected chest X-ray images from local hospitals (Due to anonymity,
we will release the data collection location later). The combined dataset contains approxi-
mately 1.2M unlabeled radiographs used for self-supervised pretraining. Table 1 shows the
detail of these datasets.

After getting the full dataset, we resize all radiographs to have a min size of 320 while
keeping the aspect ratio. The images are then normalized to have intensity values in the range
[−1,1]. We use random crop to 224× 224, horizontal flip, random brightness, translation,
rotation (max ±35◦), and scale for augmentations. Finally, we add cutout with a maximum
of 3 patches of 32x32 pixels.

We use billion-scale dataset pretrained model ResNext101-32x48d-WSL [20] for T model
to learn rich pretrained features. We also leverage the RegnetY design space in [21] to search
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//
Feature
Transfer

//

Figure 3: Overview of DM training procedure. Same color arrows are matched together in
MSE loss. The slash on the arrows show no gradient is propagated back to the T model.

Table 1: Datasets used in pretraining. #Label is the number of labeled radiograph. #Total is
the dataset size. DM pretraining does not use label.

Dataset #Label #Total Label Usage
in Pretraining

CheXpert 223,648 223,648 No
MIMIC-CXR 257,989 257,989 No
PadChest 154,396 154,396 No
ChestX-ray14 112,120 112,120 No
Private Dataset 130,030 484,235 No

Final Dataset - 1,232,388 No

for a good S model for chest X-ray tasks. Our design spaces consist of width multiplier
wm ∈ [2,2.5], bottleneck block ratio b ∈ [0.25,1], and SE [10] squeeze ratio s ∈ [1/16,1/2].
We trained 2K models sampled from all the design spaces on CheXpert dataset and analyze
the final result using EDF [21]. The best design space has wm = 2.5, b = 1, and s = 1/16
(more details in supplement). The final model, called RegChest, has approximately 63M
total number of parameters. For Eq. 5, we use λ = 1 in our training pipeline. We follow the
same setup as [9] for LFT.

For optimizer, we use SGD with Nesterov momentum of 0.9. The optimal initial learn-
ing rate was found to be 1.5, using the approach in [26]. We adopt the one-cycle (Super
Convergence) learning rate scheduling approach in [26] to train RegChest for 10 epochs. We
use the trained S model for fine-tuning downstream tasks. The whole training process was
on 4 NVIDIA v100 GPUs with a batch size of 128 (32 each GPU).
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4.2 Fine-tuning
We compare our pretrained model against standard pretrained models on two downstream
tasks, classification and segmentation. To reduce the effect of randomness, we trained each
model 3 times and took the average and standard deviation performance. For standard pre-
trained models, we used Densenet121 [11], ResNext101-32x8d [29], RegNetY-16GF [21],
Efficientnet-B7 [27], ResNext101-32x8d-WSL [20], and ResNext101-32x16d-WSL [20].
For the classification task, we fine-tuned pretrained models on CheXpert 13 abnormal find-
ings for 8 epochs using one-cycle scheduler (Super Convergence) [26] for fast convergence
with an input size of 512x512. The training procedure is kept the same for all the back-
bones. Due to its massive size, we didn’t fine-tune the teacher model ResNext-32x48d-WSL
because we can’t replicate the training condition of other models on it. Table 2 shows AUC
scores of all pretrained models on 500 radiographs in CheXpert test set.

DM based pretrained model RegChest peaks the best natural image pretrained model
(Densenet121) on AUC score by 0.4%. However, due to the imbalance between positive and
negative instances for each finding, AUC score is not the best performance indicator. We,
therefore, measure the F1 score of each model on CheXpert test set. Our pretrained model
surpassed the best natural image pretrained model (ResNext101-32x8d) on 9/13 findings
with an average F1 score gain of 4.2% (Table 2).

Table 2: AUC and F1 scores of pretrained models on all findings on CheXpert test set.
O(10−4) stands for value smaller than 5× 10−4. The best results are in bold. The average
AUC gain of DM and the best ImageNet pretrained model is 0.4%. The average F1 score
gain of DM and the best ImageNet pretrained model is 4.2%.

Findings Densenet121 Resnext101
32x8d

Resnext101
32x16d-WSL

Efficientnet
B7

RegnetY
16GF

RegChest
DM

AUC

Average 0.898 ± 0.006 0.885 ± 0.003 0.887 ± 0.004 0.875 ± 0.005 0.883 ± 0.005 0.902 ± 0.005

Enlarged Cardiomediastinum 0.808 ± 0.006 0.793 ± 0.006 0.783 ± 0.005 0.751 ± 0.011 0.760 ± 0.002 0.798 ± 0.007
Cardiomegaly 0.856 ± 0.003 0.843 ± 0.003 0.838 ± 0.002 0.806 ± 0.004 0.815 ± 0.006 0.856 ± 0.003
Lung Opacity 0.944 ± 0.004 0.943 ± O(10−4) 0.933 ± O(10−4) 0.934 ± O(10−4) 0.937 ± 0.001 0.940 ± 0.002
Lung Lesion 0.961 ± 0.019 0.961 ± 0.019 0.926 ± 0.003 0.926 ± 0.003 0.934 ± O(10−4) 0.979 ± 0.002
Edema 0.896 ± 0.002 0.899 ± 0.001 0.895 ± 0.005 0.900 ± 0.003 0.896 ± 0.003 0.906 ± O(10−4)O(10−4)O(10−4)
Consolidation 0.776 ± 0.009 0.761 ± 0.005 0.763 ± 0.003 0.765 ± 0.007 0.778 ± 0.002 0.787 ± 0.012
Pneumonia 0.794 ± 0.009 0.805 ± 0.002 0.795 ± 0.010 0.802 ± 0.004 0.827 ± 0.009 0.809 ± 0.006
Atelectasis 0.810 ± 0.008 0.811 ± 0.007 0.808 ± 0.001 0.807 ± 0.006 0.804 ± 0.003 0.832 ± 0.004
Pneumothorax 0.992 ± 0.001 0.991 ± O(10−4) 0.989 ± 0.001 0.989 ± 0.001 0.990 ± 0.002 0.992 ± O(10−4)O(10−4)O(10−4)
Pleural Effusion 0.962 ± 0.001 0.966 ± O(10−4)O(10−4)O(10−4) 0.959 ± O(10−4) 0.950 ± 0.001 0.958 ± 0.001 0.956 ± 0.001
Pleural Other 0.977 ± 0.007 0.965 ± 0.003 0.978 ± 0.004 0.955 ± 0.007 0.951 ± 0.009 0.982 ± 0.008
Fracture 0.925 ± 0.006 0.829 ± 0.011 0.894 ± 0.017 0.864 ± 0.016 0.864 ± 0.023 0.923 ± 0.015
Support Devices 0.976 ± 0.001 0.972 ± 0.002 0.974 ± 0.002 0.961 ± 0.001 0.971 ± O(10−4) 0.970 ± 0.001

F1

Average 0.532 ± 0.016 0.537 ± 0.008 0.523 ± 0.010 0.510 ± 0.022 0.516 ± 0.015 0.579 ± 0.022

Enlarged Cardiomediastinum 0.599 ± 0.031 0.578 ± 0.002 0.566 ± 0.012 0.571 ± 0.013 0.564 ± 0.014 0.640 ± 0.009
Cardiomegaly 0.643 ± 0.019 0.612 ± 0.005 0.604 ± 0.001 0.624 ± 0.012 0.602 ± 0.011 0.630 ± 0.009
Lung Opacity 0.878 ± 0.011 0.879 ± O(10−4)O(10−4)O(10−4) 0.862 ± 0.007 0.867 ± 0.007 0.870 ± 0.006 0.870 ± 0.011
Lung Lesion 0.427 ± 0.039 0.547 ± 0.035 0.483 ± 0.026 0.320 ± 0.015 0.415 ± 0.042 0.545 ± 0.025
Edema 0.610 ± 0.022 0.628 ± 0.002 0.614 ± 0.002 0.642 ± 0.006 0.637 ± 0.014 0.638 ± 0.005
Consolidation 0.320 ± 0.003 0.281 ± 0.006 0.282 ± 0.005 0.297 ± 0.020 0.333 ± 0.010 0.352 ± 0.035
Pneumonia 0.219 ± 0.019 0.230 ± 0.004 0.211 ± 0.009 0.188 ± 0.009 0.184 ± 0.009 0.273 ± 0.018
Atelectasis 0.587 ± 0.007 0.578 ± 0.001 0.583 ± 0.002 0.598 ± 0.012 0.598 ± 0.009 0.672 ± 0.015
Pneumothorax 0.563 ± 0.015 0.563 ± 0.025 0.546 ± 0.023 0.536 ± 0.051 0.502 ± 0.044 0.596 ± 0.035
Pleural Effusion 0.790 ± 0.014 0.789 ± 0.008 0.773 ± 0.010 0.767 ± 0.004 0.779 ± 0.005 0.796 ± 0.005
Pleural Other 0.218 ± 0.015 0.215 ± 0.011 0.221 ± 0.030 0.162 ± 0.136 0.154 ± 0.006 0.347 ± 0.105
Fracture 0.179 ± 0.011 0.197 ± 0.005 0.161 ± 0.002 0.180 ± 0.003 0.182 ± 0.018 0.276 ± 0.002
Support Devices 0.885 ± 0.007 0.890 ± 0.006 0.890 ± 0.008 0.874 ± 0.001 0.884 ± 0.008 0.892 ± 0.005

We also investigate whether our pretrained model transfers well to other downstream
tasks such as segmentation. We use the SIIM Pneumothorax dataset [25], which consists of
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10,675 radiographs with 8,296 negative and 2,379 positive data points for training and a test
set of 1,372 radiographs with 1,082 negatives and 290 positives. For segmentation model,
we adopt an Unet like architecture with pretrained models as backbones and an input size
of 256x256. We train the models for 70 epochs using Adam optimizer with learning rate
drop linearly from 10−3 to 0. The negatives proportion is gradually increased from 20%
to 60% throughout training to address data imbalance. All pretrained backbones use the
same training pipeline. As shown in Table 3, pretrained RegChest has a performance gain of
0.7% in Dice score compared with the best natural image pretrained model (Densenet121 and
ResNext 32x8d-WSL). The competitive performances on CheXpert and SIIM Pneumothorax
dataset show that features pretrained by DM transfer well to downstream tasks.

Table 3: Dice scores of pretrained models on SIIM Pneumothorax test set. The best Dice
scores are in bold. RegChest DM has a gain of 0.7% compared with other pretrained model.

Densenet121 Resnext101
32x8d

Resnext101
32x8d-WSL

Efficientnet
B7

RegnetY
16GF

RegChest
DM

Dice Score 0.808 ± 0.009 0.803 ± 0.009 0.808 ± 0.011 0.805 ± 0.004 0.806 ± 0.007 0.815 ± 0.002

4.3 Ablation Study

4.3.1 Loss Components and architecture

We study the contribution of each component in Eq. 5 as well as training RegChest from
scratch. For the contribution of each term, LDM outperforms LFT by 2.2% on F1 score in
classification and 0.7% on Dice score in segmentation (Table 4). The performance gains
show that LDM term in Eq. 5 contributes more than the LFT term. The reason is that LFT
only weakly transfers feature maps, as shown in Eq. 4, while LDM directly matches the final
feature vector of T and S with each other; hence it has better learning signals. Together,
they match local features and global features, leading to the best performance. For network
architecture, Table. 4 shows that DM pretraining model significantly outperforms its training
from scratch counterpart by 4.1% in AUC score and 6.6% in F1 score for classification, and
10.3% in Dice score for segmentation. Therefore, the performance gain of DM in Table. 2
and Table. 3 are from pretraining, not from better neural architecture.

Table 4: Contribution of each component of the loss function. LDM +LFT in Eq. 5 achieves
the best performance compared with training from scratch and each of its components. All
methods use the same RegChest architecture.

No
Pretrain LFT LDM

AUC
(CheXpert)

F1
(CheXpert)

Dice
(SIIM Pneumothorax)

X - - 0.861 ± 0.034 0.513 ± 0.065 0.712 ± 0.009
- X - 0.886 ± 0.003 0.515 ± 0.008 0.793 ± 0.004
- - X 0.886 ± 0.004 0.537 ± 0.012 0.801 ± 0.003
- X X 0.902 ± 0.005 0.579 ± 0.022 0.815 ± 0.002
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4.3.2 Compare with unsupervised pretraining

We compare DM with unsupervised pretraining methods that can be trained with 4 GPUs
such as MoCo v2 [4] and C2L [35]. We use the official implementation of MoCo v2 and
C2L on RegChest architecture. Due to the increase in memory size, we reduce the queue
size from 65K to 32.7K. Because MoCo and C2L training are unstable initially, we were not
able to apply one-cycle scheduling to it. Therefore, we follow the original setting to train
800 epochs for MoCo and 150 epochs for C2L with batch size 128. MoCo and C2L training
procedures use the same hardware settings and dataset as DM.

Table 5: Fine-tune performance of MoCo v2, C2L and DM on CheXpert and SIIM Pneu-
mothorax dataset. DM outperforms MoCo v2 and C2L in fine-tuning performance while
substantially reducing training time.

Pretraining
Methods

AUC
(CheXpert)

F1
(CheXpert)

Dice
(SIIM Pneumothorax)

Training Time
(days)

MoCo v2 0.882 ± 0.004 0.533 ± 0.012 0.806 ± 0.007 28.30
C2L 0.889 ± 0.003 0.522 ± 0.009 0.805 ± 0.004 25.80
DM 0.902 ± 0.005 0.579 ± 0.022 0.815 ± 0.002 1.35

As shown in Table 5, DM outperforms MoCo v2 and C2L on downstream tasks with
more than 1.3% gain in AUC score and 4.5% in F1 score on CheXpert, and 0.9% in Dice
score on SIIM Pneumothorax while reducing the training duration by 95% (20 times faster).
The substantial reduction in training time is due to a more stable loss function, leading to a
more straightforward application of sophisticated learning rate scheduling. We hypothesize
the F1, AUC, and Dice score performance gain is due to learning richer features from a big
model trained on a billion-scale dataset. We acknowledge that using a pretrained teacher
model is unfair to MoCo and C2L. However, integrating a big pretrained teacher model to
the other methods is not trivial; hence it does not lie in the scope of this paper.

4.3.3 Compare with distillation method

Because our method can be treated as distillation from a teacher model to a student model,
we compare our method with distillation methods that can be used for unsupervised pretrain-
ing such as Attention Transfer (AT) [33] , Feature Transfer (FT) [9] and Matching Guided
Distillation (MGD) [32]. For AT, FT, and MGD, we only use their feature loss for pretrain-
ing.

Table 6: Performance of fine-tuned pretrained models using distillation methods and DM on
CheXpert test set. DM surpassed the best distillation method with a 1.4% increase in AUC
score and 3.7% increase in F1 score.

Methods AUC F1

AT 0.882 ± 0.006 0.542 ± 0.007
FT 0.886 ± 0.003 0.515 ± 0.008
MGD 0.893 ± 0.003 0.532 ± 0.007
DM 0.902 ± 0.005 0.579 ± 0.022

DM pretrained model outperforms AT, FT, and MGD on both AUC and F1 score on
CheXpert with an average gain of 1.5% on AUC score and 4.9% on F1 score. (Table 6).
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AT, FT, and MGD requires supervisory signal from a teacher model trained on labeled data
to achieve a good final performance. Therefore, in the case of lacking such signal, their
performances fall short compared to DM.

4.3.4 Different pretrained T models

We study the effect of pretraining the S model with different T models trained on ImageNet
and IG-1B datasets. Table. 7 shows that using ResNext-32x8d-WSL T model improved F1
score of the S model by 1.5% on CheXpert test set compared to using the same T model pre-
trained on ImageNet dataset. The improvement indicates that using the T model pretrained
on larger dataset results in a better S model. Furthermore, just like other distillation methods,
the performance of the S model increases as the size of the T model increases. The increment
in performance shows that bigger models extract more diverse features, which leads to better
distillation results.

Table 7: Performance results of the S model using various T models on CheXpert test set. S
achieves the best performance in AUC and F1 score when using the largest model on IG-1B
dataset.

Pretrained T Model # Parameters AUC F1

ResNext-32x8d 88M 0.878 ± 0.003 0.531 ± 0.013
ResNext-32x8d-WSL 88M 0.880 ± 0.003 0.546 ± 0.021
ResNext-32x16d-WSL 193M 0.886 ± 0.004 0.551 ± 0.020
ResNext-32x48d-WSL 829M 0.902 ± 0.005 0.579 ± 0.022

ImageNet pretrained model ResNext-32x8d performs almost the same as its student
model in both AUC and F1 scores (Table 2 and Table. 7). This sameness shows that DM
effectively preserves the performance of the T model. However, for the case of ResNext-
32x16d-WSL model, Table. 7 shows that S improves the F1 score by 2.8% compared to T
(Table. 2). We hypothesize this improvement is due to the over-parameterization [22] of
the teacher model (193M parameters) compared with the student model (63M parameters).
This over-parameterization leads to the teacher model being easily overfitted on the training
dataset compared with the student model. Our method, DM, helps retain the teacher model’s
feature extraction capability while using a substantially smaller student model. We analyze
the distribution of feature matching errors in the supplementary material.

5 Conclusion

This work proposed a Diffeomorphism Matching training method that uses pretrained fea-
tures of a model trained on a billion-size dataset. By using such a large model trained on
a big dataset, our final model surpasses other pretrained models on downstream tasks such
as classification and segmentation. The improvement in performances on downstream tasks
shows that our method alleviates the need to acquire a billion-size dataset in chest X-ray
imaging. Furthermore, our method substantially decreases unsupervised pretrainining time
compared with other methods. We hypothesize that integrating a pretrained teacher model
into contrastive self-training loops would improve its performance on downstream tasks fur-
ther. We leave it to future work to explore this approach.

Citation
Citation
{Raghu, Zhang, Kleinberg, and Bengio} 2019



THANH M. HUYNH, CHANH D.TR. NGUYEN, ET AL: DIFFEOMORPHISM MATCHING 11

References
[1] Aurelia Bustos, Antonio Pertusa, José María Salinas, and Maria de la Iglesia-Vayá.

Padchest: A large chest x-ray image dataset with multi-label annotated reports. Medical
Image Anal., 66:101797, 2020. doi: 10.1016/j.media.2020.101797. URL https:
//doi.org/10.1016/j.media.2020.101797.

[2] Pengguang Chen, Shu Liu, Hengshuang Zhao, and Jiaya Jia. Distilling knowledge via
knowledge review. In IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2021, virtual, June 19-25, 2021, pages 5008–5017. Computer Vision Foun-
dation / IEEE, 2021. URL https://openaccess.thecvf.com/content/
CVPR2021/html/Chen_Distilling_Knowledge_via_Knowledge_
Review_CVPR_2021_paper.html.

[3] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A sim-
ple framework for contrastive learning of visual representations. In Proceedings of
the 37th International Conference on Machine Learning, ICML 2020, 13-18 July
2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pages
1597–1607. PMLR, 2020. URL http://proceedings.mlr.press/v119/
chen20j.html.

[4] Xinlei Chen, Haoqi Fan, Ross B. Girshick, and Kaiming He. Improved baselines
with momentum contrastive learning. CoRR, abs/2003.04297, 2020. URL https:
//arxiv.org/abs/2003.04297.

[5] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep
network learning by exponential linear units (elus). In Yoshua Bengio and Yann LeCun,
editors, 4th International Conference on Learning Representations, ICLR 2016, San
Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016. URL http:
//arxiv.org/abs/1511.07289.

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li. Imagenet: A
large-scale hierarchical image database. In 2009 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR 2009), 20-25 June 2009, Miami,
Florida, USA, pages 248–255. IEEE Computer Society, 2009. doi: 10.1109/CVPR.
2009.5206848. URL https://doi.org/10.1109/CVPR.2009.5206848.

[7] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H.
Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Ávila Pires, Zhao-
han Guo, Mohammad Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu, Rémi
Munos, and Michal Valko. Bootstrap your own latent - A new approach
to self-supervised learning. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia
Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neu-
ral Information Processing Systems 33: Annual Conference on Neural Informa-
tion Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual,
2020. URL https://proceedings.neurips.cc/paper/2020/hash/
f3ada80d5c4ee70142b17b8192b2958e-Abstract.html.

[8] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross B. Girshick. Momentum
contrast for unsupervised visual representation learning. In 2020 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June

https://doi.org/10.1016/j.media.2020.101797
https://doi.org/10.1016/j.media.2020.101797
https://openaccess.thecvf.com/content/CVPR2021/html/Chen_Distilling_Knowledge_via_Knowledge_Review_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Chen_Distilling_Knowledge_via_Knowledge_Review_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Chen_Distilling_Knowledge_via_Knowledge_Review_CVPR_2021_paper.html
http://proceedings.mlr.press/v119/chen20j.html
http://proceedings.mlr.press/v119/chen20j.html
https://arxiv.org/abs/2003.04297
https://arxiv.org/abs/2003.04297
http://arxiv.org/abs/1511.07289
http://arxiv.org/abs/1511.07289
https://doi.org/10.1109/CVPR.2009.5206848
https://proceedings.neurips.cc/paper/2020/hash/f3ada80d5c4ee70142b17b8192b2958e-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/f3ada80d5c4ee70142b17b8192b2958e-Abstract.html


12 THANH M. HUYNH, CHANH D.TR. NGUYEN, ET AL: DIFFEOMORPHISM MATCHING

13-19, 2020, pages 9726–9735. IEEE, 2020. doi: 10.1109/CVPR42600.2020.00975.
URL https://doi.org/10.1109/CVPR42600.2020.00975.

[9] Byeongho Heo, Jeesoo Kim, Sangdoo Yun, Hyojin Park, Nojun Kwak, and Jin Young
Choi. A comprehensive overhaul of feature distillation. In 2019 IEEE/CVF Interna-
tional Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27
- November 2, 2019, pages 1921–1930. IEEE, 2019. doi: 10.1109/ICCV.2019.00201.
URL https://doi.org/10.1109/ICCV.2019.00201.

[10] Jie Hu, Li Shen, Samuel Albanie, Gang Sun, and Enhua Wu. Squeeze-and-excitation
networks. IEEE Trans. Pattern Anal. Mach. Intell., 42(8):2011–2023, 2020. doi:
10.1109/TPAMI.2019.2913372. URL https://doi.org/10.1109/TPAMI.
2019.2913372.

[11] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely
connected convolutional networks. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages 2261–
2269. IEEE Computer Society, 2017. doi: 10.1109/CVPR.2017.243. URL https:
//doi.org/10.1109/CVPR.2017.243.

[12] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. In Francis R. Bach and David M.
Blei, editors, Proceedings of the 32nd International Conference on Machine Learning,
ICML 2015, Lille, France, 6-11 July 2015, volume 37 of JMLR Workshop and Confer-
ence Proceedings, pages 448–456. JMLR.org, 2015. URL http://proceedings.
mlr.press/v37/ioffe15.html.

[13] Jeremy Irvin, Pranav Rajpurkar, Michael Ko, Yifan Yu, Silviana Ciurea-Ilcus, Chris
Chute, Henrik Marklund, Behzad Haghgoo, Robyn L. Ball, Katie S. Shpanskaya,
Jayne Seekins, David A. Mong, Safwan S. Halabi, Jesse K. Sandberg, Ricky Jones,
David B. Larson, Curtis P. Langlotz, Bhavik N. Patel, Matthew P. Lungren, and An-
drew Y. Ng. Chexpert: A large chest radiograph dataset with uncertainty labels and
expert comparison. In The Thirty-Third AAAI Conference on Artificial Intelligence,
AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Con-
ference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Arti-
ficial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1,
2019, pages 590–597. AAAI Press, 2019. doi: 10.1609/aaai.v33i01.3301590. URL
https://doi.org/10.1609/aaai.v33i01.3301590.

[14] Alistair E. W. Johnson, Tom J. Pollard, Seth J. Berkowitz, Nathaniel R. Green-
baum, Matthew P. Lungren, Chih-ying Deng, Roger G. Mark, and Steven Horng.
MIMIC-CXR: A large publicly available database of labeled chest radiographs. CoRR,
abs/1901.07042, 2019. URL http://arxiv.org/abs/1901.07042.

[15] Jangho Kim, Seonguk Park, and Nojun Kwak. Paraphrasing complex net-
work: Network compression via factor transfer. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 31. Curran Associates, Inc.,
2018. URL https://proceedings.neurips.cc/paper/2018/file/
6d9cb7de5e8ac30bd5e8734bc96a35c1-Paper.pdf.

https://doi.org/10.1109/CVPR42600.2020.00975
https://doi.org/10.1109/ICCV.2019.00201
https://doi.org/10.1109/TPAMI.2019.2913372
https://doi.org/10.1109/TPAMI.2019.2913372
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/CVPR.2017.243
http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html
https://doi.org/10.1609/aaai.v33i01.3301590
http://arxiv.org/abs/1901.07042
https://proceedings.neurips.cc/paper/2018/file/6d9cb7de5e8ac30bd5e8734bc96a35c1-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/6d9cb7de5e8ac30bd5e8734bc96a35c1-Paper.pdf


THANH M. HUYNH, CHANH D.TR. NGUYEN, ET AL: DIFFEOMORPHISM MATCHING 13

[16] John M. Lee. Introduction to Smooth Manifolds - Chapter 5 - Theorem 5.21. Springer
New York, 2012. doi: 10.1007/978-1-4419-9982-5. URL https://doi.org/10.
1007/978-1-4419-9982-5.

[17] Guilin Li, Junlei Zhang, Yunhe Wang, Chuanjian Liu, Matthias Tan, Yunfeng Lin,
Wei Zhang, Jiashi Feng, and Tong Zhang. Residual distillation: Towards portable
deep neural networks without shortcuts. In Hugo Larochelle, Marc’Aurelio Ran-
zato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances
in Neural Information Processing Systems 33: Annual Conference on Neural In-
formation Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual,
2020. URL https://proceedings.neurips.cc/paper/2020/hash/
657b96f0592803e25a4f07166fff289a-Abstract.html.

[18] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the
loss landscape of neural nets. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle,
Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances in Neu-
ral Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada,
pages 6391–6401, 2018. URL https://proceedings.neurips.cc/paper/
2018/hash/a41b3bb3e6b050b6c9067c67f663b915-Abstract.html.

[19] Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso Se-
tio, Francesco Ciompi, Mohsen Ghafoorian, Jeroen A. W. M. van der Laak, Bram van
Ginneken, and Clara I. Sánchez. A survey on deep learning in medical image analy-
sis. Medical Image Anal., 42:60–88, 2017. doi: 10.1016/j.media.2017.07.005. URL
https://doi.org/10.1016/j.media.2017.07.005.

[20] Dhruv Mahajan, Ross B. Girshick, Vignesh Ramanathan, Kaiming He, Manohar
Paluri, Yixuan Li, Ashwin Bharambe, and Laurens van der Maaten. Exploring the
limits of weakly supervised pretraining. In Vittorio Ferrari, Martial Hebert, Cris-
tian Sminchisescu, and Yair Weiss, editors, Computer Vision - ECCV 2018 - 15th
European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part
II, volume 11206 of Lecture Notes in Computer Science, pages 185–201. Springer,
2018. doi: 10.1007/978-3-030-01216-8\_12. URL https://doi.org/10.
1007/978-3-030-01216-8_12.

[21] Ilija Radosavovic, Raj Prateek Kosaraju, Ross B. Girshick, Kaiming He, and Piotr
Dollár. Designing network design spaces. In 2020 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19,
2020, pages 10425–10433. IEEE, 2020. doi: 10.1109/CVPR42600.2020.01044. URL
https://doi.org/10.1109/CVPR42600.2020.01044.

[22] Maithra Raghu, Chiyuan Zhang, Jon M. Kleinberg, and Samy Bengio. Transfu-
sion: Understanding transfer learning for medical imaging. In Hanna M. Wal-
lach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox,
and Roman Garnett, editors, Advances in Neural Information Processing Sys-
tems 32: Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages 3342–3352,
2019. URL https://proceedings.neurips.cc/paper/2019/hash/
eb1e78328c46506b46a4ac4a1e378b91-Abstract.html.

https://doi.org/10.1007/978-1-4419-9982-5
https://doi.org/10.1007/978-1-4419-9982-5
https://proceedings.neurips.cc/paper/2020/hash/657b96f0592803e25a4f07166fff289a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/657b96f0592803e25a4f07166fff289a-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/a41b3bb3e6b050b6c9067c67f663b915-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/a41b3bb3e6b050b6c9067c67f663b915-Abstract.html
https://doi.org/10.1016/j.media.2017.07.005
https://doi.org/10.1007/978-3-030-01216-8_12
https://doi.org/10.1007/978-3-030-01216-8_12
https://doi.org/10.1109/CVPR42600.2020.01044
https://proceedings.neurips.cc/paper/2019/hash/eb1e78328c46506b46a4ac4a1e378b91-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/eb1e78328c46506b46a4ac4a1e378b91-Abstract.html


14 THANH M. HUYNH, CHANH D.TR. NGUYEN, ET AL: DIFFEOMORPHISM MATCHING

[23] David Rolnick and Konrad P. Kording. Reverse-engineering deep relu networks. In
Proceedings of the 37th International Conference on Machine Learning, ICML 2020,
13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning
Research, pages 8178–8187. PMLR, 2020. URL http://proceedings.mlr.
press/v119/rolnick20a.html.

[24] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry.
How does batch normalization help optimization? In Samy Bengio,
Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi,
and Roman Garnett, editors, Advances in Neural Information Processing Sys-
tems 31: Annual Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 2488–2498,
2018. URL https://proceedings.neurips.cc/paper/2018/hash/
905056c1ac1dad141560467e0a99e1cf-Abstract.html.

[25] SIIM. Siim pneumothorax segmentation dataset, 2019. data
retrieved from Kaggle, https://www.kaggle.com/c/
siim-acr-pneumothorax-segmentation.

[26] Leslie N. Smith and Nicholay Topin. Super-convergence: Very fast training of residual
networks using large learning rates. CoRR, abs/1708.07120, 2017. URL http://
arxiv.org/abs/1708.07120.

[27] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolu-
tional neural networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Pro-
ceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15
June 2019, Long Beach, California, USA, volume 97 of Proceedings of Machine Learn-
ing Research, pages 6105–6114. PMLR, 2019. URL http://proceedings.
mlr.press/v97/tan19a.html.

[28] Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi Bagheri, and
Ronald M. Summers. Chestx-ray8: Hospital-scale chest x-ray database and bench-
marks on weakly-supervised classification and localization of common thorax diseases.
In 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017,
Honolulu, HI, USA, July 21-26, 2017, pages 3462–3471. IEEE Computer Society,
2017. doi: 10.1109/CVPR.2017.369. URL https://doi.org/10.1109/CVPR.
2017.369.

[29] Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggre-
gated residual transformations for deep neural networks. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26,
2017, pages 5987–5995. IEEE Computer Society, 2017. doi: 10.1109/CVPR.2017.634.
URL https://doi.org/10.1109/CVPR.2017.634.

[30] Jing Yang, Brais Martinez, Adrian Bulat, and Georgios Tzimiropoulos. Knowledge
distillation via adaptive instance normalization, 2020.

[31] Han-Jia Ye, Su Lu, and De-Chuan Zhan. Distilling cross-task knowledge via relation-
ship matching. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2020. doi: 10.1109/cvpr42600.2020.01241.

http://proceedings.mlr.press/v119/rolnick20a.html
http://proceedings.mlr.press/v119/rolnick20a.html
https://proceedings.neurips.cc/paper/2018/hash/905056c1ac1dad141560467e0a99e1cf-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/905056c1ac1dad141560467e0a99e1cf-Abstract.html
https://www.kaggle.com/c/siim-acr-pneumothorax-segmentation
https://www.kaggle.com/c/siim-acr-pneumothorax-segmentation
http://arxiv.org/abs/1708.07120
http://arxiv.org/abs/1708.07120
http://proceedings.mlr.press/v97/tan19a.html
http://proceedings.mlr.press/v97/tan19a.html
https://doi.org/10.1109/CVPR.2017.369
https://doi.org/10.1109/CVPR.2017.369
https://doi.org/10.1109/CVPR.2017.634


THANH M. HUYNH, CHANH D.TR. NGUYEN, ET AL: DIFFEOMORPHISM MATCHING 15

[32] Kaiyu Yue, Jiangfan Deng, and Feng Zhou. Matching guided distillation. In An-
drea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm, editors, Com-
puter Vision - ECCV 2020 - 16th European Conference, Glasgow, UK, August 23-
28, 2020, Proceedings, Part XV, volume 12360 of Lecture Notes in Computer Sci-
ence, pages 312–328. Springer, 2020. doi: 10.1007/978-3-030-58555-6\_19. URL
https://doi.org/10.1007/978-3-030-58555-6_19.

[33] Sergey Zagoruyko and Nikos Komodakis. Paying more attention to attention: Improv-
ing the performance of convolutional neural networks via attention transfer. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL
https://openreview.net/forum?id=Sks9_ajex.

[34] Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolutional net-
works. In David J. Fleet, Tomás Pajdla, Bernt Schiele, and Tinne Tuytelaars, edi-
tors, Computer Vision - ECCV 2014 - 13th European Conference, Zurich, Switzerland,
September 6-12, 2014, Proceedings, Part I, volume 8689 of Lecture Notes in Computer
Science, pages 818–833. Springer, 2014. doi: 10.1007/978-3-319-10590-1\_53. URL
https://doi.org/10.1007/978-3-319-10590-1_53.

[35] Hong-Yu Zhou, Shuang Yu, Cheng Bian, Yifan Hu, Kai Ma, and Yefeng Zheng. Com-
paring to learn: Surpassing imagenet pretraining on radiographs by comparing im-
age representations. In Anne L. Martel, Purang Abolmaesumi, Danail Stoyanov, Di-
ana Mateus, Maria A. Zuluaga, S. Kevin Zhou, Daniel Racoceanu, and Leo Joskow-
icz, editors, Medical Image Computing and Computer Assisted Intervention - MIC-
CAI 2020 - 23rd International Conference, Lima, Peru, October 4-8, 2020, Proceed-
ings, Part I, volume 12261 of Lecture Notes in Computer Science, pages 398–407.
Springer, 2020. doi: 10.1007/978-3-030-59710-8\_39. URL https://doi.org/
10.1007/978-3-030-59710-8_39.

https://doi.org/10.1007/978-3-030-58555-6_19
https://openreview.net/forum?id=Sks9_ajex
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-030-59710-8_39
https://doi.org/10.1007/978-3-030-59710-8_39

