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Abstract

We present a global registration algorithm for multi-modal geometric data, typically
3D point clouds and meshes. Existing feature-based methods and recent deep learning
based approaches typically rely upon point-to-point matching strategies that often fail
to deliver accurate results from defect-laden data. In contrast, we reason at the scale of
planar shapes whose detection from input data offers robustness on a range of defects,
from noise to outliers through heterogeneous sampling. The detected planar shapes are
projected into an accumulation space from which a rotational alignment is operated.
A second step then refines the result with a local continuous optimization which also
estimates the scale. We demonstrate the robustness and efficacy of our algorithm on
challenging real-world data. In particular, we show that our algorithm competes well
against state-of-the-art methods, especially on piece-wise planar objects and scenes.

1 Introduction
3D registration of multi-modal data is a long-standing challenge when working with real-
world 3D objects. Geometric data obtained from different acquisition modalities (e.g. laser
scans, multi-view stereo reconstruction) or created by modeling tools are represented in var-
ious forms, i.e. as point clouds or meshes, and exhibit different geometric properties in terms
of noise, resolution or the scale. Classical problems in multi-modal registration involve reg-
istering a low-quality point cloud to a high-quality mesh, and registering a dense point cloud
to a simplified mesh model.

Challenges in multi-modal registration arise from several aspects. Imperfection in data
acquisition includes occlusions and non-uniform sampling density. Different surface repre-
sentations, i.e. meshes and point clouds, often have different levels of detail and accuracy,
making both traditional feature-based methods [32, 55, 57, 75] and deep learning architec-
tures [3, 15, 40, 68, 69] unsuited for this task. Variation in acquisition modalities can lead
to scale ambiguity, e.g. multi-view stereo generates data in an unknown scale, which further
complicates the problem. The majority of existing methods [6, 12, 43, 49, 72, 74] focus
on aligning 3D models to depth scans under the assumption that the model and the depth
scan are already at the same scale. This is not the case for many real-world scenarios, where
either the collected data or the 3D object model may have no absolute scale associated.
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Simple pre-processing by estimating and correcting the scale before calling the registration
step often fails for non-uniformly sampled data or partially overlapping data. Several works
[17, 21, 28, 34, 44] have considered relative scale estimation. These methods treat the scale
estimation as a separate step, therefore there lacks a unified formulation that simultaneously
solve for the scale, rotation and translation.

In this work, we present a method for the global registration of multi-model geometric
data of different scales, as illustrated in Fig. 1. It consists in, first, a rotational alignment
that analyses the surface-normal distributions of the mesh and planar shapes detected from
the input point set, and then a local refinement based on continuous optimization with Lie
Algebra. The motivation behind our use of planar shapes arises from two aspects. First, pla-
nar shape detection methods, which have been successfully used in various vision tasks such
as camera pose estimation [51], Structure from Motion [52, 77], or surface reconstruction
[5], offer robustness to noise, outliers and varying sampling density, as opposed to directly
working with raw point clouds. Second, it gives a natural approximation of the distance
field of the underlying surface of the point cloud. The surface-normal representation is in-
variant to scaling and translation, which enables the estimation of the initial rotation matrix
independently. In contrary to previous work, we formulate the scale estimation as a part of
the continuous optimization problem based on distance field in the refinement step, with no
need of an initial guess for the scale. Our non-feature-based approach is robust to variations
of levels of details, noise and sampling density across different inputs, and is suitable for
processing large point clouds.

2 Related Work
We distinguish four families of methods for registering rigid 3D objects.

Local registration with known scale. ICP [6] is the best-known algorithm for finding
the SE(3) transformation between surfaces. Variants of ICP [7, 24, 53, 54, 59, 74] are pro-
posed to address different issues, such as radius of convergence, computational efficiency,
noise, partiality and sparsity. Probabilistic approaches like EM-ICP [27] and Gaussian Mix-
ture Model based methods [20, 22, 25, 36] are introduced for robustness to noise and outliers.
Another branch of work concerns direct matching of distance functions [11, 13, 48, 60],
which is more accurate and robust than ICP given sufficient spatial resolution.

Global registration with known scale. A popular family of methods involve establish-
ing feature correspondences [32, 55, 57]. Fast Global Registration (FGR) [75] improves
the inlier ratio of the correspondence set effectively by simple tests without recomputation.
4PCS [2] and Super4PCS [43] effectively lower the complexity of RANSAC by exploring
the motion space with co-planar 4-point quadrilateral matching. Another family of methods
use a branch-and-bound (BnB) strategy to exhaustively explore the solution space for a good
optimum, but suffer from slow convergence (Go-ICP [72], GOSMA [12]). Fast rotation
search algorithm with a new bounding function for BnB has been introduced for accelera-
tion [49]. Eckart et al. [21] propose a multi-scale point matching process using a hierarchy
of Gaussian Mixtures. Many works explore the use of alternative shape embedding. One
family of methods utilize the Fourier transform to decouple rotation and translation [8, 38],
but is sensitive to the voxel resolution. The signed distance field, encoded in a discrete voxel
grid, is a popular implicit representation for registering depth images [10, 47, 61].

Citation
Citation
{Corsini, Dellepiane, Ganovelli, Gherardi, Fusiello, and Scopigno} 2013

Citation
Citation
{Eckart, Kim, and Kautz} 2018

Citation
Citation
{Gupta, ArbelÃ¡ez, Girshick, and Malik} 2015

Citation
Citation
{Ishimtsev, Bokhovkin, Artemov, Ignatyev, Niessner, Zorin, and Burnaev} 2020

Citation
Citation
{Mellado, Dellepiane, and Scopigno} 2016

Citation
Citation
{Raposo, Lourenco, Antunes, and Barreto} 2013

Citation
Citation
{Raposo, Antunes, and Barreto} 2018

Citation
Citation
{Zhou, Jin, and Ma} 2012

Citation
Citation
{Bauchet and Lafarge} 2020

Citation
Citation
{{Besl} and {McKay}} 1992

Citation
Citation
{Bouaziz, Tagliasacchi, and Pauly} 2013

Citation
Citation
{Fitzgibbon} 2001

Citation
Citation
{{Rusinkiewicz} and {Levoy}} 2001

Citation
Citation
{Rusinkiewicz} 2019

Citation
Citation
{Segal, Hahnel, and Thrun} 2009

Citation
Citation
{Zhang, Yao, and Deng} 2021

Citation
Citation
{Granger and Pennec} 2002

Citation
Citation
{Eckart, Kim, Troccoli, Kelly, and Kautz} 2015

Citation
Citation
{Evangelidis and Horaud} 2018

Citation
Citation
{Gao and Tedrake} 2019

Citation
Citation
{Jian and Vemuri} 2011

Citation
Citation
{Bylow, Sturm, Kerl, and Kahl} 2013{}

Citation
Citation
{Canelhas, Stoyanov, and Lilienthal} 2013

Citation
Citation
{Paragios, Rousson, and Ramesh} 2002

Citation
Citation
{Slavcheva, Kehl, Navab, and Ilic} 2016

Citation
Citation
{Holz, Ichim, Tombari, Rusu, and Behnke} 2015

Citation
Citation
{Rusu, Blodow, and Beetz} 2009

Citation
Citation
{Schnabel, Wahl, and Klein} 2007

Citation
Citation
{Zhou, Park, and Koltun} 2016

Citation
Citation
{Aiger, Mitra, and Cohen-Or} 2008

Citation
Citation
{Mellado, Aiger, and Mitra} 2014

Citation
Citation
{Yang, Li, and Jia} 2013

Citation
Citation
{Campbell, Petersson, Kneip, Li, and Gould} 2019

Citation
Citation
{Parraprotect unhbox voidb@x penalty @M  {}Bustos, Chin, Eriksson, Li, and Suter} 2016

Citation
Citation
{Eckart, Kim, and Kautz} 2018

Citation
Citation
{Bülow and Birk} 2013

Citation
Citation
{Keller, Shkolnisky, and Averbuch} 2006

Citation
Citation
{Bylow, Sturm, Kerl, Kahl, and Cremers} 2013{}

Citation
Citation
{Newcombe, Izadi, Hilliges, Molyneaux, Kim, Davison, Kohi, Shotton, Hodges, and Fitzgibbon} 2011

Citation
Citation
{Slavcheva, Kehl, Navab, and Ilic} 2018



LI, LAFARGE: PLANAR SHAPE BASED REGISTRATION FOR MULTI-MODAL GEOMETRY 3

Learning-based methods with known scale. Recent advances in deep learning lead
to the development of several neural networks for point cloud registration. The models can
be roughly categorized as non-iterative and iterative methods. Non-iterative models have a
natural speed advantage. Deep Closest Point [68] utilizes a transformer network for feature
matching coupled with SVD for point-to-point registration. DeepGMR [73] avoids point-to-
point matches by integrating the network inside a probabilistic registration paradigm: this
solution reduces complexity while improving robustness. Iterative methods are believed to
be more robust to partially overlapping inputs [3, 15, 40, 69]. In particular, PointNetLK
[3] adapts PointNet into the Lucas-Kanade algorithm. PRNet [69] extends DCP to an itera-
tive pipeline with keypoint detection designed for partial-to-partial registration. IDAM [40]
proposes a distance-aware similarity matrix convolution for finding correspondences. Deep
Global Registration [15] is an end-to-end 6D ConvNet built upon FCGF [23] and works well
on real-world dataset.

Multi-modal registration with an unknown scale. The registration of multi-modal
geometric data often involves estimating the relative scale between different types of data,
e.g. when aligning a CAD model to a point cloud scan, and when registering volumetric
images obtained from different modalities. A survey covering issues and methods related to
this task can be found in [56]. The most straightforward method which simply normalizes
scales in pre-processing [33] is unsuitable for partially overlapping and noisy data. Exten-
sions of ICP integrate scale factor estimation by including a separate minimization step [78],
by incorporating a bounded scale matrix [19], by registering cumulative contribution rate
curves [41], or by using the maximum correntropy criterion [71]. Coherent Point Drift [45]
and its extensions [30, 31] formulate the task as a probability density estimation problem
and re-parametrizes GMM centroids with rigid parameters including the scale. Corsini et al.
[17] extend 4PCS and propose a method for point-cloud-to-3D-model registration. Bulow
et al. [9] extend the Fourier transform approach to incorporate scale estimation. Paudel et al.
[50] formulate the task as a point-to-plane assignment problem utilizing a plane-based as-
sumption of the 3D scene. Mellado et al. [44] introduce a descriptor based on Growing Least
Squares for scale-invariant matching. Registration of 3D images from different scan modal-
ities is an important task in medical imaging [42], where level-set algorithms [18, 64, 67]
are widely applied. Another sub-family of methods concern aligning CAD models from a
collection of pre-specified categories to depth scans. These approaches determine the scale
via object detection in terms of 3D bounding boxes, but are limited to training categories.
Among these studies, Song et al. [62] assume that the gravity direction is known and estimate
rotation only around the gravity axis. Gupta et al. [28] rely on traditional ICP for aligning
the input point set and the point set rendered from the model. Izadinia et al. [35] proposes
a learning-based ICP approach which formulates the rotation estimation problem as a policy
learning task for viewpoint prediction. Deformation of the CAD model is considered by a
few works [4, 34, 46] for better fitting. Our approach differs from the above pipelines by
integrating scale, rotation and translation into a single optimization framework.

3 Algorithm
We consider as input a pair of 3D data composed of a point cloud and a surface mesh which
we denote by the source and the target respectively. The relative scale between them is un-
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Figure 1: Overview of the proposed method. Planar shapes are first extracted from the input
point cloud and surface mesh. From the surface-normal distribution of planar shapes (green
corresponds to a high portion of planar area with normal pointing towards the arrow direc-
tion), three dominant directions are estimated, called a 3-frame. The 3-frames are aligned
between the source and the target, leading to 24 possible rotations (only three are represented
here). The refinement step takes each candidate rotation and estimate a final similarity trans-
form. The alignment with the minimal loss is kept as the final result (see red frame).

known and the overlap can be partial. The goal is to determine the parameters of a similarity
transformation S which best aligns the source against the target,

S =

[
sR t
0T 1

]
∈ R4×4 (1)

where s ∈R, R ∈R3×3 and t ∈R3 are the scale factor, the rotation matrix and the translation
vector respectively.

The application of distance function representation removes the need for explicitly solv-
ing for correspondences. At first glance, it is intuitive to formulate the task as a least squares
problem in the same way as rigid registration [24] using the distance field. Let {di}nd

1 be
a set of nd points from the source, and Dm : p ∈ R3 7→ d ∈ R be the distance field of the
target surface, which maps a 3D point p to its Euclidean distance d to the closest point on
the surface. Simple adaptation of the rigid registration formulation leads to a loss function
given by

U(S) =
nd

∑
i=1
|Dm(Sdi)|2 (2)

where conversion from homogeneous coordinates to Cartesian coordinates is omitted for
simplicity of notations. The above formulation, however, has an infinite number of global
minima U = 0 at scale factor s = 0, where the source simply shrinks to a single point on
the target. These undesirable global minima result from the difference between Euclidean
transformation and similarity transformation.

We propose an improved formulation by considering also the distance field Dd of the
underlying surface of the source. Let {mi}nm

1 denote a set of nm points sampled from the
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target. The proposed loss is given by

U(S) =
1
nd

nd

∑
i=1
|Dm(Sdi)|2 +

1
nm

nm

∑
j=1
|Dd(S−1m j)|2 (3)

where S−1 is the inverse of S. The new loss is a symmetric measure of fit between the
source and the target, which eliminates undesirable global minima. The distance fields are
normalized beforehand. In order to minimize the proposed loss, we propose a two-step
pipeline which consists in a rotational alignment followed by a local refinement. Fig. 1
shows an overview of our method.

3.1 Planar shape based alignment

The first step of our method consists in aligning the orientations of the source and target in
a simple yet effective manner. The method generates a set of candidate rotation matrices,
which will be refined in the later refinement step. First, a set of planar shapes are detected on
the point cloud via region growing [39], with fixed parameters for all experiments. This step
helps filtering out noisy points in the point cloud and yields an as clean as possible repre-
sentation of the actual shapes, similar to the idea of Corsini et al. [17] who uses Variational
Shape Approximation [16] to partition the point cloud into planar regions. From now on, we
will discard the original point cloud and use the clean subset instead.

We propose to initialize the rotation matrix by aligning surface normals of the planar
shapes of the source and the target. The alignment of normal vectors is invariant to scale
and translation, which offers a more robust estimation. Our approach shares similarity with
Stata Center World (SCW) [66] and the Manhattan Frame [63], which analyze the surface-
normal distributions of a single input. In our setup, we focus on the relationship between the
surface-normal distributions of the source and target. As shown in Fig. 1, we first cluster the
normal vectors of each set of planar shapes to find 3 major axes (not necessarily orthogonal),
which from now on will be called a 3-frame. A 3-frame represents the component means of
a weighted-data Gaussian mixture model. In case of the point cloud, the data points are the
alpha-shapes of the detected planes, weighted by their areas. In case of the surface mesh,
they are the polygonal facets of the mesh, weighted by their areas. The distance metric of
data points is defined on the unit sphere, where each axis includes both positive and negative
directions. More specifically, a 3-frame can be represented as columns in

A =
[
u1 −u1 u2 −u2 u3 −u3

]
, ui ∈ R3. (4)

We use the absolute cosine similarity metric instead of the Euclidean distance for measuring
the distance between two normal vectors on the spherical surface, i.e. d(v1,v2) =

|v1·v2|
‖v1‖‖v2‖

.
We use the weighted Expectation-Maximization (EM) algorithm [26] to solve for the

cluster means and variances. Same is done to the normal vectors of the target surface. The
proposed approach is based on the assumption that, for the same underlying scene, there
exists some column permutation P such that the 3-frames of different representations are
aligned via a rotation R,

A2 = RP(A1). (5)

For a given permutation Pi, the rotation matrix is computed as the solution to the orthogonal
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Procrutes problem

Ri =argminΩ‖ΩPi(A1)−A2‖F

subject to Ω
T

Ω = I and det(Ω) = 1,

where ‖ · ‖F denotes the Frobenius norm. The solution for R is obtained by only allowing
orthogonal matrices with determinant 1, and is given by Ri = UΣ′V T , where A2Pi(A1)

T =
UΣV T is the singular value decomposition and Σ′ is a modified Σ with the smallest singular
value replaced by det(UV T ), and other singular values replaced by 1. The output of the
rotational alignment step is a list of 24 rotation matrices {Ri}24

i=1, taking into account all
possible permutations with a consistent orientation of axes, where the consistent orientation
means both following the right-hand rule or the left-hand rule.

3.2 Refinement

The results of the rotational alignment are now refined using local continuous optimization.
For the input point cloud, the detected alpha shapes from the previous step are used to gen-
erate its distance field Dd . In order to solve the minimization problem locally, we rewrite
the transformation matrix as S = exp(ξξξ ) where ξξξ ∈ R7 is the corresponding element in Lie
algebra. We denote exp(ξξξ ) as Sξξξ from now on, and let sξξξ be the associated scale factor. The
optimization objective becomes

min
ξξξ

U(ξξξ ) =
1
nd

nd

∑
i=1
|Dm(Sξξξ di)|2 +

1
nm

nm

∑
j=1
|Dd(S−1

ξξξ
m j)|2. (6)

The derivative of the loss is thus

dU
dξξξ

=
2
nd

nd

∑
i=1

Dm(Sξξξ di)∇Dm(Sξξξ di)
dSξξξ di

dξξξ
+

2
nm

nm

∑
j=1

Dd(S−1
ξξξ

m j)∇Dd(S−1
ξξξ

m j)
dS−1

ξξξ
m j

dξξξ
(7)

where ∇Dm(p) is the gradient vector of the distance field at point p. We have, for any point,

dSξξξ p
dξξξ

=

[
I −q′∧ q′

0T 0T 0

]
∈ R4×7, (8)

dS−1
ξξξ

p

dξξξ
=

dS−ξξξ p
dξξξ

(9)

where q′ denotes the Cartesian representation of the homogeneous coordinates Sξξξ p, and q′∧

is the skew-symmetric matrix associated with vector q′. Note that S−ξξξ = exp(−ξξξ ) = S−1
ξξξ

.
Trust region methods, such as Levenberg-Marquardt and Dogleg, can be used for optimiza-
tion. In our experiments, we use the Dogleg algorithm.

In our implementation, note that AABB tree is used for fast distance queries against sets
of plane objects. Each query returns a closest point p on the set of planes to the query point
q. It also allows efficient computation of distance field gradient, as the gradient of a distance
field always has magnitude 1 and has the same direction as q−p whenever only one closest
point exists.
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Input
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Figure 2: Visualization of our registration results on a regular object (barn) and a free-form
object (horse). For each object, Gaussian noise is added to create a noisy version. The top
row shows the mesh and the point cloud to be aligned, as well as their 3-frames (drawn in
blue and red, respectively). The best initial rotation is shown in the middle row, with the
aligned result at bottom. The RMSE (×10−2) values are shown.

4 Experiments

Our algorithm is implemented in C++ using the Computational Geometry Algorithms Li-
brary (CGAL) [65] and the Ceres library [1]. For all experiments, the parameters of the
region growing step for shape detection are fixed and set as follows: The Euclidean distance
threshold is set to 4µ , where µ is the mean of K nearest neighbor distances of the point
cloud. The normal threshold is set to 35 degrees. The minimum number of points per planar
shape is 40.

Dataset and error metrics. Existing datasets for rigid registration consist of point cloud
pairs obtained from the same acquisition modality, which does not offer differences in terms
of levels of detail and defects. Also, there is often no associated mesh data of the captured
scene. Synthetic range data from meshes do not simulate well defects of real-world acqui-
sition systems. To this end, we evaluate and compare our approach with state-of-the-art
methods on a collection of 13 real-world point sets that differ in terms of shape complexity,
size, and acquisition characteristics, provided in [5], together with their corresponding sim-
plified 3D models. The point sets are acquired via different modalities, i.e. multi-view stereo,
and laser scanner. Additionally, we include synthetic data consisting of point sets sampled
from 6 shapes, and their simplified models computed using [5]. The simplified 3D models
are compact mesh representations of the objects, which differ from the point sets in terms
of detail, noise and outliers. The models are set to different scales in the experiments. The
dataset is divided into two categories: free-form objects and regular objects. We consider an
object to be regular if it exhibits a high degree of organization in the form of large planar
structures, e.g. buildings and furniture. The rest are considered as free-form objects.

We use two metrics for quantitative evaluation: root mean square error (RMSE) and
α-recall, similar to [75]. We compute the RMSE between the estimated transformation
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S = (s,R, t) from the ground-truth transformation S∗ = (s∗,R∗, t∗):

ε =

√
1
nd

nd

∑
i=1

min
j
‖sRdi + t− s∗R∗d j− t∗‖2

2 (10)

The RMSE is computed in a slightly different way from [75]: because we have no ground-
truth pointwise correspondences in our point-to-mesh alignment setting, the distance is mea-
sured against the nearest neighbor in the ground-truth. Unlike some previous works, we
do not directly compare against the ground-truth transformation nor on the distance between
ground-truth correspondences in order to eliminate ambiguity for shapes with rotational sym-
metry, where multiple ground truths exist. α-recall is defined as the ratio of successful pair-
wise registrations, where a registration is considered successful if its RMSE is smaller than
a certain threshold α . For both metrics, the RMSE unit is the diameter of the target.
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Figure 3: The mean (bold curve) and standard deviation (shaded region) of the RMSE of
each method on different perturbations to the ground-truth alignment. Lower is better.

Robustness. Fig. 2 shows our registration results for regular and free-form objects. To
demonstrate robustness to noise, 3D Gaussian noise is added to the MVS point cloud of each
object (2nd and 4th columns). Comparing the 3-frames of point clouds with and without
added noise, it can be seen that estimation of 3-frames is robust to noise, especially for the
case of regular objects. Thus our method is able to generate good initial rotations, which are
refined to recover the final alignment.

We also investigate robustness to each type of perturbation (rotation, translation and
scale). The results are shown in Fig. 3. In the first two experiments, the source is perturbed
from the ground-truth alignment with varying degrees of rotation (or translation, resp.), keep-
ing the ground-truth translation (or rotation, resp.) and scale. In the third experiment, the
source is resized by a specific amount each time and undergoes randomly generated small
rotations and translations. As illustrated in Fig. 3, our algorithm show competitive stability
to all three types of perturbations.

Comparisons. We compare with both local and global methods. The local methods
include SICP [78], SymmICP [54], CPD [45], BCPD++ [31] and FilterReg [25], while the
global methods are FGR [75], DCP [68], and DGR [15]. In our experiment, all local methods
are combined with a RANSAC initialization. Some methods have a built-in scale estimation
component and are labeled as joint in Table 1. The others assume a given scale as input and
are labeled as two-step. For these two-step methods, we provide an estimated scale factor
from a bounding box based estimation method which can provide a good estimate given
sufficient overlap between input [17, 44]. For all data tested in Table 1, the error is around

Citation
Citation
{Zhou, Park, and Koltun} 2016

Citation
Citation
{Zin{T1ss }er, Schmidt, and Niemann} 2005

Citation
Citation
{Rusinkiewicz} 2019

Citation
Citation
{{Myronenko} and {Song}} 2010

Citation
Citation
{Hirose} 2021{}

Citation
Citation
{Gao and Tedrake} 2019

Citation
Citation
{Zhou, Park, and Koltun} 2016

Citation
Citation
{Wang and Solomon} 2019{}

Citation
Citation
{Choy, Dong, and Koltun} 2020

Citation
Citation
{Corsini, Dellepiane, Ganovelli, Gherardi, Fusiello, and Scopigno} 2013

Citation
Citation
{Mellado, Dellepiane, and Scopigno} 2016



LI, LAFARGE: PLANAR SHAPE BASED REGISTRATION FOR MULTI-MODAL GEOMETRY 9

2.5% from the ground truth scale. Details of the scale estimation method can be found in
supplementary material.

Table 1: Quantitative comparisons. Average (and maximal) RMSE (×10−2) is computed
over 50 random perturbations on scaling (between 0.25 and 4), rotation (between 60◦ and
180◦), and translation (between 0 and 100% of the diameter) for each of the 19 models.

free-form objects regular objects

capron horse ignatius m60 dragon bunny hand rocker eight cottage chair bldgA room block temple barn euler hilbert dice

tw
o-step

FGR[75] 3.532 3.509 3.829 4.173 1.280 6.992 5.358 5.169 11.762 4.999 6.482 8.437 5.099 7.873 4.012 3.414 3.213 3.443 1.435
(9.471) (8.427) (9.266) (7.949) (2.415) (8.472) (10.280) (12.768) (17.103) (8.307) (8.502) (13.041) (8.194) (15.813) (11.484) (7.434) (6.776) (4.832) (4.261)

FilterReg[25] 1.680 3.250 2.568 1.732 2.696 3.591 2.861 2.568 0.720 1.695 3.627 2.625 2.007 42.352 3.770 1.832 1.566 0.853 1.048
(2.576) (5.232) (5.297) (2.873) (5.374) (6.153) (4.583) (4.245) (0.735) (2.907) (6.125) (4.348) (3.286) (>100) (9.126) (3.236) (2.068) (3.228) (1.537)

DCP[68] 6.439 9.028 5.174 6.977 5.985 6.933 5.098 8.666 7.095 4.362 6.200 8.902 4.919 9.509 8.966 8.294 6.551 3.088 1.410
(9.791) (13.373) (10.540) (9.148) (10.837) (9.761) (7.834) (11.323) (16.750) (6.875) (7.757) (13.061) (8.367) (15.283) (14.689) (12.157) (10.537) (4.149) (1.561)

DGR[15] 1.377 0.339 0.259 0.718 0.247 0.498 0.265 1.107 1.414 1.738 0.770 0.679 1.190 0.370 0.372 0.154 0.529 3.025 0.758
(2.129) (0.449) (0.418) (1.084) (0.400) (0.569) (0.488) (3.651) (8.287) (8.294) (1.147) (0.860) (4.120) (0.511) (0.506) (0.255) (1.188) (7.451) (1.149)

joint

SICP[78] 1.059 0.096 1.644 1.231 0.045 1.937 1.837 2.075 1.674 0.495 2.322 2.583 1.723 1.409 1.560 0.696 1.024 1.345 0.786
(1.904) (0.122) (3.024) (3.203) (0.063) (4.591) (3.665) (3.288) (2.745) (2.578) (5.192) (6.738) (3.114) (1.962) (2.891) (3.164) (1.409) (1.437) (1.514)

SymmICP[54] 2.344 3.699 2.618 2.053 3.176 4.889 3.374 3.097 0.421 2.022 4.685 3.582 2.714 1.755 5.152 3.519 1.887 0.864 0.475
(3.055) (5.800) (6.722) (4.124) (5.670) (8.530) (5.807) (5.200) (0.575) (4.533) (7.238) (7.535) (4.651) (2.783) (10.979) (6.157) (3.008) (2.651) (0.488)

CPD[45] 1.723 2.670 2.615 3.186 2.299 3.224 2.970 2.180 0.405 1.967 4.981 3.031 2.223 1.349 3.055 1.740 1.829 1.221 1.100
(2.352) (4.334) (5.344) (3.825) (5.429) (5.888) (4.610) (3.680) (0.575) (3.089) (6.287) (4.232) (5.971) (2.557) (5.275) (3.112) (2.367) (1.316) (1.632)

BCPD++[31] 1.568 2.862 2.581 1.522 2.196 2.851 2.728 2.169 0.435 2.086 3.201 2.595 2.039 1.544 3.128 1.807 1.710 2.363 21.311
(2.609) (5.087) (5.577) (2.970) (4.387) (5.136) (4.405) (3.970) (0.592) (3.688) (4.495) (3.942) (4.211) (2.851) (5.493) (3.393) (2.588) (2.406) (21.321)

Ours 1.338 0.383 0.136 1.720 0.042 0.314 0.170 0.095 0.314 0.427 0.268 1.188 0.348 0.920 0.170 0.079 0.253 0.039 0.487
(1.842) (5.035) (0.941) (2.258) (1.332) (4.000) (2.144) (1.300) (0.562) (1.211) (0.696) (5.417) (1.047) (1.316) (0.850) (0.286) (0.742) (0.513) (0.504)

Our algorithm performs best on regular objects and scenes as they are well described
by piecewise-planar geometry. As shown in the right part of Table 1, our method reaches
significantly lower average RMSE in 8 out of 10 objects, while retaining errors reasonably
close to the best baseline in the remaining 2 cases. In addition, our method achieves the
lowest maximal RMSE for almost half of the tested objects, exhibiting a low failure rate on
regular objects comparable to other methods. The failure case, bldgA, among regular objects
is due to the noisy normal of input points. On the contrary, the best performing baseline,
DGR, is less robust as its maximal RMSE tends to be off by a large amount when it fails, e.g.
on cottage, hilbert and dice. Fig. 4 (b) shows the α-recall rate of all methods on all tests done
on the free-form objects. Our algorithm achieves a 0.02-recall of 99%, significantly higher
than the other algorithms, with DGR reaching 88%. For free-form objects, as indicated by
the left part of Table 1 as well as Fig. 4 (a), our method matches the accuracy achieved by
state-of-the-art methods. Visual comparisons are provided in supplementary material.
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Figure 4: α-recall curve of each method on free-form objects (left) and regular objects
(right). In particular, our approach outperforms existing methods on regular objects.

Experiment on multi-way registration. We also evaluate the efficacy of our approach
on the multi-way registration task. Similarly to Choy et al.[15], we follow the multi-way
registration pipeline proposed in [75], and replace the pairwise registration stage with our
proposed method. We adapt our algorithm so that both source and target are point clouds.
The experiment is performed on the Augmented ICL-NUIM dataset [14, 29]. Accuracy is
measured as the absolute trajectory error (ATE) defined in [14].

Although our method is not originally designed to perform on this task where scans
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do not necessarily overlap well, it offers promising results compared to online SLAM al-
gorithms and offline multi-way reconstruction methods. As shown in Table 2, our method
obtains an higher accuracy than ElasticFusion [70], InfiniTAM [37], BAD-SLAM [58] and
FGR [75] for almost all the scenes. Our accuracy remains slightly lower than the multi-way
reconstruction methods [15, 76] which have been designed to perform on this task.

Table 2: Quantitative comparisons on multi-way registration from the Augmented ICL-
NUIM dataset. The accuracy scores correspond to the ATE error expressed in centimeter,
where lower is better.

ElasticFusion [70] InfiniTAM [37] BAD-SLAM [58]
Multi-way
+ FGR [75]

Multi-way
+ RANSAC [76]

Multi-way
+ DGR [15]

Multi-way
+ Ours

Living room 1 66.61 46.07 fail 78.97 110.9 21.06 31.98
Living room 2 24.33 73.64 40.41 24.91 19.33 21.88 23.60
Office 1 13.04 113.8 18.53 14.96 14.42 15.76 19.68
Office 2 35.02 105.2 26.34 21.05 17.31 11.56 21.03

Performances. The planar shape-based alignment typically requires a few seconds to
one minute depending on the size of the input point cloud (that ranges from 150K to 3M
points). This corresponds to the processing time for detecting planar shapes, clustering be-
ing negligible. The refinement step is also a few seconds for each rotational initialization
from our non-optimized sequential implementation of the algorithm.

Limitations. Our algorithm, which is designed to perform on regular scenes, is less com-
petitive on free-form objects. The detection of planar shapes on such objects often gives a
rough and arbitrary approximation of their curved surfaces. Our method is also not designed
to the registration of 3D data with a very low overlap ratio.

5 Conclusion

We proposed a global registration algorithm for multi-modal geometric data which differs in
terms of noise, detail, and scales. Our algorithm performs a planar shape based alignment
to recover candidate rotations independent of scale and translation, followed by a refinement
step with a local continuous optimization. We demonstrated the robustness and efficacy of
our algorithm on defect-laden real-world data, as well as it competitiveness against state-of-
the-art methods, especially on objects and scenes that can be described with a piece-wise
planar geometry.

In future work, we plan to extend our method to partial-to-partial registration with very
low overlap ratio between input geometry. One way could be to design a confidence esti-
mation method for weighing each data point. The weight can be assigned according to the
likelihood of having the point also contained in the other input. The estimated weight can be
combined with both our rotational alignment step and refinement step.

Acknowledgments. This work was partially supported by ANR-17-CE23-0003 project
BIOM.
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