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Abstract

We introduce a framework that enhances visual explanation of class activation map
(CAM) with key-value memory structure for deep networks. We reveal challenging con-
ditions inherently existing in several datasets that degrade the visual explanation qual-
ity of existing CAM-based visual explanation methods (e.g. imbalanced data, multi-
object co-occurrence) and try to solve it with the proposed framework. The proposed
Bias-reducing memory module learns spatial feature representation of different classes
from trained networks and stores each different semantic information in separate memory
slots, while it does not require any modification to the existing networks. Furthermore,
we propose a novel visual explanation method accompanied by a memory slot searching
algorithm to retrieve semantically relevant spatial feature representation from the mem-
ory module and make visual explanation of network decisions. We evaluate our visual
explanation framework with datasets of challenging conditions including several medical
image datasets and multi-label classification datasets. We qualitatively and quantitatively
compare it with existing CAM-based methods to demonstrate the strength of our frame-
work.

1 Introduction
Explainable artificial intelligence (XAI), for computer vision in specific, comprises a wide
range of research opportunities to make explanations of deep network decisions with curiosi-
ties over hidden operations proceeding inside the deep networks. From intrinsic to post-hoc
methods and from local to global explanation methods, numerous researches of quality have
been published to explain decision making process of deep networks. In this paper, we spec-
ify a well-known visual explanation tool for deep Convolutional Neural Network (CNN),
class activation map (CAM), and try to overcome the limits of it and its variations.

CAM [20] marks local areas of an image, that have positive influence on deep networks
decision making, with upsampled feature maps with respective importance weights. It takes
advantage of internal components of deep networks such as gradients and feature maps to
generate visual explanations. Grad-CAM [14] and Grad-CAM++ [1] are generalizations of
CAM, and several variations of CAM have been proposed [2, 3, 11, 13, 16]. However,
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the quality of visual explanation obtained by CAM-based methods may vary depending on
the training environment of the target deep network. That is, challenging conditions such
as imbalanced distribution of class, lack of training samples, or frequent co-occurrence of
multiple objects in training dataset may not guarantee the reliability of internal components
of deep networks leading to degradation of credibility on generated visual explanations.

In this paper, we raise two major types of problematic biases of deep network that may
hinder the quality of visual explanation. First is the problem of co-occurrence in a multi-label
classification environment. In a multi-label classification dataset, specific multiple classes
appearing in a single image is a frequent event (e.g. horse and person). Disentangling such
co-occurring classes while generating visual explanation would be the first goal. The second
problem is about the imbalanced class distribution of training dataset and weak decision
boundaries of deep network that consequently follow. This problem is commonly found
with medical image dataset even being accompanied with insufficient number of training
samples for specific classes. Enhancement of visual explanation quality for the insufficiently
represented classes would be the next objective.

To tackle such problems, we propose Bias-reducing memory module that provides qual-
ity visual explanations even with datasets of challenging conditions. To complement biases
of the target network caused by the inherent challenging conditions of the training dataset,
the proposed key-value structure memory module learns the distribution of spatial feature
representation from the target deep network and discretely organizes the distributions into
separate memory slots. The memory module does not require specific CNN structure and
the proposed learning scheme allows the memory module to be trained by itself without
any modification on the target deep network. Then we take advantage of the memory mod-
ule to acquire quality visual explanation in two steps, memory slot searching with feature
perturbation and adjustment of importance weights on the feature activation maps.

We summarize the contributions of the proposed method into three. First, we propose a
key-value structure Bias-reducing memory module and its learning scheme to organize the
spatial feature distributions of dataset into discrete memory slots. Second, we introduce a
new CAM-based visual explanation method with the memory module, M-CAM, that pro-
vides solid visual explanation even in challenging training conditions. Third, to verify the
strength of M-CAM in challenging conditions, we conduct experiments on four medical
image datasets [4, 6, 12, 17] and MS COCO [9], comparing our method with the existing
CAM-based visual explanation methods.

2 Related Work

2.1 Class Activation Map

The concept of class activation map (CAM) is first introduced by [20]. This first work aggre-
gates the feature maps obtained from the last convolutional layer, with the importance weight
assigned to each feature map, to generate activation map that has positive influence on the
decision made by the CNN. Afterward, Grad-CAM [14] generalizes the concept of CAM,
verifying that generation of activation map does not require specific structure (global average
pool layer at the end of the network) of CNN anymore. Grad-CAM++ [1] further generalizes
Grad-CAM, enhancing its object localization by taking advantage of higher order derivatives
for importance weight assignment. Several variations of CAM have been published as well.
Score-CAM [16] generates mask from each feature map and utilizes the prediction score
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of masked images as the importance weights. U-CAM [13] brings the Bayesian nature of
predicting uncertainty of the model and the dataset itself [5] and adopted it to prune out
uncertain region in the visual explanation. Eigen-CAM [11] takes advantage of the prin-
ciple components of feature representations to provide visual explanation independent of
classification layers. Axiom-based Grad-CAM [3] introduces sensitivity and conservation
as two new axioms to evaluate CAM-based visual explanation methods. Ablation-CAM [2]
presents a gradient-free methodology to generate visual explanation. We point out that the
problems we tackle regarding inherent challenging conditions of the dataset have not been
thoroughly discussed yet, and we try to solve such drawbacks of CAM-based methods with
the proposed methodology.

2.2 Memory Network
External memory network [15, 18] is introduced to augment neural network, and it functions
to store useful information acquired by the neural network. Depending on the task the target
network is designed for, the information stored in the memory can be utilized in varied
ways. One of the structures of the memory network is key-value structure [10]. It stores
diverse patterns of feature representation in the key memory, and utilize it as a blueprint to
make inference for the target information which is stored in the value memory. As a simple
example in computer vision, key memory stores feature representation of trained images
while the value memory stores class-related semantic information to output class prediction
for the input image. We design the internal structure of the key-value memory inspired by the
concept of sparse dictionary learning [7], where diverse information can be stored sparsely
over different memory slots so that one can utilize the memory network to the most extent.
We design the memory network module to be applied any type of CNN structure and the
learning scheme allows the memory network module to learn useful information by itself.

3 Bias-reducing Memory
In this section, we describe the overall structure of Bias-reducing memory module and which
information we would like to learn from the target network. Then we describe the objective
functions we design to train the proposed memory module. The proposed objective functions
effectively guide the memory module to learn desired information while not affecting the
target deep network and its performance.

3.1 Overall Memory Concept
End-to-end structure of memory network in machine learning [15] is first introduced by
Sukhbaatar et al. for question answering task. Key-value memory [10] is a generalization of
the traditional memory network, allowing it to flexibly store feature representation distribu-
tion as a prior knowledge and to take advantage of it with complex transform enabled by the
memory.

Application of key-value memory involves two major steps, which are key addressing
and value reading. Given an embedded query value q ∈ IRc, similarity between q and each
slot of key memory Ki ∈ IRc is measured. An address vector p ∈ IR1×N is obtained for a
key memory K with N slots, where each scalar value of p represents similarity between the
query and each memory slot:
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Figure 1: Overall structure of the memory module being applied to the target network.

pi = So f tmax(
q ·Ki

∥q∥∥Ki∥
) (1)

where i = 1,2, . . . ,N and So f tmax(zi) = ez
i/∑

N
j=1 ez

j.
In value reading step, the value memory is accessed by the key address vector p as a

set of relative weights of importance for each slot. The read value v ∈ IRc is obtained such
that v = pV , where V ∈ IRN×c is a trained value memory with N slots. By doing so, key-
value memory structure allows it to flexibly access to desired information stored in the value
memory corresponding to different query values.

3.2 Application of the Proposed Memory Module

Figure 1 describes an overall flow on how the proposed Bias-reducing memory module learns
desired information from the target network. Given a pre-trained feature encoder F of the
target network, the memory module takes the spatial feature representation f ∈ IRw×h×c,
query feature representation q ∈ IRc and a value feature representation v′ ∈ IRc as input for
training. We devise G to map the hot encoded ground truth label vector y into the same num-
ber of dimensionality as q. In the inference step, f and v′ are not required. In both training
and inference step, the memory module outputs read value feature v ∈ IRc as an output, and
the classifier takes a concatenated vector of q and v as an input to output classification score
z.

Figure 2 describes details of the memory module. Key address vector p is obtained as
same as Eq. 1 in section 3.1., and the spatial feature address vector ps and value address
vector p′ is obtained in the same manner. Ki ∈ IRc represents the query information stored
in the i th slot of the key memory K (i = 1,2, . . . ,N) to retrieve semantic information from
the value memory V , Vi ∈ IRc represents the semantic information stored in the i th slot of V
and Si ∈ IRw×h×c represents the distribution of spatial feature representation stored in the i
th slot of S, spatial feature representation dictionary. We guide the memory module to store
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Figure 2: Details of the memory module in training phase.

corresponding information at the same sequential location of slot. In other words, if the
second slot of V turns out to contain semantic information related to dog class, we guide the
second slot of S to learn corresponding distribution of spatial feature representation of dog
class. We explain the objective functions and its roles in the following subsection. In the
training step, we obtain two read value features vt and v where vt is only used for training
the memory module. We obtain the read value feature v = pV as described in the preceding
subsection, while vt is obtained by a matrix multiplication of V and value address vector p′

as relative importance weights for memory slots.

3.3 Training Memory Module
To effectively guide Bias-reducing memory module to learn the distribution of spatial feature
representation with the corresponding semantic information distilled from the target network,
we design three objective functions Lclassi f ier, Lsparse, and Laddress.

As in Figure 1, a new classifier has to be trained from the scratch in order to train the
memory module. We devise Lclassi f ier as,

Lclassi f ier = BCE( f c(cat(vt , f )),Y )+BCE( f c(cat(v, f )),Y ), (2)

where BCE(y, ŷ)=− 1
N ΣN

1 yi · log(ŷi)+(1−yi) · log(1− ŷi) is Binary Cross Entropy loss func-
tion, f c(·) is a fully connected layer classifier, and cat(·) represents concatenation between
two vectors. Since vt and v are obtained from the value address vector p′ and the key address
vector p respectively, each term of Lclassi f ier is devised to train the value memory V and key
memory K each.

We want the value memory V to store semantic information encoded by G, and expect
the memory module to output the read value feature v as similar as encoded value feature v′

even in the inference phase. While Lsparse being applied for training the memory module,
sparse representations of semantic information are learned over the memory slots and the
memory module forms a linear combination of each slot to output the read value feature v.
We devise Lsparse as L2 norm between the two read value features vt and v:

Lsparse =
1
N

N

∑
i=1

(vi− vti)
2. (3)
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To jointly store corresponding information at the same sequential location of the mem-
ory slots at S, K, and V , we devise an address matching objective function Laddress. To
effectively trace back the spatial feature representation distribution of specific class from the
corresponding semantic information, Laddress guides the spatial feature representation dictio-
nary and key memory to output similar address vectors ps and p to the value address vector
p′. Laddress is as follows,

Laddress = KL(p′ ∥ ps)+KL(p′ ∥ p), (4)

where KL(p ∥ q) =−ΣN
1 pi · log(qi/pi) is Kullback-Leibler divergence [8]. We sum the three

of the introduced objective functions to train the memory module (S, K, and V ), a classifier,
and the semantic information encoder G while the feature encoder F remains fixed. Hence
the final objective function is

L= Lclassi f ier +Lsparse +Laddress. (5)

4 M-CAM: Generating Visual Explanation
In this section we describe a slot searching algorithm to trace back the spatial feature rep-
resentation distribution of a desired class and how we utilize the obtained distribution to
generate quality visual explanation by the importance weight adjustment procedure.

4.1 Slot Searching Algorithm by Feature Perturbation
We devise a slot searching algorithm to disclose which slot contains information that is most
closely related to the desired class of our interests. The intuition of the algorithm is that,
we want to observe the prediction score decrease while each slot of the memory module is
perturbed with a random noise. Therefore we assume that a particular slot replaced with a
noise leading to the highest score drop has the most closely related information to the target
class ĉ. As described in Algorithm 1, given the query feature representation qx of an input
image x, a target class ĉ, and the original prediction score z of x, the algorithm returns the slot
sequence number nĉ that contains the most closely related information for the target class ĉ
in the trained memory module.

4.2 Importance Weight Adjustment by Memory
After we finish searching slot for the target class, we retrieve the corresponding distribution
of spatial feature representation Snĉ ∈ IRw×h×c from the nĉ th slot of the dictionary S. Given
a spatial feature representation fx of an input image x, we measure cosine similarity between
fx and Snĉ in a channel-wise manner. Then we get a set of τ = {τ1,τ2, . . . ,τc} where

τi =
fxi · (Snĉ)i∥∥ fxi

∥∥∥∥(Snĉ)i
∥∥ . (6)

fxi ∈ IRw×h and (Snĉ)i ∈ IRw×h are the activation map at the i th channel obtained from fx
and Snĉ respectively. τi represents how similar the spatial feature representation of the in-
put image x at the channel i is to the one retrieved from the dictionary S. Here we assign
importance weight wi to each spatial feature representation map fxi ,
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Algorithm 1 Slot Searching Algorithm by Feature Perturbation
1: Inputs: Query feature representation qx of an input image x, a target class ĉ, and the

original prediction score z of x.
2: Output: Slot sequence number nĉ of the target class ĉ.

3: procedure SEARCH(qx, ĉ,zĉ)
4: nĉ← 0
5: maxnĉ ← 0
6: for i = 1,2, ...,N do ▷ Number of slots of each memory is N
7: Ktemp← K ▷ Make a copy of the key memory every iteration
8: w ∼N (0,1) ▷ Sample noise vector w ∈ IRc from normal distribution
9: Ktempi ←w ▷ Perturb slot number n

10: for j = 1,2, ...,N do
11: pi← So f tmax(

qx·Ktemp j
∥qx∥ ∥Ktemp j ∥

) ▷ Compute address vector

12: end for
13: v← p ·V ▷ Get read value feature
14: z′ = f c(cat(v, f )) ▷ Get a new class prediction score
15: if maxnĉ < zĉ− z′ĉ then
16: maxnĉ ← zĉ− z′ĉ ▷ Update the highest score decrease for class ĉ
17: nĉ← i ▷ Update the sequence number of the slot
18: end if
19: end for
20: return nĉ
21: end procedure

wi = ∑
u

∑
v

∂ zĉ

∂ ( fxi)uv
· exp(τi), (7)

where the preceding term is the gradient propagating from the target class prediction score zĉ
to the feature representation map fxi with Euclidean coordinate u and v. We take exponential
function on τi to map the output range of cosine similarity [-1,1] to positive number of range
[e−1, e] giving more emphasis on the cosine similarity value that is close to 1. The intuition
of the importance weight adjustment utilizing the memory module is that, we want to prune
out spatial feature representations that are irrelevant to the target class ĉ while giving more
emphasis on the ones similar to the retrieved feature distribution Snĉ . By taking weighted sum
of fxi with the set of importance weight w = {w1,w2, . . . ,wc} over c channels, we generate
the class activation map for visual explanation.

5 Experiments

5.1 Datasets
We select datasets that inherently include challenging conditions such as co-occurrence of
multiple objects in a single image, class imbalance of training dataset, and lack of training
dataset. MS COCO (COCO) [9] includes a large number of images with multiple objects
appearing in a single image. In addition, we select COCO to verify the generalizability
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Figure 3: Qualitative results of M-CAM visual explanation over five experimental datasets.
Dataset and the class information of the corresponding images is denoted on the left. (a):
Ablation CAM [2], (b): EigenCAM [11], (c): EigenGradCAM [11], (d): GradCAM [14],
(e): GradCAM++ [1], (ours): M-CAM.

of our method. Further, we select four medical image dataset for verification. NIH Chest
X-ray 14 (NIH) [17] and VinDr-CXR (Vin) [12] are the frontal-view X-ray images where
co-occurrence of multiple thorax diseases is commonly observed. Retinal optical coherence
tomography (OCT) dataset [6] contains about 80K retina cross-section images with high
class imbalance of retinal diseases. EndoTect Challenge dataset (Endo) [4] includes 10K
endoscope images of human digestive system. With a small number of dataset samples,
highly imbalanced class distribution of 23 classes is the challenging point of the dataset.

5.2 Qualitative Results Analysis

Figure 3 shows representative experimental results that reflect the strength of the proposed vi-
sual explanation framework. If training dataset (COCO) includes images of multi-object/class
co-occurrence which induce bias to the deep network, the visual explanation of the exist-
ing CAM-based methods tend to highlight the context object (person) and the target obejct
(skateboard and laptop) at the same time. The visual explanation results of the proposed
framework highlight the context information being suppressed while giving emphasis on the
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Dataset Grad[14] Grad++ [1] Eigen[11] Eigengrad[11] Ablation [2] Ours
NIH 36.44 39.28 40.20 39.37 28.52 39.25
Vin 33.93 27.35 26.56 26.27 28.09 28.19

COCO 69.06 50.28 49.44 48.38 49.65 68.82
OCT 43.84 49.98 43.13 45.39 49.43 31.81
Endo 85.62 86.71 85.50 84.17 86.13 82.22

Table 1: Performance measurement of six different visual explanation methods on the five
datasets on Average Drop Percentage (lower is better) metric. The top performance for each
dataset is written in bold.

Dataset Grad[14] Grad++ [1] Eigen[11] Eigengrad[11] Ablation [2] Ours
NIH 37.79 38.02 35.71 36.18 35.71 38.25
Vin 34.21 52.96 52.83 53.31 52.00 50.62

COCO 17.34 13.17 15.42 14.95 15.46 17.39
OCT 17.18 25.00 24.59 25.10 25.00 32.21
Endo 2.13 2.22 2.87 2.96 2.78 2.41

Table 2: Performance measurement of six different visual explanation methods on the five
datasets on Percentage Increase in Confidence (higher is better) metric. The top performance
for each dataset is written in bold.

target object solely.
In case of the chest X-ray images, multiple numbers of thoracic diseases are often de-

tected in a single case, and the boundary of diseases are frequently overlapped or ambiguous.
Hence the visual explanation of chest X-ray images often include irrelevant regions due to
the ambiguity. With the bounding-box information provided, the heatmap of the proposed
framework is densely distributed inside the box while the others highlight uncertain regions
concurrently.

The OCT images contain relatively easy lesion boundaries so that the existing CAM-
based methods highlight the lesion with a good quality as well, however, the proposed frame-
work tends to spot concentrated region with the heatmap not spread out. EndoTect dataset
is the most challenging dataset to train the network because of its less training samples and
class imbalance, therefore the majority of the CAM-based methods had trouble providing
visual explanation with good quality. However, we observe a wide area inside the lesion
boundary has been covered by the generated heatmap of the proposed method.

5.3 Quantitative Experiments

To verify the advantage of the proposed method in a quantitative manner, we select four
evaluation metrics for visual explanation, Average Drop Percentage, Percentage Increase in
Confidence [1], Infidelity, and Sensitivity [19]. We select Average Drop Percentage and
Percentage Increase in Confidence to evaluate how well the generated visual explanations
highlight decisive region of images. Infidelity and Sensitivity are the objective metrics that
evaluate the robustness of the explanation. Table 1 and 2 show that the proposed method
outperformed the five existing CAM-based methods on two and three datasets in Average
Drop Percentage and Percentage Increase in Confidence metric each, showing promising
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Dataset Grad++ [1] Eigengrad[11] Ablation [2] Ours
NIH 0.4943 0.3267 0.6664 0.0739
Vin 0.6686 0.5934 0.2173 0.4649

COCO 0.3733 0.1396 0.2675 0.0707
OCT 0.3564 0.2899 0.3312 0.0058
Endo 0.0259 0.0176 0.0243 0.5980

Table 3: Performance measurement of four different visual explanation methods on the five
datasets on Infidelity (lower is better) metric. The top performance for each dataset is written
in bold.

Dataset Grad++ [1] Eigengrad[11] Ablation [2] Ours
NIH 0.0401 0.0279 0.1406 0.0069
Vin 0.0961 0.0579 0.1247 0.0255

COCO 0.0924 0.0763 0.1503 0.0579
OCT 0.0711 0.0816 0.1939 0.0084
Endo 0.0609 0.1289 0.0736 0.0771

Table 4: Performance measurement of four different visual explanation methods on the five
datasets on Sensitivity (lower is better) metric. The top performance for each dataset is
written in bold.

results on the rest of datasets. Table 3 and 4 show strong robustness of the proposed method
compared with the three recent CAM-based methods. Experimental settings and details
regarding the evaluation metrics are described in the supplementary material.

6 Conclusion
In this paper, we propose a new framework to provide class activation map-based visual
explanation for datasets with challenging conditions causing bias to the deep network. We
devise Bias-reducing memory to discretely store the distribution of spatial feature represen-
tation in different slots of the memory with the corresponding semantic information from the
target deep network. With the slot searching algorithm by feature perturbation, we trace back
which semantic information is stored in each memory slot and further utilize the retrieved
distribution of spatial feature representation to enhance the quality of the class activation
map. With the experiments done over four medical image datasets and MS COCO that in-
herently contain challenging conditions causing bias, we verify the strength of the proposed
framework in such environment by comparative experiments with the existing visual expla-
nation methods.
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