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Abstract

Deep Learning models based on heatmap regression have revolutionized the task of
facial landmark localization with existing models working robustly under large poses,
non-uniform illumination and shadows, occlusions and self-occlusions, low resolution
and blur. However, despite their wide adoption, heatmap regression approaches suffer
from discretization-induced errors related to both the heatmap encoding and decoding
process. In this work we show that these errors have a surprisingly large negative im-
pact on facial alignment accuracy. To alleviate this problem, we propose a new approach
for the heatmap encoding and decoding process by leveraging the underlying continuous
distribution. To take full advantage of the newly proposed encoding-decoding mech-
anism, we also introduce a Siamese-based training that enforces heatmap consistency
across various geometric image transformations. Our approach offers noticeable gains
across multiple datasets setting a new state-of-the-art result in facial landmark localiza-
tion. Code alongside the pretrained models will be made available here.

1 Introduction
This paper is on the popular task of localizing landmarks (or keypoints) on the human face,
also known as facial landmark localization or face alignment. Current state-of-the-art is
represented by fully convolutional networks trained to perform heatmap regression [5, 13,
20, 37, 41, 43]. Such methods can work robustly under large poses, non-uniform illumina-
tion and shadows, occlusions and self-occlusions [3, 5, 20, 38] and even very low resolu-
tion [6]. However, despite their wide adoption, heatmap-based regression approaches suffer
from discretization-induced errors. Although this is in general known, there are very few
papers that study this problem [25, 39, 42]. Yet, in this paper, we show that this overlooked
problem makes actually has surprisingly negative impact on the accuracy of the model.

In particular, as working in high resolutions is computationally and memory prohibitive,
typically, heatmap regression networks make predictions at 1

4 of the input resolution [5].
Note that the input image may already be a downsampled version of the original facial im-
age. Due to the heatmap construction process that discretizes all values into a grid and
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the subsequent estimation process that consists of finding the coordinates of the maximum,
large discretization errors are introduced. This in turn causes at least two problems: (a) the
encoding process forces the network to learn randomly displaced points and, (b) the infer-
ence process of the decoder is done on a discrete grid failing to account for the continuous
underlying Gaussian distribution of the heatmap.

To alleviate the above problem, in this paper, we make the following contributions:

• We rigorously study and propose a continuous method for heatmap regression, con-
sisting of a simple continuous heatmap encoding and a newly proposed continuous
heatmap decoding method, called local-softargmax, that largely solve the quantization
errors introduced by the heatmap discretization process.

• We also propose an accompanying Siamese-based training procedure that enforces
consistent heatmap predictions across various geometric image transformations.

• By largely alleviating the quantization problem with the proposed solutions, we show
that the standard method of [5] sets a new state-of-the-art on multiple datasets, offering
significant improvements over prior-work.

2 Related work
Most recent efforts on improving the accuracy of face alignment fall into one of the following
two categories: network architecture improvements and loss function improvements.
Network architectural improvements: The first work to popularize and make use of encoder-
decoder models with heatmap-based regression for face alignment was the work of Bu-
lat&Tzimiropoulos [5] where the authors adapted an HourGlass network [27] with 4 stages
and the Hierarchical Block of [4] for face alignment. Subsequent works generally preserved
the same style of U-Net [32] and Hourglass structures with notable differences in [38, 43, 47]
where the authors used ResNets [16] adapted for dense pixel-wise predictions. More specif-
ically, in [47], the authors removed the last fully connected layer and the global pooling
operation from a ResNet model and then attempted to recover the lost resolution using a se-
ries of convolutions and deconvolutional layers. In [43], Wang et al. expanded upon this by
introducing a novel structure that connects high-to-low convolution streams in parallel, main-
taining the high-resolution representations through the entire model. Building on top of [5],
in CU-Net [41] and DU-Net [40] Tang et al. combined U-Nets with DenseNet-like [17]
architectures connecting the i-th U-Net with all previous ones via skip connections.
Loss function improvements: The standard loss typically used for heatmap regression is
a pixel-wise `2 or `1 loss [2, 3, 5, 37, 41, 43]. Feng et al. [13] argued that more attention
should be payed to small and medium range errors during training, introducing the Wing loss
that amplifies the impact of the errors within a defined interval by switching from an `1 to a
modified log-based loss. Improving upon this, in [44], the authors introduced the Adaptive
Wing Loss, a loss capable to update its curvature based on the ground truth pixels. The pre-
dictions are further aided by the integration of coordinates encoding via CoordConv [24] into
the model. In [20], Kumar et al. introduced the so-called LUVLi loss that jointly optimizes
the location of the keypoints, the uncertainty, and the visibility likelihood. Albeit for human
pose estimation, [25] proposes an alternative to heatmap-based regression by introducing a
differential soft-argmax function applied globally to the output features. However, the lack
of structure induced by a Gaussian prior, hinders their accuracy.
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Contrary to the aforementioned works, we attempt to address the quantization-induced
error by proposing a simple continuous approach to the heatmap encoding and decoding
process. In this direction, [39] proposes an analytic solution to obtain the fractional shift
by assuming that the generated heatmap follows a Gaussian distribution and applies this to
stabilize facial landmark localization in video. A similar assumption is made by [42] which
solves an optimization problem to obtain the subpixel solution. Finally, [25] uses global
softargmax. Our method is mostly similar to [25] which we compare with in Section 4.

3 Method

3.1 Preliminaries
Given a training sample (X,y), with y ∈ Rk×2 denoting the coordinates of the K joints in
the corresponding image X, current facial landmark localization methods encode the target
ground truth coordinates as a set of k heatmaps with a 2D Gaussian centered at them:

Gi, j,k(y) =
1

2πσ2 e−
1

2σ2 [(i−ỹ[1]k )2+( j−ỹ[2]k )2]
, (1)

where y[1]k and y[2]k are the spatial coordinates of the k-th point, and ỹ[1]k and ỹ[2]k their scaled,
quantized version:

(ỹ[1]k , ỹ[2]k ) = (b1
s

y[1]k e,b
1
s

y[2]k e) (2)

where b.e is the rounding operator and 1/s is the scaling factor used to scale the image to a
pre-defined resolution. σ is the variance, a fixed value which is task and dataset dependent.
For a given set of landmarks y, Eq. 1 produces a corresponding heatmapH ∈ Rk×Whm×Hhm .

Heatmap-based regression overcomes the lack of a spatial and contextual information of
direct coordinate regression. Not only such representations are easier to learn by allowing
visually similar parts to produce proportionally high responses instead of predicting a unique
value, but they are also more interpretable and semantically meaningful.

3.2 Continuous Heatmap Encoding
Despite the advantages of heatmap regression, one key inherent issue with the approach has
been overlooked: The heatmap generation process introduces relatively high quantization
errors. This is a direct consequence of the trade-offs made during the generation process:
since generating the heatmaps predictions at the original image resolution is prohibitive, the
localization process involves cropping and re-scaling the facial images such that the final
predicted heatmaps are typically at a 64×64px resolution [5]. As described in Section 3.1,
this process re-scales and quantizes the landmark coordinates as ŷ= quantize( 1

s y), where
round or floor is the quantization function. However, there is no need to quantize. One
can simply create a Gaussian located at:

(ỹ[1]k , ỹ[2]k ) = (
1
s

y[1]k ,
1
s

y[2]k ), (3)

and then sample it over a regular spatial grid. This will completely remove the quantization
error introduced previously and will only add some aliasing due to the sampling process.
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1. Find the coordinate of
the max value

2. Extract a patch in its 
neighbourhood 

3. Use soft argmax to calculate 
a correction based on all the 
pixels from the patch.

Figure 1: Proposed heatmap decoding. Given a predicted heatmap, (1) we find the location
of the maximum, (2) and then crop around it a k× k patch. Finally, (3) we apply a soft-
argmax on the patch and retrieve a correction applied to the location estimated at step (1).

3.3 Continuous Heatmap Decoding with Local Soft-argmax
Currently, the typical landmark localization process from 2D heatmaps consists of finding
the location of the pixel with the highest value [5]. This is typically followed by a heuristic
correction with 0.25px toward the location of the second highest neighboring pixel. The
goal of this adjustment is to partially compensate for the effect induced by the quantization
process: on one side by the heatmap generation process itself (as described in Section 3.2)
and on other side, by the coarse nature of the predicted heatmap that uses the maximum
value solely as the location of the point. We note that, despite the fact that the ground truth
heatmaps are affected by quantization errors, generally, the networks learns to adjust, to
some extent its predictions, making the later heuristic correction work well in practice.

Rather than using the above heuristic, we propose to predict the location of the keypoint
by analyzing the pixels in its neighbourhood and exploiting the known targeted Gaussian
distribution. For a given heatmap Hk, we firstly find the coordinates corresponding to the
maximum value (ŷ[1]k , ŷ[2]k ) = argmaxHk and then, around this location, we select a small

square matrix hk of size d× d, where l = d
2 . Then, we predict an offset (∆ŷ[1]k ,∆ŷ[2]k ) by

finding a soft continuous maximum value within the selected matrix, effectively retrieving a
correction, using a local soft-argmax:

(∆ŷ[1]k ,∆ŷ[2]k ) = ∑
m,n

softmax(τhk)m,n(m,n), (4)

where τ is the temperature that controls the resulting probability map, and (m,n) are the
indices that iterate over the pixel coordinates of the heatmap hk. softmax is defined as:

softmax(h)m,n =
ehm,n

∑m′,n′ e
hm′,n′

(5)

The final prediction is then obtained as: (ŷ[1]k + ∆ŷ[1]k − l, ŷ[2]k + ∆ŷ[2]k − l). The 3 step
process is illustrated in Fig. 1.

3.4 Siamese consistency training
Largely, the face alignment training procedure has remained unchanged since the very first
deep learning methods of [5, 54]. Herein, we propose to deviate from this paradigm adopting
a Siamese-based training, where two different random augmentations of the same image are
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Figure 2: Siamese transformation-invariant training. T0 and T1 are two randomly sam-
pled data augmentation transformations applied on the input image. After passing the aug-
mented images through the network a set of heatmaps are produced. Finally, the transforma-
tions are reversed and the two outputs merged.

passed through the network, producing in the process a set of heatmaps. We then revert the
transformation of each of these heatmaps and combine them via element-wise summation.

The advantages of this training process are twofold: Firstly, convolutional networks are
not invariant under arbitrary affine transformations, and, as such, relatively small variances in
the input space can result in large differences in the output. Therefore, by optimizing jointly
and combining the two predictions we can improve the consistency of the predictions.

Secondly, while previously the 2D Gaussians were always centered around an integer
pixel location due to the quantization of the coordinates via rounding, the newly proposed
heatmap generation can have the center in-between (i.e. on a sub-pixel). As such, to avoid
small sub-pixel inconsistencies and misalignment introduced by the data augmentation pro-
cess we adopt the above-mentioned Siamese based training. Our approach, depicted in Fig. 2,
defines the output heatmaps Ĥ as:

H̃ = T−1
0 (Φ(T0(Xi),θ))+T−1

1 (Φ(T1(Xi)),θ), (6)

where Φ is the network for heatmap regression with parameters θ . T0 and T1 are two random
transformations applied on the input image Xi and, T−1

0 and T−1
1 denote their inverse.

4 Ablation studies
4.1 Comparison with other landmarks localization losses
Beyond comparisons with recently proposed methods for face alignment in Section 6 (e.g. [13,
20, 44]), herein we compare our approach against a few additional baselines.

Method NMEbox

`2 heatmap regression 2.32
coord-correction (static gt) 2.27

coord-correction (dynamic gt) 2.30
Global soft-argmax 3.19

Local soft-argmax (Ours) 2.04

Table 1: Comparison between various losses
baselines on 300W test set.

Heatmap prediction with coordinate cor-
rection: In DeepCut [29], for human pose
estimation, the authors propose to add a
coordinate refinement layer that predicts a
(∆ŷ[1]k ,∆ŷ[2]k ) displacement that is then added
to the integer predictions generated by the
heatmaps. To implement this, we added a
global pooling operation followed by a fully
connected layer and then trained it jointly
using an `2 loss. We attempted 2 different
variants: one where the (∆ŷ[1]k ,∆ŷ[2]k ) is con-
structed by measuring the heatmap encoding
errors and the other is dynamically constructed at runtime by measuring the error between
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(a) 300W (b) AFLW (c) COFW (d) WFLW

Figure 3: NME after encoding and then decoding of the ground truth heatmaps for various
datasets using our proposed approach (orange) and the standard one [5] (blue). Notice that
our approach significantly reduces the error rate across all samples from the datasets.

the heatmap prediction and the ground truth. As Table 1 shows, these learned corrections
offer minimal improvements on top of the standard heatmap regression loss and are notice-
ably worse than the accuracy scored by the proposed method. This shows that predicting
sub-pixel errors using a second branch is less effective than constructing better heatmaps
from the first place.
Global soft-argmax: In [25], the authors propose to to predict the locations of the points
of interest on the human body by estimating their position using a global soft-argmax as a
differentiable alternative to taking the argmax. From a first glance this is akin to the idea
proposed in this work: local soft-argmax. However, applying soft-argmax globally leads to
semantically unstructured outputs [25] that hurt the performance. Even adding a Gaussian
prior is insufficient for achieving high accuracy on face alignment. As the results from
Table 1 conclusively show, our simple improvement, namely the proposed local soft-argmax
is the key idea for obtaining highly accurate results.

4.2 Effect of method’s components

Method NMEic (%)

Baseline [5] 4.20
+ proposed hm 3.90

+ proposed hm (w/o 3.3) 4.00
+ siamese training 3.72

Table 2: Effect of the proposed com-
ponents on the WFLW dataset.

Herein, we explore the impact of each our method’s
component on the overall performance of the net-
work. As the results from Table 2 show, starting
from the baseline introduced in [5], the addition of
the proposed heatmap encoding and decoding pro-
cess significantly improves the accuracy. If we ana-
lyze this result in tandem with Fig. 3 it becomes ap-
parent what is the source of these gains: In particu-
lar, Fig. 3 shows the heatmap encoding and decoding
process of the baseline method [5] as well as of our method using directly the ground truth
landmarks (i.e. these are not network’s predictions). As shown in Fig. 3, simply encod-
ing and decoding the heatmaps corresponding to the ground truth alone induces high NME
for [5]. While the training procedure is able to compensate this, these inaccuracies represen-
tations hinder the learning process. Furthermore, due to the sub-pixel errors introduced, the
performance in the high accuracy regime of the cumulative error curve degrades.

The rest of the gains are achieved by switching to the proposed Siamese training that
reduces the discrepancies between multiple views of the same image while also reducing
potential sub-pixel displacements that may occur between the image and the heatmaps.

4.3 Local window size
In this section, we analyze the relation between the local soft-argmax window size and the
model’s accuracy. As the results from Table 3 show, the optimal window has a size of
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5×5px, which corresponds to the size of the generated gaussian (i.e., most of the non-zero
values will be contained within this window). Furthermore, as the window size increases
the amount of noise and background pixels also increases and hence the accuracy decreases.
The same value is used across all datasets. Note, that explicitly using the local window loss
during training doesn’t improve the performance further which suggest that the pixel-wise
loss alone is sufficient, if the encoding process is accurate.

5 Experimental setup

none 3×3 5×5 7×7

NMEbox 2.21 2.06 2.04 2.07

Table 3: Effect of window size on the 300W
test set.

Datasets: We preformed extensive eval-
uations to quantify the effectiveness of
the proposed method. We trained and/or
tested our method on the following datasets:
300W [33] (constructed in [33] using im-
ages from LFPW [1], AFW [53], HE-
LEN [21] and iBUG [34]), 300W-LP [54],
Menpo [50], COFW-29 [7], COFW-68 [14], AFLW [19], WFLW [45] and 300VW [36]. For
a detailed description of each dataset see supplementary material.

Metrics: Depending on the evaluation protocol of each dataset we used one or more of
the following metrics:
Normalized Mean Error (NME) that measures the point-to-point normalized Euclidean
distance. Depending on the testing protocol, the NME type will vary. In this paper, we
distinguish between the following types: dic – computed as the inter-occular distance [33],
dbox – computed as the geometric mean of the ground truth bounding box [5] d =

√
(wbbox ·

hbbox), and finally ddiag – defined as the diagonal of the bounding box.
Area Under the Curve(AUC): The AUC is computed by measuring the area under the curve
up to a given user defined cut-off threshold of the cumulative error curve.
Failure Rate (FR): The failure rate is defined as the percentage of images the NME of which
is bigger than a given (large) threshold.

5.1 Training details
For training the models used throughout this paper we largely followed the common best
practices from literature. Mainly, during training we applied the following augmentation
techniques: Random rotation (between ±30o), image flipping and color(0.6, 1.4) and scale
jittering (between 0.85 and 1.15). The models where trained for 50 epochs using a step
scheduler that dropped the learning rate at epoch 25 and 40 starting from a starting learning
rate of 0.0001. Finally, we used Adam [18] for optimization. The predicted heatmaps were at
a resolution of 64×64px, i.e. 4× smaller than the input images which were resized to 256×
256 pixels with the face size being approximately equal to 220× 220px. The network was
optimized using an `2 pixel-wise loss. For the heatmap decoding process, the temperature
of the soft-argmax τ was set to 10 for all datasets, however slightly higher values perform
similarly. Values that are too small or high would ignore and respectively overly emphasise
the pixels found around the coordinates of the max. All the experiments were implemented
using PyTorch [28] and Kornia [31].
Network architecture: All models trained throughout this work, unless otherwise specified,
follow a 2-stack Hourglass based architecture with a width of 256 channels, operating at a
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resolution of 256×256px as introduced in [5]. Inside the hourglass, the features are rescaled
down-to 4× 4px and then upsampled back, with skip connection linking features found at
the same resolution. The network is constructed used the building block from [4] as in [5].
For more details regarding the network structure see [5, 27].

6 Comparison against state-of-the-art
Herein, we compare against the current state-of-the-art face alignment methods across a
plethora of datasets. Throughout this section the best result is marked in table with bold and
red while the second best with bold and blue color. The important finding of this section is
by means of two simple improvements: (a) improving the heatmap encoding and decoding
process and, (b) including the Siamese training, we managed to obtain results which are
significantly better than all recent prior work, setting in this way a new state-of-the-art.
Comparison on WFLW: On WFLW, and following their evaluation protocol, we report
results in terms of NMEic, AUC10

ic and FR10
ic . As the results from Table 4a show, our method

improves the previous best results of [20] by more than 0.5% for NMEic and 5% in terms of
AUC10

ic almost halving the error rate. This shows that our method offers improvements in the
high accuracy regime while also reducing the overall failure ratio for difficult images.
Comparison on AFLW: Following [20], we report results in terms of NMEdiag, NMEbox

and AUC7
box. As the results from Table 6 show, we improve across all metrics on top of the

current best result even on this nearly saturated dataset.

Method NMEic(%) AUC10
ic FR10

ic (%)

Wing [13] 5.11 0.554 6.00
MHHN [42] 4.77 -
DeCaFa [9] 4.62 0.563 4.84
AVS [30] 4.39 0.591 4.08

AWing [44] 4.36 0.572 2.84
LUVLi [20] 4.37 0.577 3.12
GCN [22] 4.21 0.589 3.04

Ours 3.72 0.631 1.55

(a) Comparison against the state-of-the-art on
WFLW in terms of NMEinter−ocular, AUC10

ic and
FR10

ic .

Common Challenge Full

Teacher [10] 2.91 5.91 3.49
DU-Net [41] 2.97 5.53 3.47
DeCaFa [9] 2.93 5.26 3.39
HR-Net [38] 2.87 5.15 3.32

HG-HSLE [55] 2.85 5.03 3.28
Awing [44] 2.72 4.52 3.07
LUVLi [20] 2.76 5.16 3.23

Ours 2.61 4.13 2.94

(b) Comparison against state-of-the-art on the
300W Common, Challenge and Full datasets (i.e.
Split II) in terms of NMEinter−occular

Table 4: Results on WFLW (a) and 300W (b) datasets.

Method NMEic(%) FR10
ic (%)

Wing [13] 5.07 3.16
LAB (w/B) [46] 3.92 0.39

HR-Net [38] 3.45 0.19
Ours 3.02 0.0

Table 5: Comparison on COFW-29. Results
for other methods taken from [38].

Comparison on 300W: Following the pro-
tocol described in [33] and [5], we report re-
sults in terms of NMEinter−occular for Split I
and of AUC7

box and NMEbox for split II. Note
that due to the overlap between the splits we
train two separate models, one on the data
from the first split and another on the data
from the other split evaluating the models ac-
cordingly. Following [5, 20] the model eval-
uated on the test set was pretrained on 300W-
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Method
NMEdiag NMEbox AUC7

box

Full Frontal Full Full

SAN [11] 1.91 1.85 4.04 54.0
DSNR [26] 1.85 1.62 - -

LAB (w/o B) [46] 1.85 1.62 - -
HR-Net [38] 1.57 1.46 - -
Wing [13] - - 3.56 53.5
KDN [8] - - 2.80 60.3

LUVLi [20] 1.39 1.19 2.28 68.0
MHHN [42] 1.38 1.19 - -

Ours 1.31 1.12 2.14 70.0

Table 6: Comparison against the state-of-the-art on the AFLW-19 dataset.

Method
NMEbox AUC7

box

300-W Menpo COFW-68 300-W Menpo COFW-68

SAN [11] 2.86 2.95 3.50 59.7 61.9 51.9
FAN [5] 2.32 2.16 2.95 66.5 69.0 57.5

Softlabel [8] 2.32 2.27 2.92 66.6 67.4 57.9
KDN [8] 2.21 2.01 2.73 68.3 71.1 60.1

LUVLi [20] 2.10 2.04 2.57 70.2 71.9 63.4
Ours 2.04 1.95 2.47 71.1 73.0 64.9

Table 7: Comparison against the state-of-the-art on the 300W Test (i.e. Split I), Menpo 2D
Frontal and COFW-68 datasets in terms of NMEbox and AUC7

box.

LP dataset. As the results from Table 4b show, our approach offers consistent improvements
across both subsets (i.e. Common and Challenge), with particularly higher gains on the later.
Similar results can be observer in Table 7 for Split II.

Comparison on COFW: On the COFW dataset we evaluate on both the 29-point (see Ta-
ble 5) and 68-point configuration (see Table 7) in terms of NMEic(%) and FR10

ic for the
29-point configuration and NMEbox, AUC7

box for the other one. As the results from Tables 7
and 5 show, our method sets a new state-of-the-art, reducing the failure rate to 0.0.

Comparison on Menpo: Following [20] we evaluate on the frontal sub-set of the Menpo
dataset. As Table 7 shows, our method sets a new state-of-the-art result.

Comparison on 300VW: Unlike the previous datasets that focus on face alignment for static
images, 300VW is a video face tracking dataset. Following [36], we report results in terms
of AUCic@0.08 on the most challenging partition of the test set (C). As the results from
Table 8 show, despite not exploiting any temporal information and running our method on a
frame-by-frame basis, we set a new state-of-the-art, outperforming previous tracking meth-
ods trained such as [35] and [15]. Similar results can be observed when evaluating on all 68
points in Table 9.

Citation
Citation
{Dong, Yan, Ouyang, and Yang} 2018{}

Citation
Citation
{Miao, Zhen, Liu, Deng, Athitsos, and Huang} 2018

Citation
Citation
{Wu, Qian, Yang, Wang, Cai, and Zhou} 2018{}

Citation
Citation
{Sun, Zhao, Jiang, Cheng, Xiao, Liu, Mu, Wang, Liu, and Wang} 2019{}

Citation
Citation
{Feng, Kittler, Awais, Huber, and Wu} 2018

Citation
Citation
{Chen, Su, and Ji} 2019

Citation
Citation
{Kumar, Marks, Mou, Wang, Jones, Cherian, Koike-Akino, Liu, and Feng} 2020

Citation
Citation
{Wan, Lai, Liu, Zhou, and Gao} 2020

Citation
Citation
{Dong, Yan, Ouyang, and Yang} 2018{}

Citation
Citation
{Bulat and Tzimiropoulos} 2017{}

Citation
Citation
{Chen, Su, and Ji} 2019

Citation
Citation
{Chen, Su, and Ji} 2019

Citation
Citation
{Kumar, Marks, Mou, Wang, Jones, Cherian, Koike-Akino, Liu, and Feng} 2020

Citation
Citation
{Kumar, Marks, Mou, Wang, Jones, Cherian, Koike-Akino, Liu, and Feng} 2020

Citation
Citation
{Shen, Zafeiriou, Chrysos, Kossaifi, Tzimiropoulos, and Pantic} 2015

Citation
Citation
{S{á}nchez-Lozano, Tzimiropoulos, Martinez, Deprotect unhbox voidb@x protect penalty @M  {}la Torre, and Valstar} 2017

Citation
Citation
{Harisprotect unhbox voidb@x protect penalty @M  {}Khan, McDonagh, and Tzimiropoulos} 2017



10 BULAT ET AL.: HEATMAP REGRESSION FOR FACIAL LANDMARK LOCALIZATION

Method Ours DGM [15] CPM+SRB+PAM [12] iCCR [35] [49] [48]

AUCic@0.08 60.10 59.38 59.39 51.41 49.96 48.65

Table 8: Comparison against the state-of-the-art on the 300-VW dataset – category C, in
terms of AUCic@0.08 evaluated on the 49 inner points.

Method Ours FHR+STA [39] TSTN [23] TCDCN [51] CFSS [52]

NMEic 5.84 5.98 12.80 15.0 13.70

Table 9: Comparison against the state-of-the-art on the 300-VW dataset – category C (i.e.,
scenario 3), in terms of NMEic evaluated on all 68 points. Results for other methods taken
from [39].

Figure 4: Qualitative results. Landmarks shown in white are produced by our method, while
the ones in red by the state-of-the-art approach of [5]. Thanks to the proposed heatmap
encoding and decoding, our method is able to provide much more accurate results. Best
viewed zoomed in, in electronic format.

Figure 5: Examples of failure cases. Most of the failure cases include combinations of
low resolution images with extreme poses (1st and 4th image), perspective distortions (5th
image) or overlapping faces (3rd image).

7 Conclusions

We presented simple yet effective improvements to standard methods for face alignment
which are shown to dramatically increase the accuracy on all benchmarks considered without
introducing sophisticated changes to existing architectures and loss functions. The proposed
improvements concern a fairly unexplored topic in face alignment that of the heatmap en-
coding and decoding process. We showed that the proposed continuous heatmap regression
provides a significantly improved approach for the encoding/decoding process. Moreover,
we showed that further improvements can be obtained by considering a simple Siamese
training procedure that enforces output spatial consistency of geometrically transformed im-
ages. We hope that these improvements will be incorporated in future research while it is not
unlikely that many existing methods will also benefit by them.
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