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Abstract

Kidney segmentation from 3D ultrasound images remains a challenging task due to
low signal-to-noise ratio and low-contrasted object boundaries. Most of recently pro-
posed segmentation CNNs rely on loss functions where each voxel is treated indepen-
dently, which does not convey the overall high-dimensional structure of a 3D organ. Such
approaches fail to produce regularly shaped segmentation masks especially in complex
cases. In this work, we design a loss function to compare segmentation masks in a feature
space designed to describe explicit global shape attributes. We use a Spatial Transformer
Network to derive the 3D pose of a mask and we project the resulting aligned mask on
a linear sub-space describing the variations across objects. The resulting shape-feature
vector is a concatenation of weighted shape rigid pose parameters and non-rigid defor-
mation parameters with respect to a mean shape. We use the L1 function to compare the
prediction and the ground-truth shape-feature vectors. We validate our method on a large
3D ultrasound kidney segmentation dataset. Using the same U-net Architecture, our loss
function outperforms dice and cross entropy standard loss functions used in the nnU-net
state-of-the-art approach.

1 Introduction
Current clinical practice for kidney volume assessment is based on the combination of 2D
diameter measurements, from 2D Ultrasound (US), combined with an ellipsoid model [1]
and is known to have an error of estimation around 25% . Automatic kidney volume quan-
tification from 3D US is foreseen as a mean to improve patient surveillance in the context
of renal diseases, such as chronic kidney disease (CKD). The acquired images often suffer
from limited image quality, shadows, making the segmentation process challenging for a
non-expert sonographer. Moreover, depending on both the considered acquisition protocol
and anatomies, kidneys exhibit high variability with respect to their 3D pose, geometry and
appearance.

To tackle this problem, classical methods in medical image shape segmentation use prior
knowledge about the object shape to be segmented [12, 13, 14]. This expertise is acquired
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from previously seen objects and expressed through a model. The model describes a class
of local [16] or global [15] statistical relationships between shapes to be extracted. By in-
corporating the desirable properties of the envisioned solution, these methods tend to give
regularized, plausible shapes but are not necessarily faithful to the considered image due to
limitations of the used hand-crafted image features and/or shadow learning and inference
techniques.

With the advent of deep learning based segmentation methods, this long standing idea
of combining a feature extraction model with a prior knowledge regularization model has
faded out. Recent works henceforth rely on the deep neural networks to be able to implic-
itly learn high order relations between the input image and the desired high-dimensional
structured segmentation mask, eventhough they use loss functions designed for voxel-wise
classification. CNNs risk to over-fit to only variability seen in the training dataset and inter-
pretability of neural network learned expertise is still an open question. In our experiments
with challenging ultrasound segmentation tasks, we witnessed several failure cases with cur-
rent CNNs.

Since the introduction of the popular U-net paper [3], there was not a major improve-
ment to dethrone the proposed encoder-decoder with skip connections architecture. Dilated
convolutions [21], attention mechanism [19], residual connections [17], dense connections
[18], and squeeze and excitation [20] were since then incorporated into U-net. [2] empiri-
cally demonstrate that these architectures bring little systematic improvement agnostic to the
considered dataset. Other recent research papers focus on designing ‘better’ loss functions.
Cross entropy and Dice are ‘Gold Standard’ [2, 11]. Sensitivity-specificity loss [25], IoU
loss [26], Tversky loss [27] Penalty loss [28] and Hausdorff Distance loss [29] are related to
the Dice loss [11]. Weighted cross entropy [3], TopK loss [22] Focal loss [23] and Distance
map penalized cross entropy loss [24] are derived from the Cross entropy loss. Overall, these
losses are still limited to voxel-to-voxel comparison and do not fully take into account the
underlying semantic information and dependencies in the output space.

Recently, a number of works attempted to incorporate prior shape knowledge into CNNs
for object segmentation. [4] used a convolutional auto-encoder to learn a non-linear compact
representation of the underlying anatomy. The encoder part is then plugged with a standard
segmentation network as a shape regularisation loss. It encourages the CNN to predict seg-
mentations that lie on the extracted low dimensional data manifold. It is unclear though if the
learned encoder managed to learn global geometric variability like rotation and translation.
A complex disentanglement technique is needed to interpret and validate the learned vari-
ability. The Adversarial loss was also considered for segmentation to progressively build a
prior on the space of feasible segmentations [5]. The discriminator learns an implicit feature
space to distinguish between fake and real segmentations. However, GAN-based techniques
still suffer from hallucinating artifacts and are difficult to train. The perceptual loss [6]
uses features from intermediate layers of a generic pre-trained network. It was proposed for
image-to-image translation tasks and super resolution. This loss might need adaptation when
considered for segmentation tasks since segmentation mask statistics are different from nat-
ural images statistics. [7] introduced a PCA-based loss and showed promising results on 2D
X-ray cervical vertebra images. However, no pose variability was treated which limits the
application of the method to only already aligned datasets. [32] used the encoder part of an
encoder-decoder framework to predict the shape and pose parameters. In our experiments,
we found it difficult to regress directly these heterogeneous parameters with a mean squared
error loss.

In this work, we keep the successful U-Net based CNN architecture and augment it
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with a shape feature loss, noted Ls f , which uses a simple explicit and interpretable shape
feature space as a compact representation of kidneys. Ls f enforces network predictions to
follow the learnt statistical shape distributions. In particular, we use a Spatial Transformer
Network (STN) to reveal the 3D pose of a predicted segmentation mask and transform it to a
normalized pose. Then we project this normalized shape to obtain a feature vector describing
shape deformation with respect to a mean shape. We use the L1 function to compare the
prediction and the ground-truth shape-feature vectors. Furthermore, in order to guarantee
optimal contribution of each loss component, we use a multi-task learning technique [8] to
automatically calibrate the weights assigned to each term of the loss function. This technique
adjusts the weights automatically during training according to the network homoscedastic
uncertainty [8]. Our method is validated on a large 3D ultrasound kidney segmentation
dataset. Using the same U-net Architecture, our loss function outperforms Dice and cross
entropy standard loss functions.

Figure 1: Our network architecture introduces the shape feature loss, Ls f . The pose loss (PL)
part constrains the segmentation pose using a pre-trained frozen STN. The Shape Deforma-
tion loss (SL) part constrains the normalized pose segmentation anatomically using a PCA
model. A learned combination calibrates the contribution of each loss component.

2 Preliminaries

2.1 Ground Truth Generation

We convert each available training ground-truth segmentation mask to a signed distance
map (SDM) -noted y- using Danielsson algorithm [31]. An SDM represents shape in a
nonparametric manner. The shape is defined implicitly as the set of its SDM. We then obtain
aligned SDMs -noted yN- with a reference SDM by using a classic iterative rigid registration
algorithm. This allows us to also obtain the ground-truth 3D pose parameters θGT of each y

2.1.1 SDM based Statistical Shape Model

With the obtained aligned training SDMs, we build a statistical shape model (SSM) of the
kidney. We apply Principal Component Analysis (PCA) on normalized pose ground-truth
Signed distance maps . This allows representing each SDM as

yN = ȳN +Wb (1)
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where ȳN is the mean normalized pose SDM, W is the eigenvectors matrix and bGT is a
vector of shape parameters. The resulting SSM model explains 19 modes of variation, that
represent 99% of the shape variability.

Figure 2: Compact representation of a kidney shape. A feasible kidney shape is described by
its pose parameters θGT (left) and its global deformation parameters with respect to a mean
shape bGT (right). The shape is represented by a 7+19 dimensional feature vector.

2.2 SDM pose regression

We pre-train a Supervised Spatial Transformer Network (STN) that takes an SDM as input,
predicts its 3D pose and transform it to a normalized pose in a differentiable manner. We
augment our dataset with synthetic data by applying random rigid transformation and com-
posing the corresponding rigid pose. We use a 3D resnet architecture for the localisation
network part Floc, which is less prone to over-fitting. Instead of using only a mean squared
error (MSD) loss on pose parameters, we also used a MSD loss on normalized pose SDMs
in addition to the aforementioned loss. This allowed us to obtain more stable training and
better overall performance. Once the training finished, the STN is henceforth frozen to be
used inside our loss function.

3 Backbone Model
The No New U-Net (nnU-Net) [2] paper compiles best practices in the use of U-net for 3D
medical image segmentation. It automatically finds optimal hyper-parameters suited to the
considered dataset. It showed state-of-the-art performance in 3D medical image segmenta-
tion on several different datasets and won several challenges such as the Medical Segmen-
tation Decathlon. It showed best performance when using a combination of Dice and cross
entropy loss. We consider the nnU-Net implementation as our standardized baseline and we
build upon it to incorporate prior shape knowledge regularization loss.

Since our loss involves shape properties, we augment the nnU-Net to predict also an
SDM as shown in Figure 1 to represent a shape as proposed in [10]. A recent comparison
study [9] showed that best segmentation performance is achieved when using a multi head
U-net with two predictions, a segmentation and an SDM regression. This is inherent to
multi task learning paradigm, the network is equivalent to two networks sharing weights and
regularizing each other.
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The loss assigned to this network is the sum of an ‘iconic’ loss computed on the segmen-
tation branch, and a ‘shape regularization’ loss computed on the regression part. The iconic
segmentation loss is the sum of a Dice and Cross entropy loss as used in nnU-Net. The shape
regularization loss is our proposed Shape Feature Loss.

4 Shape Feature loss for 3D anatomical structure
segmentation

Our proposed loss function acts on the regression branch and is an L1 function between
features extracted from the predicted ŷ and the ground-truth y signed distance map

Ls f (ŷ,y) = ‖φ(ŷ)−φ(y)‖1 (2)

Our feature extraction function φ is the concatenation of 3D pose feature function φpl and a
shape deformation feature function φsd as shown in Figure 1 and noted in φ =

[
φpl ,φsd

]
.

4.1 3D pose feature extraction

Figure 3: Besides giving good segmentation results (prediction in red, ground-truth in green)
our method produces aligned images with a reference pose, which provides a standardized
view for further analysis.

We use ou pre-trained STN to align and extract rigid parameters from an SDM. These
parameters represent 3D rotations θx,θy,θz, 3D translations Tx,Ty,Tz and Scale S and will be
compared to their ground-truth counterparts.

φpl(y) = Floc(y) = [Tx,Ty,Tz,θx,θy,θz,S] (3)

4.2 Shape deformation feature extraction

Our shape deformation feature function φsd(y) acts on normalized pose SDM yN = ST N(y
produced by the STN and extracts the shape vector as follows:

φsd(y) =W T (ST N(y)− ȳN) (4)

This is derived from Equation 1, where ȳN is the mean normalized pose SDM and W T is the
transpose of the eigenvectors matrix.
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5 Dynamic loss-term calibration
In order to fully take advantage of our loss function, we calibrate the multiple terms of our
loss. Our loss function can be written as, with φ = [φi] :

L̂ =
k=n

∑
k=1

L̂i, where L̂i = wiLi + ci and Li = ‖φi(ŷ)−φi(y)‖1 (5)

The number of loss-terms n is equal to 26, since we have 7 pose parameters and 19 modes
of variations. Inspired by multi-task learning, we use the self paced learning technique based
on homoscedastic uncertainty introduced in [8]. The basic idea is to monitor the learning
progress signal and learn a policy to adjust the relative weights to the loss terms. Hence we
learn dynamic weights (wi,ci) for each loss component. Specifically, we learn the network
homoscedastic uncertainty and use it to weigh different tasks. This uncertainty does not
change with input data and is loss-term-specific. In practice, this results in changing each
loss term with the following loss:

L̂i =
1

σ2
i

Li + log(σ2
i ) (6)

where σi is the learnable homoscedastic uncertainty associated with each loss component.
The second term avoids the uncertainties to be set too high. We refer to [8] for derivation of
this formulation of the multi-task loss which is based on the maximization of the Gaussian
likelihood with homoscedastic uncertainty.

Our final loss is sum of an iconic segmentation loss computed on the segmentation branch
of the network and

6 Experimental Validation

6.1 Dataset and experimental setting
We use a dataset of left and right adult kidney 3D ultrasounds from 667 patients. These im-
ages were collected from several hospital sites and include various kidney conditions such as
normals, CKD and transplants. Reference segmentations were performed by manual annota-
tion under the supervision of medical experts. These exams were performed in the course of
the normal care pathway of the patient and were studied retrospectively after anonymization.
The 3D images were preprocessed to have the same voxel size and cropped afterward to have
same image size of 192×160×80 containing the kidney structure. We used 80% of the data
for training, 20% for validation by random selection. We let the nnU-Net pre-processing
routines determine all hyper-parameters. We use the same setting when adding our Shape
Feature loss function Ls f to the network.

6.2 Results
We compare the state-of-the-art nnU-Net implementation with our approach. For our ex-
periments, we retain exactly the same nnU-Net implementation and its hyperparameters and
we add to the network our Ls f loss branch. Since our STN applies rotation and translation
to SDMs, we add zero padding to our input images, so that the aligned SDMs remain valid
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after STN transformations. We use Dice similarity coefficient as a validation metric. Quan-
titatively, Our method outperforms the nnU-Net as shown in Table 1. We obtain a p value
< 0.002. Qualitatively, we can see in Figure 4 that our results are more regularized and
anatomically plausible. Furthermore, Figure 5 shows a case where our method detects the
3D kidney pose better than the nnU-Net method. We believe that our method is clinically
significant to practitioners as it provides anatomically more accurate segmentations, requir-
ing less time for manual correction and standardizes pose as shown in Figure 3 enabling less
subjective visual medical assessment.

Figure 4: In Orange, two results (top and bottom) of segmentation with nnU-Net approach.
The results show artifacts that are not anatomically plausible. In Blue, results of the segmen-
tation using our method. The shape constraints embeded in our Shape Feature loss enable to
produce regularized segmentations

Figure 5: A case where our method better detects the 3D pose (more visible on the third
image) of the kidney than the nnU-Net approach. Our results are shown in blue, nnU-Net in
red and ground-truth in green.

6.3 Ablation study
In order to show the importance of each component of our method, we proceed to an ablation
study. As shown in Table 2 we first discarded the dynamic loss-term calibration. We found
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Table 1: Mean and standard deviation of Dice score, total training time and memory allocated
comparison between our method and the nnU-Net on our dataset

Architecture
Training

Time
Memory
allocated

Dice score
kidney

nnU-Net 124h 8.15Gb 90.64 (1.61)
Ours 167h 16.35Gb 92.07 (1.91)

that the decrease in performance is marginal but the network converged more slowly than
with the dynamic calibration term. We also discarded the FSL term and replaced it with
an L1 directly on SDMs -meaning there is non feature extraction form the predicted SDMs.
The decrease is performance is significant but the performance is still better that the nnU-
Net. We also replaced L1 by L2, we found similar results. We can’t discard the STN part
as projecting unaligned SDMs on PCA space would give incorrect shape parameters. Hence
we built an aligned version of our dataset by registering all images to a reference image. In
Table 3 we show an ablation study on the aligned kidney dataset. In this setting we don’t use
an STN and our method becomes similar to [7]. This is a simpler task. We can see that each
component of our method brings improvement in performance.

Table 2: Ablation study on the kidney dataset

Method
Dice score

kidney
nnU-Net 90.64 (1.61)
nnU-Net+L1 SDM regression 91.05 (1.21)
nnU-Net+L2 SDM regression 91.02 (1.34)
nnU-Net+FSL 92.01 (2.01)
nnU-Net+FSL+loss calibration 92.07 (1.91)

6.4 Computing infrastructure

In all our experiments, we use an Nvidia Titan RTX graphics card which has 24 GB of
memory, an Intel 32-core Xenon processor, 64 Gb of Ram workstation. This machine runs
on Ubuntu 18.04 LTS. Our code is built on top on the publicly available Pytorch (version
1.6) original implementation of nnU-net.

Table 3: Ablation study on the aligned version of the kidney dataset

Method
Dice score

kidney
nnU-Net 94.44 (1.21)
nnU-Net+L1 SDM regression 95.24 (1.31)
nnU-Net+SSM loss 96.34 (1.61)
nnU-Net+SSM loss+loss calibration 96.74 (1.41)
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7 Conclusion
In this paper, we introduced the Shape Feature Loss. Plugged into the U-Net architecture,
this simple loss function is suited for 3D anatomical structure segmentation. It incorporates
prior knowledge to regularize output needed for challenging tasks such as 3D ultrasound
kidney segmentation. Thanks to the used STN and a PCA model, the rigid and non rigid
parameters are decoupled and explicitly encoded from a U-Net prediction. Applied to the
currently considered kidney conditions, this proposed approach improves the segmentation
results compared to the state-of-the-art nnU-Net baseline. However, in the case of highly
pathological cases, for example large infiltrating tumors, a manual correction of the output
will be necessary to adapt to non-learned shape irregularities.

Indeed, the use of a PCA model in an SDM space might require a relatively big train-
ing segmentation dataset to reveal meaningful deformations. Moreover PCA is limited to
model a linear subspace which is not well suited to all anatomical deformations. Hence, as
a future work, we will consider designing a shape deformation loss function acting on 3D
mesh representation using Graph Convolutional Neural Networks [30]. This would allow to
encode local shape deformations. As a further perspective, we could take advantage of the
pre-trained STN layers and use them to formulate an additional perceptual loss.

References
[1] Bakker, J. and Olree, M. and Kaatee, R. and Lange, E. and Moons, K. and Beutler, J. and

Beek, F., Renal Volume Measurements: Accuracy and Repeatability of US Compared
with That of MR Imaging1, In: Radiology (1999)

[2] Isensee, F., Jaeger, P. F., Kohl, S. A. A., Petersen, J., Maier-Hein, K. H. . nnU-Net:
a self-configuring method for deep learning-based biomedical image segmentation. In:
Nature Methods (2021)

[3] O. Ronneberger, P. Fischer, and T. Brox,: “U-Net: Convolu-tional networks for biomed-
ical image segmentation,” in: MICCAI (2015)

[4] Oktay, O., Ferrante, E., Kamnitsas, K., Heinrich, M., Bai, W., Caballero, J., . . . Rueckert,
D. : Anatomically Constrained Neural Networks (ACNN): Application to Cardiac Image
Enhancement and Segmentation. In: IEEE Transactions on Medical Imaging.(2017)

[5] Luc, P., Couprie, C., Chintala, S., Verbeek, J. : Semantic Segmentation using Adversarial
Networks. In: NIPS Workshop on Adversarial Training. (2016)

[6] Johnson, J., Alahi, A., Fei-Fei, L. (n.d.). Perceptual Losses for Real-Time Style Transfer
and Super-Resolution. In: ECCV (2016)

[7] Al Arif, S. M. M. R., Knapp, K., Slabaugh, G. : SPNet: Shape prediction using a fully
convolutional neural network in MICCAI (2018)

[8] Cipolla, R., Gal, Y., Kendall, A. : Multi-task Learning Using Uncertainty to Weigh
Losses for Scene Geometry and Semantics. In: CVPR (2018)

[9] Ma, J., Wei, Z., Zhang, Y., Wang, Y., Lv, R., Zhu, C., . . . Chen, J. (2020).: How Distance
Transform Maps Boost Segmentation CNNs: An Empirical Study CNNs with Distance
Transform Maps. In: Proceedings of Machine Learning Research (2020)

Citation
Citation
{} 



10 BOUSSAID, JAGO, ROUET: SHAPE FEATURE LOSS

[10] Fernando Navarro, Suprosanna Shit, Ivan Ezhov, Johannes Paetzold, Andrei Gafita, Jan
C. Peeken, Stephanie E. Combs, and Bjoern H. Menze.: Shape-aware complementary-
task learning for multi-organ segmentation. In: Machine Learning in Medical Imaging
(2019)

[11] M. Jun : Segmentation Loss Odyssey. In: arXiv preprint arXiv:(2005)

[12] T. F. Cootes and C. J. Taylor. : Combining point distribution models with shape models
based on finite element analysis. In: Image and Vision Computing (1995)

[13] W. Bai, W. Shi, D. P. O’Regan, T. Tong, H. Wang, S. Jamil-Copley, N. S. Peters, and D.
Rueckert. : A probabilistic patch-based label fusion model for multi-atlas segmentation
with registration refinement: application to cardiac MR images. In: IEEE TMI (2013)

[14] A. Tsai, A. Yezzi, W. Wells, C. Tempany, D. Tucker, A. Fan, W. E. Grimson, and A.
Willsky,: A shape-based approach to the segmentation of medical imagery using level
sets, In: IEEE Transactions on Medical Imaging (2003)

[15] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham, : Active shape models-their
training and application In: Computer Vision and Image Understanding (1995)

[16] Boussaid, H., Kokkinos, I. : Fast and exact: ADMM-based discriminative shape seg-
mentation with loopy part models. CVPR (2014)

[17] He, K., Zhang, Z., Ren, S. Sun, J. : Deep residual learning for image recognition. In :
CVPR (2016)

[18] Huang, G., Liu, Z., van der Maaten, L. Weinberger, K. Q.: Densely connected convo-
lutional networks. In :CVPR (2017).

[19] Oktay, O. et al. : Attention U-net: learning where to look for the pancreas. Arxiv
Preprint Arxiv (2018).

[20] Hu, J., Shen, L. Sun, G. : Squeeze-and-excitation networks. In : CVPR (2018)

[21] Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K. a Yuille, A.: DeepLab: se-
mantic image segmentation with deep convolutional nets, atrous convolution, and fully
connected CRFs In: IEEE Trans. Pattern Anal. Mach. Intell. (2017).

[22] Wu, Z., Shen, C., Hengel, A.v.d.: Bridging category-level and instance-level seman-
tic image segmentation. arXiv preprint arXiv (2016)

[23] Lin, T., Goyal, P., Girshick, R., He, K., Dollr, P.: Focal loss for dense object detection.
In: ICCV (2017)

[24] Caliva, F., Iriondo, C., Martinez, A.M., Majumdar, S., Pedoia, V.: Distance map loss
penalty term for semantic segmentation. In: MIDL (2019)

[25] Brosch, T., Yoo, Y., Tang, L.Y.W., Li, D.K.B., Traboulsee, A., Tam, R.: Deep con-
volutional encoder networks for multiple sclerosis lesion segmentation. In: MICCAI
(2015)

[26] Rahman, M.A., Wang, Y.: Optimizing intersection-over-union in deep neural net-
works for image segmentation. In: International symposium on visual computing. (2016)



BOUSSAID, JAGO, ROUET: SHAPE FEATURE LOSS 11

[27] Salehi, S.S.M., Erdogmus, D., Gholipour, A.: Tversky loss function for image seg-
mentation using 3d fully convolutional deep networks. In: International Workshop on
Machine Learning in Medical Imaging. (2019)

[28] Su, Y., Jihoon, K., Young-Hak, K.: Major vessel segmentation on x-ray coronary an-
giography using deep networks with a novel penalty loss function. In: MIDL (2019)

[29] Karimi, D., Salcudean, S.E.: Reducing the hausdorff distance in medical image seg-
mentation with convolutional neural networks. arXiv preprint arXiv (2019)

[30] Liang, J., Homayounfar, N., Ma, W.-C., Xiong, Y., Hu, R., Urtasun, R. : PolyTrans-
form: Deep Polygon Transformer for Instance Segmentation. Proceedings of the In:
CVPR (2020)

[31] Danielsson, Per-Erik. : Euclidean Distance Mapping. In: Computer Graphics and Im-
age Processing (1980).

[32] Tilborghs S., Dresselaers T., Claus P., Bogaert J., Maes F. Shape Constrained CNN for
Cardiac MR Segmentation with Simultaneous Prediction of Shape and Pose Parameters.
In: STACOM (2020)


