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Abstract

The space of human motions is vast, ranging from daily behaviors of healthy adults
to the slow and stiff motions of Parkinson’s patients, or to infant motions. This poses
significant challenges when the task is focused on a relatively niche motion subspace
such as physical rehabilitation: often the target datasets are limited and less-annotated;
meanwhile, there exist large-scale, well-annotated benchmarks, typically consisting of
daily activities from healthy adults. This observation inspires us to propose a two-stage
pipeline that takes advantage of the best of both worlds: a non-expert network starts to
learn the representation of normal motions from source datasets, by estimating the pace
and a set of manually inpainted joints of the pose sequence; this is followed by an expert
network that takes as input these representations as well as the appearance features of the
dedicated motions from the target dataset, to assess the quality of the specific actions.
Empirical experiments on two very different motion assessment applications (physical
rehabilitation of Parkinson’s & stroke patients, and neuromotor behaviors of infants)
demonstrate the superior performance of our approach.

1 Introduction
The problem of labeled data scarcity has marred the effectiveness of using deep neural net-
works in some fields like medical image analysis. The difficulty of collecting the images and
privacy concerns have led to limited access to both healthy and abnormal samples. However,
that is not necessarily the case for healthy samples in video-based healthcare monitoring and
rehabilitation movement assessment. In such cases, a healthcare professional asks the patient
to do some daily activities like walking and sit-standing. Then the performance of the patient
is assessed based on posture accuracy of the body parts, motion smoothness, and the speed
of the movements. Although getting such video samples of the patients that are labeled by
an expert is still an issue, there is a myriad of such daily activities performed by healthy
people readily available in datasets like UWA3D [19] and UTKinect [29]. In this paper, we
address the question of: how can we learn a representation from these healthy samples to
help develop a more accurate yet shallower network to assess the performance of patients’
actions?

We as humans have seen lots of such daily activities in our lives. Our visual system has
learned to be sensitive to anomalies it sees like an abnormal walking pace or an impaired
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Figure 1: An overview of our two-stage pipeline. At stage 1, the non-expert module is
trained on the large-scale, well-annotated source benchmarks of healthy samples performing
daily living activities. At stage 2, the expert module is further trained on the small-scale and
less-annotated target training set for assessing e.g. disease severity, by taking as input both
the learned representations from the non-expert module and the motion appearance features
of the target dataset. Note the input to expert module is an RGB video. However, since we
are not permitted to display the raw color images, their depth images are instead presented
here as a substitute.

posture over time [6, 28]. As a result, given a stroke or Parkinson’s patient movement, we
would be able to estimate the severity of the disease to some extent based on how slow or
impaired it is. Inspired by this fact, we propose a Non-expert network that takes the pose
sequence of an activity performed by a healthy person and learns some representations of
the action in a self-supervised manner. As it can be seen from the left side of Figure 1, this
network has a multi-head decoder with a shared encoder. First, some slower pose sequences
are generated from the normal paced sample by altering the temporal sampling rate. The
goal of the first decoder is to estimate the sampling rate to be as close as possible to the
ground-truth one, given the representations of the encoder. Secondly, we manually inpaint
some joints of the skeleton in the sequence and the second decoder is employed to estimate
those masked joints. After training this deep network on the large dataset of healthy samples
we would have a representation that is sensitive to the both pace and impaired posture of the
movements.

At the next step, the pose sequences of the target dataset which has a fewer number
of samples are fed to the non-expert encoder to get the representations of the action. These
representations are fed to a shallower Expert network to assess the performance of the patient
when doing that specific action (see the right side of Figure 1). Since the pose features are
not informative enough to assess the smoothness of the movements and overall posture of
the body, the expert network is further equipped with another stream of appearance features
assessment. These features can come from a backbone network like the well-known C3D
[24] or I3D [3]. The whole network can be seen as a collaboration of the deep non-expert and
shallow expert networks. The non-expert provides feedback (representations) about the pace
and impairment of an action based on lots of healthy samples it has seen beforehand. The
expert network takes this feedback as well as the appearance features of the video to quantify
how well the action was performed. If the video itself (target dataset) is not available due to
privacy issues or any other reason, the expert resorts to the pose representations that come
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from the non-expert to assess the performance.
Our main contributions can be summarized as follows:

• We present a two-stage network to automatically assess the performance of a patient
from the RGB video of doing an action. At the first stage, a non-expert network learns
representations of a large of-the-shelf dataset pose samples by predicting their pace
and impairment in a self-supervised manner. Finally, an expert network leverages the
learned representations of the target dataset and appearance features of the video to
assess the severity of the disease. To the best of our knowledge, we are the first to
make use of self-supervised representation learning in action quality assessment.

• The proposed method not only shows a superior performance in comparison to pre-
vious works in rehabilitation progress assessment but also is the first to show a good
generalization to the case of infants general movements assessment and their early
disease detection.

2 Related Work
Action Quality Assessment (AQA): AQA is the task of evaluating how well an action has
been performed and determining a score for the performance. Driven by the vast number of
video footage available on Youtube, sports action scoring has attracted the attention of more
AQA works than other related tasks. Pirsiavash et al. [18] were the first to propose a sports
routine action quality assessment network. They first applied DCT transform on the pose
sequence of the video to get a set of interpretable high-level features. Finally, by putting a
linear SVR on top of these features they regressed the final score of the athlete’s performance.
Parmar and Morris [16] used C3D network to get the high-level appearance features of the
video. These features are then fed to an SVR or LSTM to get the score. Pan et al. [15] argued
the importance of attending to both individual joints coordination and body parts movements
in the assessment of a sports activity. To capture such features they proposed joint relation
graphs to assess a routine. Tang et al. [23] proposed a score distribution learning method to
model the judges’ disagreement in grading a routine. Recently, Nekoui et al. [13] proposed
a two-stream modular network to assess the pose and appearance of an action based on both
short and long-term temporal dependencies.

The second research line in AQA focuses on assessing the surgical skills of robotic arms
performing some elementary tasks like suturing and knot-tying. To address this problem,
Wang et al. [27] proposed a multi-task learning approach by employing an auxiliary task of
gesture recognition. Gao et al. [5] captured the interaction between the robot parts, consid-
ering a master-slave relation between them. Quite recently Liu et al. [12] argued that the
surgical skill should be assessed based on the pattern of movements and field clearness and
proposed a multi-path network to do so.

The third task that this paper focuses on is rehabilitation progress monitoring and dis-
ease severity assessment. Capecci et al. [2] introduced the first freely available dataset of
Parkinson, stroke, and back pain patients doing a set of daily exercises (KIMORE dataset).
The samples were annotated with quantitative scores of the disease severity. Sardari et al.
[20] proposed a view-invariant method to assess the performance of patients and achieved
state-of-the-art results on this dataset.

Unlike the first two tasks, the samples of the third one have a lot in common with daily
activities like walking and sit-standing covered by large-scale off-the-shelf datasets. This fact
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Figure 2: The architecture of the Non-expert network. The upper decoder predicts the pace
of the sequence and the lower one inpaints the masked joints of the skeleton.

inspired us to learn some representations from these healthy samples to be used in assessing
the patients’ actions.

Self-supervised Representation Learning: The goal in self-supervised representation
learning is to remove the need for having an explicit label to learn representations from the
data. To this end, a pretext task is proposed to learn transferable features inherently from the
data itself. Masking a part of an image and trying to predict it [17], estimating the rotation
transformation [7], color channel prediction [9], pose sequence inpainting [30], and video
pace prediction [26] are some of these pretext tasks. The non-expert network in our work is
inspired by the last two to estimate the pace and impairment of an action.

3 Method
This section outlines our two-stage network and gives more details about each block of Fig-
ure 1. At the first stage, an encoder-decoder based non-expert network learns representations
of a pose sequence from an off-the-shelf dataset in a self-supervised manner. Secondly, the
expert uses the encoder and the representations from the previous stage to assess the perfor-
mance of a patient’s action sample of the target dataset.

3.1 Non-expert
The architecture of our non-expert network is depicted in Figure 2. This multi-head network
aims at predicting the pace and impairment of a pose sequence without requiring any explicit
label and just with the help of the pose sequence itself. Let’s denote all the joints of a skeleton
sequence as a set S = {Xk

t |t = 1,2, ...,T ;k = 1,2, ...,J}, where Xk
t is the position of kth joint

in the tth frame. T is the total number of frames and J is the number of the joints in a human
body skeleton. At the first step, a pace level is randomly selected from a pool of N temporal
sampling rates P = {pi|i = 1,2, ...,N; pi ≤ 1}. This pace level determines how slow the
pose sequence should be. Secondly, a pace adjustment module samples [T × pi] consecutive
frames from S. To make the new sequence have the same length as S one may repeat the
sampled frames or use their linear interpolation. Here, we use the second approach to make
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the new sequence (S′) fit T frames. As a result, we would have a pose sequence that is slower
than the original one. The smaller pi gets, the slower S′ would be. An overview of how the
pace adjustment module works is presented in the lower-left side of Figure 2.

The slowed sequence is then fed to our shared encoder (a bidirectional GRU with two
hidden layers) to generate the representations of the sample. Each of the decoders then takes
these representations to do two different pretext tasks. The first decoder is responsible for
estimating the pace of the slowed sequence (upper part of Figure 2). We use the multi-class
cross-entropy loss for the pace decoder head:

Lpace =−
N

∑
i=1

pi log p̂i (1)

Where pi is the ground truth pace level sampled from the temporal sampling rate pool
and p̂i is the predicted pace by the first decoder.

In parallel, the second decoder takes the representations of the encoder as the initial state
of the cells and the manually masked skeleton sequence as the inputs to the cells of the GRU.
In order to get the masked skeleton sequence, a random part (bi) is first sampled from the
set of legs and hands of the body’s two sides B = {bi|i = 1,2,3,4}. The position of each
joint that belongs to that part is then set to zero . This would result in a new sequence (Ŝ′). It
should be noted that once a part is chosen, all of the frames in the sequence would be masked
in the same way. As a result, the decoder wouldn’t be able to estimate the masked part of a
frame from its neighbors. For the second decoder we use the reconstruction L2 loss:

Lrec =
T

∑
t=1

J

∑
k=1

(X ′k
t − X̂ ′k

t )2 (2)

Where X ′k
t is the ground-truth unmasked skeleton sequence and X̂ ′k

t is the inpainted one.
Although the decoder is able to fill in the masked joints, there is no guarantee that the in-
painted skeleton is visually plausible. To address this issue, a discriminator sits on top of the
inpainted skeleton to adversarially make it more realistic. Thus, the inpainting decoder loss
should be revised as follows:

Linpaint = Lrec +αLadv =
T

∑
t=1

J

∑
k=1

(X ′k
t − X̂ ′k

t )2 +α
(
log(Disc(S′))+ log(1−Disc(Ŝ′))

)
(3)

Where α is a constant that adjusts the adversarial loss to make the optimization stable.
The parameters of the pace and inpainting decoders are updated w.r.t the Lpace and Linpaint
respectively. However, since the encoder is shared between these two decoders, its loss
function should have a touch of both Lpace and Lrec. Thus, the encoder’s parameters are
updated based on the following loss function:

Lenc = Lrec +βLpace (4)

Where β is a constant that controls the weight of two decoders. It should be noted that
per Zheng et al. [30] suggestion, the encoder should stick to generating the representation
regardless of how visually realistic the inpainted skeleton is. This strategy would help the
encoder to focus on capturing the motion dynamics for the next stage and not to sacrifice
it for style and realisticity of the sequence which can be solely handled by the decoder.
Therefore, the Ladv shouldn’t be involved in the encoder’s parameters updating process.
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Figure 3: The architecture of our two-stream Expert. This network takes the RGB video of
a patients action and evaluates it based on both appearance and pose features. In case due to
privacy concerns the videos aren’t provided and we only have access to the pose sequences,
we stick to the lower stream of the network.

At the end of this stage, we would have an encoder that is going to be used in the next
stage to provide representations for samples of the target dataset. In other words, the non-
expert learns representations by doing the pretext tasks and the expert uses these representa-
tions to perform the downstream task which is the action quality assessment.

3.2 Expert

The goal of our expert network is to use the non-expert representations and appearance fea-
tures of a patient’s action to assess it. As depicted in Figure 3, given the RGB video input,
this two-stream network assesses the pose and visual clues of the action in parallel.

The upper stream is responsible for evaluating the appearance features. To this end, the
video is first fed to a feature extractor backbone like C3D. The resulted features are then
fed to a stack of two appearance assessment modules to get more high-level spatio-temporal
dependencies inspired by [13]. The first block of this module is a point-wise convolution to
reduce the number of channels in the extracted features. As a result, this stream would have
a comparable number of channels to the lower one. At the next step, the output goes through
a set of depth-wise separable temporal convolutions to capture visual clues with different
tempos. Then, a temporal max-pooling layer increases the receptive field in the temporal
subspace. As a result, the next module of the stack would observe a broader temporal field to
capture long-term temporal dependencies. Finally, the three tensors from the three branches
are concatenated over the semantic subspace.

The lower stream first takes the video and extracts the pose sequence of it using an off-
the-shelf pose estimator like OpenPose [1]or HRNet [22]. The pose sequence is then fed
to the encoder that we trained in the previous stage for the non-expert. At the next step,
a shallow bidirectional LSTM with one hidden layer takes the resulted representations to
get the dependencies between the frames. Finally, the output of this stream is concatenated
with the appearance assessment stream and fed to a stack of batch normalization - ReLU
activation - FC to provide the score for the performance.

As a result, our two-stage network not only takes advantage of the large off-the-shelf
datasets to learn representations of a movement but also isn’t susceptible to be overfitted to
the small target dataset. Intuitively, the non-expert function resembles what humans do. It
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provides some generic representations about the sequence. The expert which could be the
healthcare professional in the real world knows these representations and is able to do more
detailed analysis about both pose and visual clues to evaluate the patient’s performance .

4 Experiments

4.1 Implementation Details

Dataset: We use the off-the-shelf UWA3D [19] and UTKinect[29] datasets to train the non-
expert network on the pretext task. The UWA3D dataset contains 30 daily living actions (e.g.
sitting down, bending, etc.) performed by 10 subjects from 4 different views. The dataset
has a set of 1075 sequences in total. The UTKinect dataset consists of 200 samples of 10
actions like walking, picking up, etc. performed twice by 10 subjects. The non-expert is first
trained on the UWA3D and the learned parameters are then used as the pretrained weights
for training the network on the UTKinect dataset.

The expert network is trained on the target KIMORE dataset [2] to do the downstream
task of action quality assessment. This dataset collected a set of 78 subjects performing 5
different exercises like squatting and moving a bar. 44 of these subjects are healthy people
(29 males, 15 females) and 34 of them (15 males, 19 females) are suffering from motor
dysfunctions due to Parkinson’s, stroke, or lower back pain. All of the samples are labeled
with clinical scores by a healthcare professional. This dataset is the only accessible and
publicly available annotated dataset at the time of writing this paper.

To further assess the performance of the proposed method we study its generalization
to the new task of infants’ general movement assessment. To this end, we trained the ex-
pert network on the dataset of infants’ neuromotor risk evaluation released by [4]. This
dataset consists of 19 at-risk infants playing with a toy and a set of 85 healthy samples from
YouTube. A clinician has annotated the at-risk infants’ movements into low, moderate, and
high risk for motor dysfunction and getting cerebral palsy (CP) in the future. CP causes
stiffness of the joints which affects the normal pace, symmetricity of the movements, and
overall balance of the infant. A CP patient may not bring both hands together when playing
and weakness of the joints causes delays and slowness in performing the movements.
Training Details: The temporal sampling rate pool in the non-expert network contains five
different pace levels: 0.6, 0.7, 0.8, 0.9,1. The slower pace levels represent the severe cases
of the disease and p = 1 is the normal pace of a healthy person. The reason behind using
these levels is to cover all levels of severity based on a recent claim that the average motor
frequency of Parkinson patients walking is 0.94

1.3 slower than that of healthy people [14]. The
encoder and both decoders of the non-expert network have two hidden layers. In order to
get the appearance features of the target dataset samples, we use the output of fc6 layer of
the C3D network, pretrained on UCF101 dataset [21]. The off-the-shelf pose estimator of
the expert is an OpenPose network that is trained on the COCO+Foot dataset [1, 11]. The
coordinates of each skeleton sequence are scaled to be in the range [−1,1]. The first frames
of each sequence are zero-padded to fit to the longest sequence number of frames (743). The
number of units in the layers of the non-expert’s encoder, decoder, and discriminator are
1000, 1000, and 200 respectively. The experts single layer encoder consists of 100 units.
The learned representation dimension is the same as of the input frames. The adversarial
ratio (α) in Eq.3 is set to 0.01. The pace prediction weight (β ) in Eq.4 is 0.2.

The non-expert network is trained for 300 epochs on each of UWA3D and UTKinect
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Method Ex #1 Ex #2 Ex #3 Ex #4 Ex #5 Avg. Corr.
C3D [24] 66.00 64.00 63.00 59.00 60.00 62.40
I3D [3] 45.00 56.00 57.00 64.00 58.00 56.00

EAGLE-Eye [13] 70.85 67.34 64.62 65.23 62.42 66.09
VI-Net [20] 79.00 69.00 57.00 59.00 70.00 66.80

Ours 75.59 72.87 69.96 74.67 72.31 73.08
Only Expert 68.42 66.43 67.81 66.97 63.11 66.55

Only Non-expert (U) 60.76 56.98 37.75 59.61 54.52 53.92
Only Non-expert (S) 63.92 60.85 54.44 56.82 57.85 58.78

Only Non-expert (U+S) 66.53 60.09 61.05 59.71 61.11 61.70
C3D as expert 70.19 69.42 67.11 64.59 66.38 67.54

W/o Skeleton inpainting 71.13 68.19 67.60 71.20 66.82 68.99
W/o pace prediction 73.34 70.94 70.84 71.28 69.07 71.09

Table 1: Detailed results on the KIMORE dataset [2]. First and second best are shown in
color. The lower lines show the ablation study of the network.

datasets with the learning rate of 0.0003, decay rate of 0.9, and batch size of 55 using the
Adam optimizer [8]. We follow the same data split as [20] and use 70% of the samples for
training and the rest for testing. The MSE loss function is used to update the parameters of
the expert network. The expert is trained for 1000 epochs with batch size of 25. The other
training settings of the expert are kept the same as the non-expert’s. In order to be consistent
with existing AQA studies [15, 16, 20], the Spearman’s Rank correlation has been used as
the evaluation metric for the results.

4.2 Results
The results of our network on the KIMORE dataset are presented in Table 1. As it can be
seen, our method outperforms the previous works and baselines by a large margin. It should
be noted that Sardari et al. [20] presented a few architectures with different backbones and
here we reported the one with the best performance.

In order to evaluate the effectiveness of the network’s components, we conducted a com-
prehensive ablation study (see the lower rows of Table 1). First, we removed the unsu-
pervised representations of the pretext tasks and resorted to the expert network to do the
downstream task of action evaluation. In this setting, we initialized the encoder of the expert
with random weights. As expected, the performance of the network dropped significantly.
That’s because we are completely neglecting the first stage of the network that provided
helpful high-level features about the action. Second, we removed the expert and only used
the non-expert network to regress the final score. In this setting (U), we fixed the encoder
weights from the previous stage training and put a linear regression layer on top of the rep-
resentations of the encoder. During the downstream task training, only the regression layer
parameters get fine-tuned to study the effectiveness of the learned representations from the
pretext tasks. We also studied the effect of initializing the encoder with random weights
(S) and using the pretrained weights of unsupervised (U+S), while the expert is completely
removed. As it can be seen, using the unsupervised representations of the pretext task as the
pretraining weights for the supervised AQA task results in a better performance.

We further evaluated the performance of the model when the non-expert network sticks
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Method Ex #1 Ex #2 Ex #3 Ex #4 Ex #5 Avg. NW-UCLA
Skl. Recon. 69.17 67.53 70.02 65.39 63.73 67.17 82.54

Skl. Recon. + Pace 68.53 69.12 69.53 68.14 64.33 67.93 82.71
Mot. Pred. 70.53 70.92 68.17 70.43 68.54 69.72 84.31

Mot. Pred. + Pace 72.18 69.92 70.35 71.18 70.46 70.82 84.15
Order Rec. 65.67 67.29 66.38 67.83 60.52 65.54 83.92

Ours 75.59 72.87 69.96 74.67 72.31 73.08 84.02

Table 2: Our self-supervised vs baselines on KIMORE and NW-UCLA

to one of the pace prediction and skeleton inpainting heads to capture the unsupervised rep-
resentations. As expected, the model reaches its full potential when both of the heads are uti-
lized. It seems that the inpainting head contributes more to the performance of the network.
Intuitively, when trying to inpaint a random masked part of the skeleton, the model tries to
analyze the dependencies between the body parts and the neighboring frames. However, in
the pace prediction head, the model sees the skeleton as a whole and gets the dependencies
between the frames to find the pace of the sequence. Thus, the inpainting head may provide
richer representations than the pace prediction one.

In the next set of experiments, we are going to explore the effectiveness of the proposed
self-supervised learning approach in human motion assessment. To this end, we evaluate
the performance of the two-stage model when other self-supervised baseline objectives have
been set during the non-expert network training (see Table 2). For the skeleton reconstruction
objective, we mask-out the whole skeleton and let the decoder reconstruct it. In motion
learning baseline, the second half of the frames are masked and the decoder tries to predict
them given the previous frames (first half). The contribution of adding the pace prediction
head to these two have also been studied. Finally, inspired by [10], we shuffled each sequence
and asked the decoder to estimate the correct permutation. To this end, we first segment the
whole sequence into 25 parts and shuffle these segments. For this baseline, we remove the
discriminator and change the decoder to classify the order of the segments by the cross-
entropy loss. As can be seen in Table 2, our proposed self-supervised approach outperforms
the baselines in abnormal movement assessment. Intuitively, to the human eyes, an impaired
sequence is the one in which a part of the body moves in an abnormal way compared to
the rest of the skeleton joints. The strategy of randomly masking a part of the skeleton and
estimating it given the rest of the joints helps to capture local correlations between body
parts and gives the representations a sense of symmetry. The complimentary pace prediction
head helps to add a sense of slowness of the movement to the representation. As a result,
we would have a representation that contains the information that the assessment should be
based on. As evident in Figure 4, the patient can not complete the whole cycle of an exercise
at the same time of healthy sample. That’s when having a representation that has a sense of
the movements’ slowness and right arm’s impairment helps to have an accurate assessment.

It should be noted that we do not claim to provide the best self-supervised approach for
human action recognition. The resulted representations of the non-expert is a good fit to
the downstream task of abnormal movement assessment which is based on impairment and
slowness of a movement. The results of the proposed two-stage network on NW-UCLA ac-
tion recognition dataset [25] are shown in the last column of Table 2. For action recognition
, you may ignore the labels of the target dataset sequences and use them for pretext task
training. On the other hand, due to the scarcity of the target dataset samples in abnormal
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Method Avg. F1 Score
EAGLE-Eye 0.83
Only Expert 0.80

Only Non-expert (U) 0.69
Only Non-expert (S) 0.80

Only Non-expert (U+S) 0.86
Full Model 0.89

𝑇 = 0 𝑇 = 8 𝑇 = 16 𝑇 = 24 𝑇 = 32
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Table 3: The results of the model on the infants neuromotor risk dataset [4]. U and S stand
for unsupervised and supervised settings. The experiment that is labeled by (U+S) uses the
pretrained unsupervised weights to jumsptart the downstream supervised task.
Figure4: The cycle of the excercise is not completed in an abnormal sequence of the KI-
MORE dataset. The ground truth score:23; Predicted scores of the baselines: Skl. Inpaint:
16.71, Skl. Inp. + Pace: 21.38, Motion + Pace: 19.45, Skl. Recon. + Pace: 30.72

movement assessment, the downstream and pretext tasks use different datasets. However, it
should be noted that these two datasets have to share something in common. Otherwise, the
learned representations from the pretext task can not be used for the downstream one. As an
example, using the representations of a pretext task on normal daily living activities dataset
would not help the case of sports action assessment which involves lots of contorted poses.

We finally evaluated the generalization of our method to the new task of infants’ general
movement assessment as the downstream task for the expert network. To this end, we used
the infants’ neuromotor risk dataset [4] to train our model. Since this task is relatively new,
we compared the performance of our full model with the ablated models as the baselines
for this task. As evident from Table 3, we get the best results when all of the components
of the model are deployed. Since the infants dataset is annotated with 4 risk levels and not
a score, we use the cross-entropy loss to update the parameters of the model and micro-
averaged F1 score as the evaluation metric to compare our results with the baselines. As the
two pretext and downstream datasets have to share a common distribution, the non-expert
is fine-tuned using the healthy samples of the infants dataset. Otherwise, there would be a
significant difference between what the non-expert tries to encode from the adults dataset
and the infants samples that the expert tries to score in the second stage of the network.

5 Conclusion

In this work, we develop a two-stage network to assess the performance of a humans move-
ments. At the first stage, a non-expert network is trained on an off-the-shelf dataset of daily
living activities to concurrently perform the pretext tasks of skeleton inpainting and sequence
pace prediction in a self-supervised manner. The learned representations by the non-expert
as well as appearance features of the target dataset samples are then fed to an expert network
to perform the downstream task of action quality assessment. Our experimental evaluation
demonstrates that our method not only outperforms the existing works and baselines in re-
habilitation progress assessment of patients, but also shows a good generalization to the
relatively new task of infants’ general movement assessment.
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