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Flame Graph Interpretation

If you are new to flame graphs: The y axis is

stack depth, and the x axis spans the sample
population. Each rectangle is a stack frame (a
function), where the width shows how often it

Flame Graphs: How to Read

= A CPU Sample Flame Graph: o top edge shows

. . ) who is on-CPU
was present in the profile. The ordering from left & / directly
to right is unimportant (the stacks are sorted [0 |

alphabetically). r“ :
b ()

o \

In the previous example, color hue was used to
highlight different code types: green for Java,
yellow for C++, and red for system. Color
intensity was simply randomized to differentiate
frames (other color schemes are possible).

= Q: which function is on-CPU the most?

<AIf()
e()ison-CPUa
little, but its runtime
is mostly spentin £( ),
which is on-CPU directly

You can read the flame graph from the bottom

up, which follows the flow of code from parent to child functions. Another way is top down, as the top edge
shows the function running on CPU, and beneath it is its ancestry. Focus on the widest functions, which
were present in the profile the most. See the CPU flame graphs page for more about interpretation, and
Brendan's USENIX/LISA'13 talk (video).

The Problem with Profilers

In order to generate flame graphs, you need a profiler that can sample stack traces. There have historically
been two types of profilers used on Java:

¢ System profilers: such as Linux perf_events, which can profile system code paths, including
libjvm internals, GC, and the kernel, but not Java methods.

« JVM profilers: such as hprof, Lightweight Java Profiler (LJP), and commercial profilers. These
show Java methods, but not system code paths.

To understand all types of CPU consumers, we previously used both types of profilers, creating a flame
graph for each. This worked — sort of. While all CPU consumers could be seen, Java methods were missing
from the system profile, which was crucial context we needed.

Ideally, we would have one flame graph that shows it all: system and Java code together.

A system profiler like Linux perf_events should
be well suited to this task as it can interrupt any
software asynchronously and capture both user-
and kernel-level stacks. However, system

perf Flame Graph
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profilers don't work well with Java. The problem Broken = Lok €2
is shown by the flame graph on the right. The P E l Time
Java stacks and method names are missing. o, =

il

There were two specific problems to solve:

S et

1. The JVM compiles methods on the fly
(just-in-time: JIT), and doesn't expose a
symbol table for system profilers.

2. The JVM also uses the frame pointer register on x86 (RBP on x86-64) as a general-purpose register,
breaking traditional stack walking.

Brendan summarized these earlier this year in his Linux Profiling at Netflix talk for SCALE. Fortunately, there
was already a fix for the first problem.

Fixing Symbols

In 2009, Linux perf_events added JIT symbol support, so that symbols from language virtual machines like
the JVM could be inspected. To use it, your application creates a /tmp/perf-PID.map text file, which lists
symbol addresses (in hex), sizes, and symbol names. perf_events looks for this file by default and, if found,
uses it for symbol translations.

Java can create this file using perf-map-agent, an open source JVMTI agent written by Johannes Rudolph.
The first version needed to be attached on Java startup, but Johannes enhanced it to attach later on demand
and take a symbol dump. That way, we only load it if we need it for a profile. Thanks, Johannes!

Since symbols can change slightly during the profile (we're typically profiling for 30 or 60 seconds), a symbol
dump may include stale symbols. We've looked at taking two symbol dumps, before and after the profile, to
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highlight any such differences. Another approach in development involves a timestamped symbol log to
ensure that all translations are accurate (although this requires always-on logging of symbols). So far symbol
churn hasn’t been a large problem for us, after Java and JIT have “warmed up” and symbol churn is minimal
(this can take a few minutes, given sufficient load). We do bear it in mind when interpreting flame graphs.

Fixing Frame Pointers

For many years the gcc compiler has reused the frame pointer as a compiler optimization, breaking stack
traces. Some applications compile with the gcc option —fno-omit-frame-pointer, to preserve this type
of stack walking, however, the JVM had no equivalent option. Could the JVM be modified to support this?

Brendan was curious to find out, and hacked a working prototype for OpenJDK. It involved dropping RBP
from eligible register pools, eg (diff):

--- openjdk8clean/hotspot/src/cpu/x86/vm/x86_64.ad 2014-03-04 02:52:11.000000000
+0000

+++ openjdk8/hotspot/src/cpu/x86/vm/x86_ 64.ad 2014-11-08 01:10:49.686044933 +0000
@@ -166,10 +166,9 @@

// 3) reg class stack slots( /* one chunk of stack-based "registers" */ )

//

-// Class for all pointer registers (including RSP)
+// Class for all pointer registers (including RSP, excluding RBP)
reg_class any reg(RAX, RAX_H,
RDX, RDX H,
= RBP, RBP H,
RDI, RDI H,
RSI, RSI H,
RCX, RCX H,

... and then fixing the function prologues to store the stack pointer (rsp) into the frame pointer (base pointer)
register (rbp):

--- openjdk8clean/hotspot/src/cpu/x86/vm/macroAssembler x86.cpp 2014-03-04 02:52:11.00
0000000 +0000
+++ openjdk8/hotspot/src/cpu/x86/vm/macroAssembler x86.cpp
9593723 +0000
@@ -5236,6 +5236,7 @@

// We always push rbp, so that on return to interpreter rbp, will be

2014-11-07 23:57:11.58

// restored correctly and we can correct the stack.
push(rbp);
+ mov(rbp, rsp);
// Remove word for ebp
framesize -= wordSize;

It worked. Here are the before and after flame graphs. Brendan posted it, with example flame graphs, to the
hotspot compiler devs mailing list. This feature request became JDK-8068945 for JDK9 and JDK-8072465
for JDK8.

Fixing this properly involved a lot more work (see discussions in the bugs and mailing list). Zoltan Majo, of
Oracle, took this on and rewrote the patch. After testing, it was finally integrated into the early access
releases of both JDK9 and JDK8 (JDK8 update 60 build 19), as the new JDK option: -

XX:+PreserveFramePointer.
Many thanks to Zoltén, Oracle, and the other engineers who helped get this done!

Since use of this mode disables a compiler optimization, it does decrease performance slightly. We've found
in tests that this costs between 0 and 3% extra CPU, depending on the workload. See JDK-8068945 for
some additional benchmarking details. There are also other techniques for walking stacks, some with zero
run time cost to make available, however, there are other downsides with these approaches.

Instructions

The following steps describe how these flame graphs can be created. We’re working on improving and
automating these steps using Vector (more on that in a moment).

1. Install software
There are four components to install:

Linux perf_events

This is the standard Linux profiler, aka “perf” after its front end, and is included in the Linux source
(tools/perf). Try running perf help to see if it is installed; if not, your distro may suggest how to get it,
usually by adding a perf-tools-common package.
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Java 8 update 60 build 19 (or newer)
This includes the frame pointer patch fix (JDK-8072465), which is necessary for Java stack profiling. It is
currently released as early access (built from OpenJDK).

perf-map-agent
This is a JVMTI agent that provides Java symbol translation for perf_events is on github. Steps to build this
typically involve:

apt-get install cmake

export JAVA HOME=/path-to-your-new-jdk8

git clone --depth=1 https://github.com/jrudolph/perf-map-agent
cd perf-map-agent

cmake .

make

The current version of perf-map-agent can be loaded on demand, after Java is running.
WARNING: perf-map-agent is experimental code — use at your own risk, and test before use!

FlameGraph
This is some Perl software for generating flame graphs. It can be fetched from github:

git clone --depth=1 https://github.com/brendangregg/FlameGraph

This contains stackcollapse-perf.pl, for processing perf_events profiles, and flamegraph.pl, for generating the
SVG flame graph.

2. Configure Java

Java needs to be running with the -XX: +PreserveFramePointer option, so that perf_events can perform
frame pointer stack walks. As mentioned earlier, this can cost some performance, between 0 and 3%
depending on the workload.

3a. Generate System Wide Flame Graphs
With this software and Java running with frame pointers, we can profile and generate flame graphs.

For example, taking a 30-second profile at 99 Hertz (samples per second) of all processes, then caching
symbols for Java PID 1690, then generating a flame graph:

sudo perf record -F 99 -a -g -- sleep 30

java -cp attach-main.jar:$JAVA HOME/lib/tools.jar net.virtualvoid.perf.AttachOnce 1690
# run as same user as java

sudo chown root /tmp/perf-*.map

sudo perf script | stackcollapse-perf.pl | \
flamegraph.pl --color=java --hash > flamegraph.svg

The attach-main jar file is from perf-map-agent, and stackcollapse-perf.pl and flamegraph.pl are from
FlameGraph. Specify their full paths unless they are in the current directory.

These steps address some quirky behavior involving user permissions: sudo perf script only reads symbol
files the current user (root) owns, and, perf-map-agent creates files with the same user ownership as the
Java process, which for us is usually non-root. This means we have to change the ownership to root for the
symbol file, and then run perf script.

With jmaps
Dealing with symbol files has become a chore, so we've been automating it. Here’s one example: jmaps,
which can be used like so:

sudo perf record -F 99 -a -g -- sleep 30; sudo jmaps
sudo perf script | stackcollapse-perf.pl | \
flamegraph.pl --color=java --hash > flamegraph.svg

jmaps creates symbol files for all Java processes, with root ownership. You may want to write a similar
“imaps” helper for your environment (our jmaps example is unsupported). Remember to clean up the /tmp
symbol files when you no longer need them!

3b. Generate By-Process Flame Graphs
The previous procedure grouped Java processes together. If it is important to separate them (and, on some
of our instances, it is), you can modify the procedure to generate a by-process flame graph. Eg (with jmaps):

sudo perf record -F 99 -a -g -- sleep 30; sudo jmaps

sudo perf script -f comm,pid,tid,cpu,time,event,ip,sym,dso,trace | \
stackcollapse-perf.pl --pid | \
flamegraph.pl --color=java --hash > flamegraph.svg
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The output of stackcollapse-perf.pl formats each stack as a single line, and is great food for grep/sed/awk.
For the flamegraph at the top of this post, we used the above procedure, and added “| grep java-339” before
the “| flamegraph.pl”, to isolate that one process. You could also use a “| grep -v cpu_idle”, to exclude the
kernel idle threads.

Missing Frames

If you start using these flame graphs, you'll notice that many Java frames (methods) are missing. Compared
to the jstack(1) command line tool, the stacks seen in the flame graph look perhaps one third as deep, and
are missing many frames. This is because of inlining, combined with this type of profiling (frame pointer
based) which only captures the final executed code.

This hasn’t been much of a problem so far: even when many frames are missing, enough remain that we can
figure out what's going on. We've also experimented with reducing the amount of inlining, eg, using -
XX:InlineSmallCode=500, to increase the number of frames in the profile. In some cases this even
improves performance slightly, as the final compiled instruction size is reduced, fitting better into the
processor caches (we confirmed this using perf_events separately).

Another approach is to use JVMTI information to unfold the inlined symbols. perf-map-agent has a mode to
do this; however, Min Zhou from LinkedIn has experienced Java crashes when using this, which he has
been fixing in his version. We've not seen these crashes (as we rarely use that mode), but be warned.

Vector

The previous steps for generating flame graphs are a little tedious. As we expect these flame graphs will
become an everyday tool for Java developers, we've looked at making them as easy as possible: a point-
and-click interface. We've been prototyping this with our open source instance analysis tool: Vector.

Vector was described in more details in a previous
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a custom instance agent that we developed, which also

supplies Vector's other metrics. Vector checks the ®urin Gn @erdos Slou
status of this request while fetching and displaying

other metrics, and displays the flame graph when it is ready.

Our custom agent is not generic enough to be used by everyone yet (it depends on the Netflix environment),
so we have yet to open-source it. If you're interested in testing or extending it, reach out to us.

Future Work

We have some enhancements planned. One is for regression analysis, by automatically collecting flame
graphs over different days and generating flame graph differentials for them. This will help us quickly
understand changes in CPU usage due to software changes.

Apart from CPU profiling, perf_events can also trace user- and kernel-level events, including disk 1/0O,

networking, scheduling, and memory allocation. When these are synchronously triggered by Java, a mixed-
mode flame graph will show the code paths that led to these events. A page fault mixed-mode flame graph,
for example, can be used to show which Java code paths led to an increase in main memory usage (RSS).

We also want to develop enhancements for flame graphs and Vector, including real time updates. For this to
work, our agent will collect perf_events directly and return a data structure representing the partial flame
graph to Vector with every check. Vector, with this information, will be able to assemble the flame graph in
real time, while the profile is still being collected. We are also investigating using D3 for flame graphs, and
adding interactivity improvements.

Other Work

Twitter have also explored making perf_events and Java work better together, which Kaushik Srenevasan
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summarized in his Tracing and Profiling talk from OSCON 2014 (slides). Kaushik showed that perf_events
has much lower overhead when compared to some other Java profilers, and included a mixed-mode stack
trace from perf_events. David Keenan from Twitter also described this work in his Twitter-Scale Computing
talk (video), as well as summarizing other performance enhancements they have been making to the JVM.

At Google, Stephane Eranian has been working on perf_events and Java as well and has posted a patch
series that supports a timestamped JIT symbol transaction log from Java for accurate symbol translation,

solving the stale symbol problem. It's impressive work, although a downside with the logging technique may

be the performance cost of always logging symbols even if a profiler is never used.

Conclusion

CPU mixed-mode flame graphs help identify and quantify all CPU consumers. They show the CPU time
spent in Java methods, system libraries, and the kernel, all in one visualization. This reveals CPU
consumers that are invisible to other profilers, and have so far been used to identify issues and explain
performance changes between software versions.

These mixed-mode flame graphs have been made possible by a new option in the JVM: -
XX:+PreserveFramePointer, available in early access releases. In this post we described how these work,
the challenges that were addressed, and provided instructions for their generation. Similar visibility for
Node.js was described in our earlier post: Node.js in Flames.
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