D (Q| GH| 72 More * Next Blog»

bgregg@netflix.com New Post Sign Out

NETFL'X The Netflix Tech Blog

Friday, July 24, 2015 Links

Java in Flames Netflix US & Canada Blog

Netflix America Latina Blog
Java mixed-mode flame graphs provide a complete visualization of CPU usage and have just been made

possible by a new JDK option: -xX: +PreserveFramePointer. We've been developing these at Netflix for Netflix Brasil Blog

everyday Java performance analysis as they can identify all CPU consumers and issues, including those that

Netflix Benelux Blog
are hidden from other profilers.

Netflix DACH Blog
Exam ple Netflix France Blog
This shows CPU consumption by a Java process, both user- and kernel-level, during a vert.x benchmark: Netflix Nordics Blog
CPU Mixed-Made Flame Graph: green == Java, yellow == C++, red == system Netflix UK & Ireland Blog
Netflix ISP Speed Index
Open positions at Netflix

Netflix Website

Facebook Netflix Page

Netflix Ul Engineering

RSS Feed

==

About the Netflix Tech Blog

This is a Netflix blog focused on
technology and technology issues.
We'll share our perspectives,
decisions and challenges regarding
the software we build and use to
create the Netflix service.

il
i

Blog Archive

¥ 2015 (43)
» November (5)
» October (5)
» September (6)

-
[pe—

» August (6)
v July (3)

Tuning Tomcat For A
High Throughput,
Fail Fast Sys...

Java in Flames

Tracking down the
Click to zoom (SVG, PNG). Showing all CPU usage with Java context is amazing and useful. On the top Villains: Outlier

right you can see a peak of kernel code (colored red) for performing a TCP send (which often leads to a TCP Detection at N...
receive while handling the send). Beneath it (colored green) is the Java code responsible. In the middle

(colored green) is the Java code that is running on-CPU. And in the bottom left, a small yellow tower shows > June (2)
CPU time spent in GC. > May (2)

» April (3)
We've already used Java flame graphs to quantify performance improvements between frameworks (Tomcat > March (3)
vs rxNetty), which included identifying time spent in Java code compilation, the Java code cache, other
system libraries, and differences in kernel code execution. All of these CPU consumers were invisible to > February (5)
other Java profilers, which only focus on the execution of Java methods. » January (3)

> 2014 (37)

http://techblog.netflix.com/
http://www.brendangregg.com/FlameGraphs/cpu-mixedmode-flamegraph-java.svg
http://www.brendangregg.com/FlameGraphs/cpu-mixedmode-flamegraph-java.svg
http://3.bp.blogspot.com/-mG-eIhObX-U/VbGEpUImrjI/AAAAAAAAADk/UPQkEUPFsKg/s1600/cpu-mixedmode-flamegraph-java.png
http://blog.netflix.com/
http://americalatinablog.netflix.com/
http://brasilblog.netflix.com/
http://beneluxblog.netflix.com/
http://dachblog.netflix.com/
http://frblog.netflix.com/
http://nordicsblog.netflix.com/
http://ukirelandblog.netflix.com/
http://ispspeedindex.netflix.com/
http://www.netflix.com/Jobs
http://www.netflix.com/
http://www.facebook.com/netflix
https://plus.google.com/118323119241802119165/posts
http://techblog.netflix.com/rss.xml
javascript:void(0)
http://techblog.netflix.com/search?updated-min=2015-01-01T00:00:00-08:00&updated-max=2016-01-01T00:00:00-08:00&max-results=43
javascript:void(0)
http://techblog.netflix.com/2015_11_01_archive.html
javascript:void(0)
http://techblog.netflix.com/2015_10_01_archive.html
javascript:void(0)
http://techblog.netflix.com/2015_09_01_archive.html
javascript:void(0)
http://techblog.netflix.com/2015_08_01_archive.html
javascript:void(0)
http://techblog.netflix.com/2015_07_01_archive.html
http://techblog.netflix.com/2015/07/tuning-tomcat-for-high-throughput-fail.html
http://techblog.netflix.com/2015/07/java-in-flames.html
http://techblog.netflix.com/2015/07/tracking-down-villains-outlier.html
javascript:void(0)
http://techblog.netflix.com/2015_06_01_archive.html
javascript:void(0)
http://techblog.netflix.com/2015_05_01_archive.html
javascript:void(0)
http://techblog.netflix.com/2015_04_01_archive.html
javascript:void(0)
http://techblog.netflix.com/2015_03_01_archive.html
javascript:void(0)
http://techblog.netflix.com/2015_02_01_archive.html
javascript:void(0)
http://techblog.netflix.com/2015_01_01_archive.html
javascript:void(0)
http://techblog.netflix.com/search?updated-min=2014-01-01T00:00:00-08:00&updated-max=2015-01-01T00:00:00-08:00&max-results=37
https://www.blogger.com/
https://www.blogger.com/next-blog?navBar=true&blogID=725338818844296080
https://www.blogger.com/blogger.g?blogID=725338818844296080#editor
http://techblog.netflix.com/logout?d=https://www.blogger.com/logout-redirect.g?blogID%3D725338818844296080%26postID%3D7564661201192729224

Flame Graph Interpretation

If you are new to flame graphs: The y axis is

stack depth, and the x axis spans the sample
population. Each rectangle is a stack frame (a
function), where the width shows how often it

Flame Graphs: How to Read

= A CPU Sample Flame Graph: o top edge shows

. .) who is on-CPU
was present in the profile. The ordering from left & / directly
to right is unimportant (the stacks are sorted [0 |

alphabetically). r“ :
b ()

o \

In the previous example, color hue was used to
highlight different code types: green for Java,
yellow for C++, and red for system. Color
intensity was simply randomized to differentiate
frames (other color schemes are possible).

= Q: which function is on-CPU the most?

<AIf()
e()ison-CPUa
little, but its runtime
is mostly spentin £(),
which is on-CPU directly

You can read the flame graph from the bottom

up, which follows the flow of code from parent to child functions. Another way is top down, as the top edge
shows the function running on CPU, and beneath it is its ancestry. Focus on the widest functions, which
were present in the profile the most. See the CPU flame graphs page for more about interpretation, and
Brendan's USENIX/LISA'13 talk (video).

The Problem with Profilers

In order to generate flame graphs, you need a profiler that can sample stack traces. There have historically
been two types of profilers used on Java:

¢ System profilers: such as Linux perf_events, which can profile system code paths, including
libjvm internals, GC, and the kernel, but not Java methods.

« JVM profilers: such as hprof, Lightweight Java Profiler (LJP), and commercial profilers. These
show Java methods, but not system code paths.

To understand all types of CPU consumers, we previously used both types of profilers, creating a flame
graph for each. This worked — sort of. While all CPU consumers could be seen, Java methods were missing
from the system profile, which was crucial context we needed.

Ideally, we would have one flame graph that shows it all: system and Java code together.

A system profiler like Linux perf_events should
be well suited to this task as it can interrupt any
software asynchronously and capture both user-
and kernel-level stacks. However, system

perf Flame Graph

Kernel

/ TCP/P \

il o

profilers don't work well with Java. The problem Broken = Lok €2
is shown by the flame graph on the right. The P E l Time
Java stacks and method names are missing. o, =

il

There were two specific problems to solve:

S et

1. The JVM compiles methods on the fly
(just-in-time: JIT), and doesn't expose a
symbol table for system profilers.

2. The JVM also uses the frame pointer register on x86 (RBP on x86-64) as a general-purpose register,
breaking traditional stack walking.

Brendan summarized these earlier this year in his Linux Profiling at Netflix talk for SCALE. Fortunately, there
was already a fix for the first problem.

Fixing Symbols

In 2009, Linux perf_events added JIT symbol support, so that symbols from language virtual machines like
the JVM could be inspected. To use it, your application creates a /tmp/perf-PID.map text file, which lists
symbol addresses (in hex), sizes, and symbol names. perf_events looks for this file by default and, if found,
uses it for symbol translations.

Java can create this file using perf-map-agent, an open source JVMTI agent written by Johannes Rudolph.
The first version needed to be attached on Java startup, but Johannes enhanced it to attach later on demand
and take a symbol dump. That way, we only load it if we need it for a profile. Thanks, Johannes!

Since symbols can change slightly during the profile (we're typically profiling for 30 or 60 seconds), a symbol
dump may include stale symbols. We've looked at taking two symbol dumps, before and after the profile, to

> 2013 (52)
> 2012 (37)
> 2011 (17)
> 2010 (8)

Labels

accelerated compositing (2)

adwords (1)
Aegisthus (1)
algorithms (2)
aminator (1)
analytics (4)
Android (2)
angular (1)

api (16)

appender (1)
Archaius (2)
architectural design (1)
architecture (1)
Asgard (1)
Astyanax (3)
authentication (1)
automation (2)
autoscaling (3)
availability (4)
AWS (29)
benchmark (2)
big data (10)
billing (1)

Blitz4j (1)

build (3)

Cable (1)

caching (2)
Cassandra (13)
chaos engineering (1)
chaos monkey (5)
ci(1)
classloaders (1)
Clojure (1)

cloud (23)

cloud architecture (15)
cloud prize (3)
COo2 (1)
collection (1)

computer vision (1)

http://www.slideshare.net/brendangregg/blazing-performance-with-flame-graphs/40
http://www.slideshare.net/brendangregg/performance-tuning-ec2-instances/62
http://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html
http://www.slideshare.net/brendangregg/blazing-performance-with-flame-graphs/39
https://youtu.be/nZfNehCzGdw?t=21m43s
http://www.brendangregg.com/blog/2015-02-27/linux-profiling-at-netflix.html
https://lkml.org/lkml/2009/6/8/499
https://github.com/jrudolph/perf-map-agent
javascript:void(0)
http://techblog.netflix.com/search?updated-min=2013-01-01T00:00:00-08:00&updated-max=2014-01-01T00:00:00-08:00&max-results=50
javascript:void(0)
http://techblog.netflix.com/search?updated-min=2012-01-01T00:00:00-08:00&updated-max=2013-01-01T00:00:00-08:00&max-results=37
javascript:void(0)
http://techblog.netflix.com/search?updated-min=2011-01-01T00:00:00-08:00&updated-max=2012-01-01T00:00:00-08:00&max-results=17
javascript:void(0)
http://techblog.netflix.com/search?updated-min=2010-01-01T00:00:00-08:00&updated-max=2011-01-01T00:00:00-08:00&max-results=8
http://techblog.netflix.com/search/label/accelerated%20compositing
http://techblog.netflix.com/search/label/adwords
http://techblog.netflix.com/search/label/Aegisthus
http://techblog.netflix.com/search/label/algorithms
http://techblog.netflix.com/search/label/aminator
http://techblog.netflix.com/search/label/analytics
http://techblog.netflix.com/search/label/Android
http://techblog.netflix.com/search/label/angular
http://techblog.netflix.com/search/label/api
http://techblog.netflix.com/search/label/appender
http://techblog.netflix.com/search/label/Archaius
http://techblog.netflix.com/search/label/architectural%20design
http://techblog.netflix.com/search/label/architecture
http://techblog.netflix.com/search/label/Asgard
http://techblog.netflix.com/search/label/Astyanax
http://techblog.netflix.com/search/label/authentication
http://techblog.netflix.com/search/label/automation
http://techblog.netflix.com/search/label/autoscaling
http://techblog.netflix.com/search/label/availability
http://techblog.netflix.com/search/label/AWS
http://techblog.netflix.com/search/label/benchmark
http://techblog.netflix.com/search/label/big%20data
http://techblog.netflix.com/search/label/billing
http://techblog.netflix.com/search/label/Blitz4j
http://techblog.netflix.com/search/label/build
http://techblog.netflix.com/search/label/Cable
http://techblog.netflix.com/search/label/caching
http://techblog.netflix.com/search/label/Cassandra
http://techblog.netflix.com/search/label/chaos%20engineering
http://techblog.netflix.com/search/label/chaos%20monkey
http://techblog.netflix.com/search/label/ci
http://techblog.netflix.com/search/label/classloaders
http://techblog.netflix.com/search/label/Clojure
http://techblog.netflix.com/search/label/cloud
http://techblog.netflix.com/search/label/cloud%20architecture
http://techblog.netflix.com/search/label/cloud%20prize
http://techblog.netflix.com/search/label/CO2
http://techblog.netflix.com/search/label/collection
http://techblog.netflix.com/search/label/computer%20vision

highlight any such differences. Another approach in development involves a timestamped symbol log to
ensure that all translations are accurate (although this requires always-on logging of symbols). So far symbol
churn hasn’t been a large problem for us, after Java and JIT have “warmed up” and symbol churn is minimal
(this can take a few minutes, given sufficient load). We do bear it in mind when interpreting flame graphs.

Fixing Frame Pointers

For many years the gcc compiler has reused the frame pointer as a compiler optimization, breaking stack
traces. Some applications compile with the gcc option —fno-omit-frame-pointer, to preserve this type
of stack walking, however, the JVM had no equivalent option. Could the JVM be modified to support this?

Brendan was curious to find out, and hacked a working prototype for OpenJDK. It involved dropping RBP
from eligible register pools, eg (diff):

--- openjdk8clean/hotspot/src/cpu/x86/vm/x86_64.ad 2014-03-04 02:52:11.000000000
+0000

+++ openjdk8/hotspot/src/cpu/x86/vm/x86_ 64.ad 2014-11-08 01:10:49.686044933 +0000
@@ -166,10 +166,9 @@

// 3) reg class stack slots(/* one chunk of stack-based "registers" */)

//

-// Class for all pointer registers (including RSP)
+// Class for all pointer registers (including RSP, excluding RBP)
reg_class any reg(RAX, RAX_H,
RDX, RDX H,
= RBP, RBP H,
RDI, RDI H,
RSI, RSI H,
RCX, RCX H,

... and then fixing the function prologues to store the stack pointer (rsp) into the frame pointer (base pointer)
register (rbp):

--- openjdk8clean/hotspot/src/cpu/x86/vm/macroAssembler x86.cpp 2014-03-04 02:52:11.00
0000000 +0000
+++ openjdk8/hotspot/src/cpu/x86/vm/macroAssembler x86.cpp
9593723 +0000
@@ -5236,6 +5236,7 @@

// We always push rbp, so that on return to interpreter rbp, will be

2014-11-07 23:57:11.58

// restored correctly and we can correct the stack.
push(rbp);
+ mov(rbp, rsp);
// Remove word for ebp
framesize -= wordSize;

It worked. Here are the before and after flame graphs. Brendan posted it, with example flame graphs, to the
hotspot compiler devs mailing list. This feature request became JDK-8068945 for JDK9 and JDK-8072465
for JDK8.

Fixing this properly involved a lot more work (see discussions in the bugs and mailing list). Zoltan Majo, of
Oracle, took this on and rewrote the patch. After testing, it was finally integrated into the early access
releases of both JDK9 and JDK8 (JDK8 update 60 build 19), as the new JDK option: -

XX:+PreserveFramePointer.
Many thanks to Zoltén, Oracle, and the other engineers who helped get this done!

Since use of this mode disables a compiler optimization, it does decrease performance slightly. We've found
in tests that this costs between 0 and 3% extra CPU, depending on the workload. See JDK-8068945 for
some additional benchmarking details. There are also other techniques for walking stacks, some with zero
run time cost to make available, however, there are other downsides with these approaches.

Instructions

The following steps describe how these flame graphs can be created. We’re working on improving and
automating these steps using Vector (more on that in a moment).

1. Install software
There are four components to install:

Linux perf_events

This is the standard Linux profiler, aka “perf” after its front end, and is included in the Linux source
(tools/perf). Try running perf help to see if it is installed; if not, your distro may suggest how to get it,
usually by adding a perf-tools-common package.

concurrency (1)
configuration (2)
configuration management (2)
conformity monkey (1)
content platform engineering (2)
continuous delivery (4)
coordination (2)

cost management (1)
crypto (1)
Cryptography (2)

CSS (2)

CUDA (1)

dart (1)

database (4)

data migration (1)
data pipeline (4)

data science (6)
DataStax (2)

data visualization (1)
deadlock (1)

deep learning (1)
Denominator (2)
dependency injection (1)
device (3)

device proliferation (1)
devops (2)

distributed (10)

DNS (1)

Docker (1)

Dockerhub (1)

DSL (1)

Dyn (1)

DynECT (1)

efficiency (1)

Elastic Load Balancer (1)
elasticsearch (1)

ELB (1)

EMR (2)

encoding (2)

energy (1)

eucalyptus (1)

eureka (2)

evcache (1)

failover (2)

falcor (2)

http://www.brendangregg.com/FlameGraphs/cpu-mixedmode-nofp.svg
http://www.brendangregg.com/FlameGraphs/cpu-mixedmode-vertx.svg
http://mail.openjdk.java.net/pipermail/hotspot-compiler-dev/2014-December/016477.html
https://bugs.openjdk.java.net/browse/JDK-8068945
https://bugs.openjdk.java.net/browse/JDK-8072465
https://jdk9.java.net/download/
https://jdk8.java.net/download.html
https://bugs.openjdk.java.net/browse/JDK-8068945
http://techblog.netflix.com/search/label/concurrency
http://techblog.netflix.com/search/label/configuration
http://techblog.netflix.com/search/label/configuration%20management
http://techblog.netflix.com/search/label/conformity%20monkey
http://techblog.netflix.com/search/label/content%20platform%20engineering
http://techblog.netflix.com/search/label/continuous%20delivery
http://techblog.netflix.com/search/label/coordination
http://techblog.netflix.com/search/label/cost%20management
http://techblog.netflix.com/search/label/crypto
http://techblog.netflix.com/search/label/Cryptography
http://techblog.netflix.com/search/label/CSS
http://techblog.netflix.com/search/label/CUDA
http://techblog.netflix.com/search/label/dart
http://techblog.netflix.com/search/label/database
http://techblog.netflix.com/search/label/data%20migration
http://techblog.netflix.com/search/label/data%20pipeline
http://techblog.netflix.com/search/label/data%20science
http://techblog.netflix.com/search/label/DataStax
http://techblog.netflix.com/search/label/data%20visualization
http://techblog.netflix.com/search/label/deadlock
http://techblog.netflix.com/search/label/deep%20learning
http://techblog.netflix.com/search/label/Denominator
http://techblog.netflix.com/search/label/dependency%20injection
http://techblog.netflix.com/search/label/device
http://techblog.netflix.com/search/label/device%20proliferation
http://techblog.netflix.com/search/label/devops
http://techblog.netflix.com/search/label/distributed
http://techblog.netflix.com/search/label/DNS
http://techblog.netflix.com/search/label/Docker
http://techblog.netflix.com/search/label/Dockerhub
http://techblog.netflix.com/search/label/DSL
http://techblog.netflix.com/search/label/Dyn
http://techblog.netflix.com/search/label/DynECT
http://techblog.netflix.com/search/label/efficiency
http://techblog.netflix.com/search/label/Elastic%20Load%20Balancer
http://techblog.netflix.com/search/label/elasticsearch
http://techblog.netflix.com/search/label/ELB
http://techblog.netflix.com/search/label/EMR
http://techblog.netflix.com/search/label/encoding
http://techblog.netflix.com/search/label/energy
http://techblog.netflix.com/search/label/eucalyptus
http://techblog.netflix.com/search/label/eureka
http://techblog.netflix.com/search/label/evcache
http://techblog.netflix.com/search/label/failover
http://techblog.netflix.com/search/label/falcor

Java 8 update 60 build 19 (or newer)
This includes the frame pointer patch fix (JDK-8072465), which is necessary for Java stack profiling. It is
currently released as early access (built from OpenJDK).

perf-map-agent
This is a JVMTI agent that provides Java symbol translation for perf_events is on github. Steps to build this
typically involve:

apt-get install cmake

export JAVA HOME=/path-to-your-new-jdk8

git clone --depth=1 https://github.com/jrudolph/perf-map-agent
cd perf-map-agent

cmake .

make

The current version of perf-map-agent can be loaded on demand, after Java is running.
WARNING: perf-map-agent is experimental code — use at your own risk, and test before use!

FlameGraph
This is some Perl software for generating flame graphs. It can be fetched from github:

git clone --depth=1 https://github.com/brendangregg/FlameGraph

This contains stackcollapse-perf.pl, for processing perf_events profiles, and flamegraph.pl, for generating the
SVG flame graph.

2. Configure Java

Java needs to be running with the -XX: +PreserveFramePointer option, so that perf_events can perform
frame pointer stack walks. As mentioned earlier, this can cost some performance, between 0 and 3%
depending on the workload.

3a. Generate System Wide Flame Graphs
With this software and Java running with frame pointers, we can profile and generate flame graphs.

For example, taking a 30-second profile at 99 Hertz (samples per second) of all processes, then caching
symbols for Java PID 1690, then generating a flame graph:

sudo perf record -F 99 -a -g -- sleep 30

java -cp attach-main.jar:$JAVA HOME/lib/tools.jar net.virtualvoid.perf.AttachOnce 1690
run as same user as java

sudo chown root /tmp/perf-*.map

sudo perf script | stackcollapse-perf.pl | \
flamegraph.pl --color=java --hash > flamegraph.svg

The attach-main jar file is from perf-map-agent, and stackcollapse-perf.pl and flamegraph.pl are from
FlameGraph. Specify their full paths unless they are in the current directory.

These steps address some quirky behavior involving user permissions: sudo perf script only reads symbol
files the current user (root) owns, and, perf-map-agent creates files with the same user ownership as the
Java process, which for us is usually non-root. This means we have to change the ownership to root for the
symbol file, and then run perf script.

With jmaps
Dealing with symbol files has become a chore, so we've been automating it. Here’s one example: jmaps,
which can be used like so:

sudo perf record -F 99 -a -g -- sleep 30; sudo jmaps
sudo perf script | stackcollapse-perf.pl | \
flamegraph.pl --color=java --hash > flamegraph.svg

jmaps creates symbol files for all Java processes, with root ownership. You may want to write a similar
“imaps” helper for your environment (our jmaps example is unsupported). Remember to clean up the /tmp
symbol files when you no longer need them!

3b. Generate By-Process Flame Graphs
The previous procedure grouped Java processes together. If it is important to separate them (and, on some
of our instances, it is), you can modify the procedure to generate a by-process flame graph. Eg (with jmaps):

sudo perf record -F 99 -a -g -- sleep 30; sudo jmaps

sudo perf script -f comm,pid,tid,cpu,time,event,ip,sym,dso,trace | \
stackcollapse-perf.pl --pid | \
flamegraph.pl --color=java --hash > flamegraph.svg

fault-tolerance (12)
flamegraphs (1)

Flow (1)

footprint (1)

FRP (1)

functional reactive (1)
garbage (1)

garbage collection (1)
ge (1)

Genie (4)

Governator (1)

GPU (2)

green (1)

Groovy (1)

Hack Day (3)

Hadoop (12)

HBase (1)

high volume (4)

high volume distributed systems (8)

Hive (2)
HTMLS5 (7)
https (1)
Hystrix (5)

IBM (1)

ice (1)
initialization (1)
innovation (3)
insights (1)
inter process communication (1)
Ipv6 (2)
isolation (1)
ISP (1)

java (5)
JavaScript (17)
jclouds (1)
jenkins (1)
kafka (1)
Karyon (2)
lifecycle (1)
linux (2)
lipstick (2)

load balancing (3)

localization (1)

localization platform engineering (1)

locking (1)

https://jdk8.java.net/download.html
https://github.com/jrudolph/perf-map-agent
https://github.com/brendangregg/FlameGraph
https://github.com/brendangregg/Misc/blob/master/java/jmaps
http://techblog.netflix.com/search/label/fault-tolerance
http://techblog.netflix.com/search/label/flamegraphs
http://techblog.netflix.com/search/label/Flow
http://techblog.netflix.com/search/label/footprint
http://techblog.netflix.com/search/label/FRP
http://techblog.netflix.com/search/label/functional%20reactive
http://techblog.netflix.com/search/label/garbage
http://techblog.netflix.com/search/label/garbage%20collection
http://techblog.netflix.com/search/label/gc
http://techblog.netflix.com/search/label/Genie
http://techblog.netflix.com/search/label/Governator
http://techblog.netflix.com/search/label/GPU
http://techblog.netflix.com/search/label/green
http://techblog.netflix.com/search/label/Groovy
http://techblog.netflix.com/search/label/Hack%20Day
http://techblog.netflix.com/search/label/Hadoop
http://techblog.netflix.com/search/label/HBase
http://techblog.netflix.com/search/label/high%20volume
http://techblog.netflix.com/search/label/high%20volume%20distributed%20systems
http://techblog.netflix.com/search/label/Hive
http://techblog.netflix.com/search/label/HTML5
http://techblog.netflix.com/search/label/https
http://techblog.netflix.com/search/label/Hystrix
http://techblog.netflix.com/search/label/IBM
http://techblog.netflix.com/search/label/ice
http://techblog.netflix.com/search/label/initialization
http://techblog.netflix.com/search/label/innovation
http://techblog.netflix.com/search/label/insights
http://techblog.netflix.com/search/label/inter%20process%20communication
http://techblog.netflix.com/search/label/Ipv6
http://techblog.netflix.com/search/label/isolation
http://techblog.netflix.com/search/label/ISP
http://techblog.netflix.com/search/label/java
http://techblog.netflix.com/search/label/JavaScript
http://techblog.netflix.com/search/label/jclouds
http://techblog.netflix.com/search/label/jenkins
http://techblog.netflix.com/search/label/kafka
http://techblog.netflix.com/search/label/Karyon
http://techblog.netflix.com/search/label/lifecycle
http://techblog.netflix.com/search/label/linux
http://techblog.netflix.com/search/label/lipstick
http://techblog.netflix.com/search/label/load%20balancing
http://techblog.netflix.com/search/label/localization
http://techblog.netflix.com/search/label/localization%20platform%20engineering
http://techblog.netflix.com/search/label/locking

The output of stackcollapse-perf.pl formats each stack as a single line, and is great food for grep/sed/awk.
For the flamegraph at the top of this post, we used the above procedure, and added “| grep java-339” before
the “| flamegraph.pl”, to isolate that one process. You could also use a “| grep -v cpu_idle”, to exclude the
kernel idle threads.

Missing Frames

If you start using these flame graphs, you'll notice that many Java frames (methods) are missing. Compared
to the jstack(1) command line tool, the stacks seen in the flame graph look perhaps one third as deep, and
are missing many frames. This is because of inlining, combined with this type of profiling (frame pointer
based) which only captures the final executed code.

This hasn’t been much of a problem so far: even when many frames are missing, enough remain that we can
figure out what's going on. We've also experimented with reducing the amount of inlining, eg, using -
XX:InlineSmallCode=500, to increase the number of frames in the profile. In some cases this even
improves performance slightly, as the final compiled instruction size is reduced, fitting better into the
processor caches (we confirmed this using perf_events separately).

Another approach is to use JVMTI information to unfold the inlined symbols. perf-map-agent has a mode to
do this; however, Min Zhou from LinkedIn has experienced Java crashes when using this, which he has
been fixing in his version. We've not seen these crashes (as we rarely use that mode), but be warned.

Vector

The previous steps for generating flame graphs are a little tedious. As we expect these flame graphs will
become an everyday tool for Java developers, we've looked at making them as easy as possible: a point-
and-click interface. We've been prototyping this with our open source instance analysis tool: Vector.

Vector was described in more details in a previous

techblog post. It provides a simple way for users to Widget ~ Window | 2min
visualize and analyze system and application-level o T
metrics in near real-time, and flame graphs is a great Momary Runnable
. » e | o Lo
addition to the set of functionalities it already provides. Netwarke CPu Utilization (System
Disk £PU Utilization {Usar]
i . . . CPU Utilization
We tried to keep the user interaction as simple as Befalt Widgsts Per-CRU Utilization (System)
possible. To generate a flame graph, you connect "j'_v I 1 Per-CPU Utilization (User]
. Per-CPU Ugilizati
Vector to the target instance, add the flame graph 1500 ‘ul N o
widget to the dashboard, then click the generate ol |'\ f |!,4 CPU Fame Graph
. 500 -
button. That's it! oo 11 i
10:44:16 04500 10:45:50 10:48:14
Behind the scenes, Vector requests a flame graph from
» Network Packets o Ne

a custom instance agent that we developed, which also

supplies Vector's other metrics. Vector checks the ®urin Gn @erdos Slou
status of this request while fetching and displaying

other metrics, and displays the flame graph when it is ready.

Our custom agent is not generic enough to be used by everyone yet (it depends on the Netflix environment),
so we have yet to open-source it. If you're interested in testing or extending it, reach out to us.

Future Work

We have some enhancements planned. One is for regression analysis, by automatically collecting flame
graphs over different days and generating flame graph differentials for them. This will help us quickly
understand changes in CPU usage due to software changes.

Apart from CPU profiling, perf_events can also trace user- and kernel-level events, including disk 1/0O,

networking, scheduling, and memory allocation. When these are synchronously triggered by Java, a mixed-
mode flame graph will show the code paths that led to these events. A page fault mixed-mode flame graph,
for example, can be used to show which Java code paths led to an increase in main memory usage (RSS).

We also want to develop enhancements for flame graphs and Vector, including real time updates. For this to
work, our agent will collect perf_events directly and return a data structure representing the partial flame
graph to Vector with every check. Vector, with this information, will be able to assemble the flame graph in
real time, while the profile is still being collected. We are also investigating using D3 for flame graphs, and
adding interactivity improvements.

Other Work

Twitter have also explored making perf_events and Java work better together, which Kaushik Srenevasan

locks (1)

log4j (1)

logging (2)

machine learning (5)
Map-Reduce (1)
meetup (3)
memcache (2)
memcached (1)
message security layer (1)
Mobile (1)

modules (1)
monitoring (1)

msl (1)

negative keywords (1)
Netflix (16)

Netflix API (7)

netflix graph (1)
Netflix OSS (12)
neural networks (1)
node.js (3)

NoSQL (5)
observability (1)

Open source (10)
operational excellence (1)
operational insight (2)
operational visibility (1)
optimization (1)

0SS (3)

outage (1)

page generation (1)
payments (1)

Paypal (1)
performance (19)
personalization (4)
phone (1)

Pig (4)

pki (1)

Playback (1)
prediction (2)
predictive modeling (2)
Presto (2)

prize (1)

pubsub (1)

pytheas (1)

python (3)

http://1.bp.blogspot.com/-97wZqylyzQg/VbJnzMnK2JI/AAAAAAAAAEA/ibagR_BDHXQ/s1600/vector05red.png
https://github.com/coderplay/perfj/blob/master/src/perfj/c/perf-map-agent.c
http://techblog.netflix.com/2015/04/introducing-vector-netflixs-on-host.html
http://www.brendangregg.com/blog/2014-11-09/differential-flame-graphs.html
https://speakerdeck.com/kaushik/tracing-and-profiling-java-and-native-applications-in-production
http://techblog.netflix.com/search/label/locks
http://techblog.netflix.com/search/label/log4j
http://techblog.netflix.com/search/label/logging
http://techblog.netflix.com/search/label/machine%20learning
http://techblog.netflix.com/search/label/Map-Reduce
http://techblog.netflix.com/search/label/meetup
http://techblog.netflix.com/search/label/memcache
http://techblog.netflix.com/search/label/memcached
http://techblog.netflix.com/search/label/message%20security%20layer
http://techblog.netflix.com/search/label/Mobile
http://techblog.netflix.com/search/label/modules
http://techblog.netflix.com/search/label/monitoring
http://techblog.netflix.com/search/label/msl
http://techblog.netflix.com/search/label/negative%20keywords
http://techblog.netflix.com/search/label/Netflix
http://techblog.netflix.com/search/label/Netflix%20API
http://techblog.netflix.com/search/label/netflix%20graph
http://techblog.netflix.com/search/label/Netflix%20OSS
http://techblog.netflix.com/search/label/neural%20networks
http://techblog.netflix.com/search/label/node.js
http://techblog.netflix.com/search/label/NoSQL
http://techblog.netflix.com/search/label/observability
http://techblog.netflix.com/search/label/Open%20source
http://techblog.netflix.com/search/label/operational%20excellence
http://techblog.netflix.com/search/label/operational%20insight
http://techblog.netflix.com/search/label/operational%20visibility
http://techblog.netflix.com/search/label/optimization
http://techblog.netflix.com/search/label/OSS
http://techblog.netflix.com/search/label/outage
http://techblog.netflix.com/search/label/page%20generation
http://techblog.netflix.com/search/label/payments
http://techblog.netflix.com/search/label/Paypal
http://techblog.netflix.com/search/label/performance
http://techblog.netflix.com/search/label/personalization
http://techblog.netflix.com/search/label/phone
http://techblog.netflix.com/search/label/Pig
http://techblog.netflix.com/search/label/pki
http://techblog.netflix.com/search/label/Playback
http://techblog.netflix.com/search/label/prediction
http://techblog.netflix.com/search/label/predictive%20modeling
http://techblog.netflix.com/search/label/Presto
http://techblog.netflix.com/search/label/prize
http://techblog.netflix.com/search/label/pubsub
http://techblog.netflix.com/search/label/pytheas
http://techblog.netflix.com/search/label/python

summarized in his Tracing and Profiling talk from OSCON 2014 (slides). Kaushik showed that perf_events
has much lower overhead when compared to some other Java profilers, and included a mixed-mode stack
trace from perf_events. David Keenan from Twitter also described this work in his Twitter-Scale Computing
talk (video), as well as summarizing other performance enhancements they have been making to the JVM.

At Google, Stephane Eranian has been working on perf_events and Java as well and has posted a patch
series that supports a timestamped JIT symbol transaction log from Java for accurate symbol translation,

solving the stale symbol problem. It's impressive work, although a downside with the logging technique may

be the performance cost of always logging symbols even if a profiler is never used.

Conclusion

CPU mixed-mode flame graphs help identify and quantify all CPU consumers. They show the CPU time
spent in Java methods, system libraries, and the kernel, all in one visualization. This reveals CPU
consumers that are invisible to other profilers, and have so far been used to identify issues and explain
performance changes between software versions.

These mixed-mode flame graphs have been made possible by a new option in the JVM: -
XX:+PreserveFramePointer, available in early access releases. In this post we described how these work,
the challenges that were addressed, and provided instructions for their generation. Similar visibility for
Node.js was described in our earlier post: Node.js in Flames.

by Brendan Gregg and Martin Spier

Posted by Brendan Gregg at 10:29 AM
™ME @| 6+ ‘ +72 Recommend this on Google

Labels: flamegraphs, java, performance

Newer Post Home Older Post

Quality (1)

rca (2)

React (1)

Reactive Programming (2)
real-time insights (1)
real-time streaming (1)
Recipe (1)
recommendations (6)
Redis (2)

reinvent (2)

reliability (7)

remote procedure calls (1)
renewable (1)
research (1)
resiliency (7)

REST (2)

Ribbon (2)

Riot Games (1)
root-cause analysis (2)
Route53 (1)

rule engine (1)

Rx (1)

scalability (11)

scale (1)

scripting library (1)
search (2)

security (8)

Servo (1)

shared libraries (1)
simian army (5)
SimpleDB (3)

site reliability (1)
sqoop (1)

ssd (1)

ssl (2)

STAASH (1)
streaming (1)

stream processing (1)
suro (1)

SWF (1)
synchronization (1)
tablet (1)

testability (1)

tis (2)

http://techblog.netflix.com/2015/07/tuning-tomcat-for-high-throughput-fail.html
http://techblog.netflix.com/2015/07/tracking-down-villains-outlier.html
http://techblog.netflix.com/
https://plus.google.com/112610724469645265130
http://techblog.netflix.com/2015/07/java-in-flames.html
http://techblog.netflix.com/search/label/flamegraphs
http://techblog.netflix.com/search/label/java
http://techblog.netflix.com/search/label/performance
https://speakerdeck.com/kaushik/tracing-and-profiling-java-and-native-applications-in-production
https://youtu.be/szvHghWyuoQ?t=25m15s
https://lkml.org/lkml/2015/3/30/749
http://techblog.netflix.com/2014/11/nodejs-in-flames.html
http://www.brendangregg.com/
https://www.linkedin.com/in/martinspier
https://www.blogger.com/share-post.g?blogID=725338818844296080&postID=7564661201192729224&target=email
https://www.blogger.com/share-post.g?blogID=725338818844296080&postID=7564661201192729224&target=blog
https://www.blogger.com/share-post.g?blogID=725338818844296080&postID=7564661201192729224&target=twitter
https://www.blogger.com/share-post.g?blogID=725338818844296080&postID=7564661201192729224&target=facebook
https://www.blogger.com/share-post.g?blogID=725338818844296080&postID=7564661201192729224&target=pinterest
http://techblog.netflix.com/search/label/Quality
http://techblog.netflix.com/search/label/rca
http://techblog.netflix.com/search/label/React
http://techblog.netflix.com/search/label/Reactive%20Programming
http://techblog.netflix.com/search/label/real-time%20insights
http://techblog.netflix.com/search/label/real-time%20streaming
http://techblog.netflix.com/search/label/Recipe
http://techblog.netflix.com/search/label/recommendations
http://techblog.netflix.com/search/label/Redis
http://techblog.netflix.com/search/label/reinvent
http://techblog.netflix.com/search/label/reliability
http://techblog.netflix.com/search/label/remote%20procedure%20calls
http://techblog.netflix.com/search/label/renewable
http://techblog.netflix.com/search/label/research
http://techblog.netflix.com/search/label/resiliency
http://techblog.netflix.com/search/label/REST
http://techblog.netflix.com/search/label/Ribbon
http://techblog.netflix.com/search/label/Riot%20Games
http://techblog.netflix.com/search/label/root-cause%20analysis
http://techblog.netflix.com/search/label/Route53
http://techblog.netflix.com/search/label/rule%20engine
http://techblog.netflix.com/search/label/Rx
http://techblog.netflix.com/search/label/scalability
http://techblog.netflix.com/search/label/scale
http://techblog.netflix.com/search/label/scripting%20library
http://techblog.netflix.com/search/label/search
http://techblog.netflix.com/search/label/security
http://techblog.netflix.com/search/label/Servo
http://techblog.netflix.com/search/label/shared%20libraries
http://techblog.netflix.com/search/label/simian%20army
http://techblog.netflix.com/search/label/SimpleDB
http://techblog.netflix.com/search/label/site%20reliability
http://techblog.netflix.com/search/label/sqoop
http://techblog.netflix.com/search/label/ssd
http://techblog.netflix.com/search/label/ssl
http://techblog.netflix.com/search/label/STAASH
http://techblog.netflix.com/search/label/streaming
http://techblog.netflix.com/search/label/stream%20processing
http://techblog.netflix.com/search/label/suro
http://techblog.netflix.com/search/label/SWF
http://techblog.netflix.com/search/label/synchronization
http://techblog.netflix.com/search/label/tablet
http://techblog.netflix.com/search/label/testability
http://techblog.netflix.com/search/label/tls

traffic optimization (1)

TV ()

Ul (13)

UltraDNS (1)

unit test (2)

uptime (2)

user interface (5)

Velocity (1)

visualization (1)

WebKit (3)

websockets (1)

Wii U (1)

winner (1)

winners (1)

workflow (1)

ZeroToDocker (1)

ZooKeeper (1)

zuul (1)

“cloud architecture” (3)

Awesome Inc. template. Powered by Blogger.

http://techblog.netflix.com/search/label/traffic%20optimization
http://techblog.netflix.com/search/label/TV
http://techblog.netflix.com/search/label/UI
http://techblog.netflix.com/search/label/UltraDNS
http://techblog.netflix.com/search/label/unit%20test
http://techblog.netflix.com/search/label/uptime
http://techblog.netflix.com/search/label/user%20interface
http://techblog.netflix.com/search/label/Velocity
http://techblog.netflix.com/search/label/visualization
http://techblog.netflix.com/search/label/WebKit
http://techblog.netflix.com/search/label/websockets
http://techblog.netflix.com/search/label/Wii%20U
http://techblog.netflix.com/search/label/winner
http://techblog.netflix.com/search/label/winners
http://techblog.netflix.com/search/label/workflow
http://techblog.netflix.com/search/label/ZeroToDocker
http://techblog.netflix.com/search/label/ZooKeeper
http://techblog.netflix.com/search/label/zuul
http://techblog.netflix.com/search/label/%E2%80%9Ccloud%20architecture%E2%80%9D
https://www.blogger.com/

