
USE IMPROVE EVANGELIZE

Observability Matters:
How DTrace Helped Twitter
Adam Leventhal
Brendan Gregg

FishWorks
Sun Microsystems

2

USE IMPROVE EVANGELIZE

This Talk

● Twitter performance meltdown
● Introduction to DTrace
● DTrace on the case
● Solutions and results
● DTrace for your application
● Q&A

3

USE IMPROVE EVANGELIZE

What Is Twitter?

● Social networking/RSS/SMS
● Ruby on Rails application
● Horizontally scaled
● Centralized MySQL backend

4

USE IMPROVE EVANGELIZE

Twitter's Problem

● Started with a few users
● Didn't scale with their success
● High latencies could make it unusable
● Many possible suspects:
– The OS: kernel, libraries, etc.

– Ruby, MySQL, Apache

– The Twitter application itself

5

USE IMPROVE EVANGELIZE

Enter DTrace

● Luckily: Twitter had DTrace
– Solaris 10, Mac OS X 10.5, FreeBSD*

● Systemic observability
– Ruby, Java, JavaScript, C/C++, kernel ...

● Concise answers to arbitrary questions
● Designed for production systems
– Architected to always be safe

– No overhead when not in use

● Also great for developers

6

USE IMPROVE EVANGELIZE

DEMO
Trace all system calls:
dtrace -n syscall:::entry

Aggregate by executable name:
dtrace -n 'syscall:::entry{ @[execname] = count(); }'

Examine a user-land process and generate a power-of-two histogram of allocations:
dtrace -c date -n 'pid$target::malloc:entry{ @ = quantize(arg0); }'

Trace all I/O on the system:
dtrace -n io:::start

In summary: DTrace has systemic scope.

7

USE IMPROVE EVANGELIZE

The Investigation

● High latencies under load
● What could cause these latencies?
– on-CPU time: slow/numerous functions, ...

– off-CPU time: I/O, lock contention, ...

8

USE IMPROVE EVANGELIZE

DEMO
Run our load generator program that attempts to mimic the salient problem that we saw when
examining the Twitter application in production.
$./deepstack.rb

Use a familiar tool to start with; in this case we used mpstat(1):
mpstat 1

CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl

 0 0 0 0 450 296 138 64 36 1 0 12362 94 2 0 4

...

We're spending all our time in user-land (the usr column) so let's look at what application is taking up
our time by using a probe that fires at 1234hz and seeing what application is running:
dtrace -n 'profile-1234{ @[execname] = count(); }'

Now that we've see that it's Ruby, let's look at the stack trace in Ruby:
dtrace -n 'profile-1234/execname == "ruby"/{ @[ustack()] = count(); }'

9

USE IMPROVE EVANGELIZE

Investigation: Steps

1. Started with a broad look at the system
using familiar tools
● mpstat, ...

2. DTrace profiling to sample processes
3. DTrace profiling to sample user stacks

10

USE IMPROVE EVANGELIZE

Investigation: So Far

● What we knew:
– High application latency (from somewhere)

● What we learned:
– Latency may be due to high CPU load

– CPU load is due to some Ruby component:
● Twitter application
● Standard Ruby libraries
● Interpreter itself

11

USE IMPROVE EVANGELIZE

DEMO
We'll see what functions in the Ruby process are being called most frequently:
dtrace -p `pgrep ruby` -n 'pid$target:::entry{ @[probefunc] = count(); }'

Now that we see that it's memcpy(3C), let's see the stack trace:
dtrace -p `pgrep ruby` -n 'pid$target::memcpy:entry{ @[ustack()]=count(); }'

Looking at the stack trace a bit, we noticed backtrace() which seemed strange – why would the Twitter

application spend so much time taking stack backtraces? We wanted to measure the amount of time

spent in backtrace() to confirm our findings (be sure to look at the backtrace.d script):

./backtrace.d -p `pgrep ruby`

 backtrace 665 ms

 TOTAL: 1005 ms

...

12

USE IMPROVE EVANGELIZE

Investigation: Steps

4. Function call counts
5. ustack() for memcpy()
6. Time spent in backtrace()

● What we learned:
– 40% of CPU time spent in backtrace()

13

USE IMPROVE EVANGELIZE

DEMO
We noticed that backtrace() was many a bunch of calls to snprintf(3C) which is used to format
strings. Our hope was that the snprintf(3C) calls might be used to format the Ruby stack backtrace
for use in an exception object so we wrote a rather complicated script to test this theory (be sure
to look at printstack.d):
./printstack.d -p `pgrep ruby`

<wait>

^C

 ./deepstack.rb:20:in `parserfunc2'

./deepstack.rb:6:in `parserfunc1'

./deepstack.rb:18:in `parserfunc2'

./deepstack.rb:6:in `parserfunc1'

...

./deepstack.rb:6:in `parserfunc1'

./deepstack.rb:33

 550

We saw something quite similar at Twitter: a very deep Ruby stack albeit with a more complex
texture.

14

USE IMPROVE EVANGELIZE

Investigation: Steps

7. Located source of backtrace() calls in
Ruby code

● What we learned:
– Several instances of code like this:

 @string = (str.string rescue str)

15

USE IMPROVE EVANGELIZE

Results: No Exceptions

● Rather than blithely calling the method:
@string = (str.string rescue str)

● ... check first:
@string = str.responds_to?(:string) ?
 str.string : str

● Result: 30% drop in CPU utilization

16

USE IMPROVE EVANGELIZE

Ruby Provider

● Joyent built DTrace-enabled Ruby
● Trace function entry and return
● Probes for line execution, memory

allocation, etc.

17

USE IMPROVE EVANGELIZE

DEMO
You'll need the DTrace-enabled Ruby which you can find here: http://dtrace.joyent.com

Then run our other load generator program with that version of Ruby:
$.../ruby hotfuncs.rb

List all Ruby probes in the DTrace framework:
dtrace -l -n 'ruby*:::'

Use the function-entry probe to see what Ruby functions are being called most frequently:
dtrace -n 'ruby*:::function-entry{ @[copyinstr(arg1)] = count(); }'

^C

 func_a 1

 + 120000

 < 120003

Use the line probe to find other hotspots:
dtrace -n 'ruby*:::line{ @[copyinstr(arg0), arg1] = count(); }' \

 -n 'END{ printa("%40s:%-6u %6@u\n", @); }'

http://dtrace.joyent.com/

18

USE IMPROVE EVANGELIZE

Results: CRC32 in C

● Precision optimization
● Rewrite the CRC32 computation in C
● Estimated result: 15% drop in CPU

utilization

19

USE IMPROVE EVANGELIZE

DTrace Your Application

● Get your application on an OS with
DTrace

● Start with the tools you know and dive
deeper with DTrace

● If you can do it today or tomorrow, find
Adam and Brendan: we'll help you
investigate

● DTrace sees all

20

USE IMPROVE EVANGELIZE

Q&A (and links)
– DTrace home page

● http://www.opensolaris.org/os/community/dtrace

– DTrace-enabled Ruby
● http://dtrace.joyent.com

– Getting started with DTrace
● http://blogs.sun.com/ahl/entry/dtrace_boot_camp

– Exception problem:
● http://dev.rubyonrails.org/ticket/8159
● http://dev.rubyonrails.org/changeset/6571

– Joyent's blog post on this subject
● http://joyeur.com/2007/04/24/solaris-dtrace-and-rails

http://www.opensolaris.org/os/community/dtrace
http://dtrace.joyent.com/
http://blogs.sun.com/ahl/entry/dtrace_boot_camp
http://dev.rubyonrails.org/ticket/8159
http://dev.rubyonrails.org/changeset/6571
http://joyeur.com/2007/04/24/solaris-dtrace-and-rails

USE IMPROVE EVANGELIZE

Observability Matters:
How DTrace Helped Twitter
Adam Leventhal
http://blogs.sun.com/ahl

Brendan Gregg
http://blogs.sun.com/brendan

http://blogs.sun.com/ahl
http://blogs.sun.com/brendan

