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Global Client Performance
Fast Metrics



3G in Kazakhstan



● Global Internet:

● faster (better networking)

● slower (broader reach, congestion)

● Don't wait for it, measure it and deal

● Working app > Feature rich app

Making the Internet fast 
is slow.



We need to know what the Internet looks like, 
without averages, seeing the full distribution.



● Sampling

○ Missed data

○ Rare events

○ Problems aren’t equal in 

Population

●  Averages

○ Can't see the distribution

○ Outliers heavily distort

∞, 0, negatives, errors

Logging Anti-Patterns

Instead, use the client as a map-reducer and send up aggregated 
data, less often.



Sizing up the Internet. 



Infinite (free) compute power!





● Calculate the inverse empirical cumulative 

distribution function by math.

Get median, 95th, etc.

> library(HistogramTools)

> iecdf <- HistToEcdf(histogram,

           method='linear’, inverse=TRUE)

> iecdf(0.5)

[1] 0.7975309 # median

> iecdf(0.95)

[1] 4.65 # 95th percentile

o ...or just use R which is free and knows how 

to do it already



But constant 
sized linear 
spaced bins use a 
lot of data where 
we're not 
interested.





Data > Opinions.



Better than debating opinions.

Architecture is hard.  Make it cheap to experiment where your users really are.

"There's no way that the 

client makes that many 

requests.”

"No one really minds the 

spinner."

"Why should we spend 

time on that instead of 

COOLFEATURE?"

"We live in a 

50ms world!"



We built Daedalus

US

Elsewhere

Fast

Slow

DNS Time



● Visual → Numerical, need the IECDF for 

Percentiles

○ ƒ(0.50) = 50th (median)

○ ƒ(0.95) = 95th

● Cluster to get pretty colors similar experiences.

(k-means, hierarchical, etc.)

Interpret the data











● Go there!

● Abstract analysis - hard

● Feeling reality is much simpler than looking at graphs.  Build!

Practical Teleportation.



Make a Reality Lab.





Don't guess.

Developing a model based on 
production data, without missing the 
distribution of samples (network, render, 
responsiveness) will lead to better 
software.

Global reach doesn't need to be scary. @gcirino42   http://blogofsomeguy.com
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Problem & Motivation
● Real-user performance monitoring solution
● More insight into the App performance

(as perceived by real users)
● Too many variables to trust synthetic 

tests and labs
● Prioritize work around App performance
● Track App improvement progress over time
● Detect issues, internal and external



Device Diversity
● Netflix runs on all sorts of devices
● Smart TVs, Gaming Consoles, Mobile Phones, Cable TV boxes, ...
● Consistently evaluate performance





What are we monitoring?
● User Actions

(or things users do in the App)

● App Startup

● User Navigation

● Playing a Title

● Internal App metrics



What are we measuring?
● When does the timer start and stop?
● Time-to-Interactive (TTI)

○ Interactive, even if 
some items were not fully 
loaded and rendered

● Time-to-Render (TTR)
○ Everything above the fold 

(visible without scrolling) 
is rendered

● Play Delay
● Meaningful for what we are monitoring



High-dimensional Data
● Complex device categorization
● Geo regions, subregions, countries
● Highly granular network 

classifications
● High volume of A/B tests
● Different facets of the same user action

○ Cold, suspended and backgrounded 
App startups

○ Target view/page on App startup









Data Sketches
● Data structures that approximately 

resemble a much larger data set
● Preserve essential features!
● Significantly smaller!
● Faster to operate on!



t-Digest
● t-Digest data structure
● Rank-based statistics

(such as quantiles)
● Parallel friendly

(can be merged!)
● Very fast!
● Really accurate!

https://github.com/tdunning/t-digest



+ t-Digest sketches





iOS Median Comparison, Break by Country



iOS Median Comparison, Break by Country + iPhone 6S Plus



CDFs by UI Version



Warm Startup Rate



A/B Cell Comparison



Anomaly Detection



Going Forward
● Resource utilization metrics
● Device profiling

○ Instrumenting client code
● Explore other visualizations

○ Frequency heat maps
● Connection between perceived

performance, acquisition and 
retention

@spiermar



Netflix
Autoscaling for experts

Vadim



● Mid-tier stateless services are ~2/3rd of the total
● Savings - 30% of mid-tier footprint (roughly 30K instances) 

○ Higher savings if we break it down by region
○ Even higher savings on services that scale well

Savings!



Why we autoscale - philosophical reasons



Why we autoscale - pragmatic reasons

● Encoding
● Precompute
● Failover
● Red/black pushes
● Curing cancer**

● And more...

** Hack-day project



Should you autoscale?
Benefits
● On-demand capacity: direct $$ savings
● RI capacity: re-purposing spare capacity

However, for each server group, beware of
● Uneven distribution of traffic
● Sticky traffic
● Bursty traffic
● Small ASG sizes (<10)



Autoscaling impacts availability - true or false?

* If done correctly

Under-provisioning, however, can impact availability

● Autoscaling is not a problem
● The real problem is not knowing performance characteristics of the 

service



AWS autoscaling mechanics

CloudWatch alarm ASG scaling policy

Aggregated metric feed
Notification

Tunables

Metric ● Threshold
● # of eval periods

● Scaling amount
● Warmup time



What metric to scale on?

Pros

● Tracks a direct measure of work
● Linear scaling
● Predictable

● Requires less adjustment over time

Cons

● Thresholds tend to drift over time
● Prone to changes in request mixture

● Less predictable
● More oscillation / jitter

Throughput Resource 
utilization



Autoscaling on multiple metrics
Proceed with caution
● Harder to reason about scaling behavior
● Different metrics might contradict each 

other, causing oscillation

Typical Netflix configuration:
● Scale-up policy on throughput
● Scale-down policy on throughput
● Emergency scale-up policy on CPU, aka 

“the hammer rule”



Well-behaved autoscaling



Common mistakes - “no rush” scaling

Problem: scaling amounts too 
small, cooldown too long
Effect: scaling lags behind the 
traffic flow. Not enough 
capacity at peak, capacity 
wasted in trough
Remedy: increase scaling 
amounts, migrate to step 
policies



Common mistakes - twitchy scaling

Problem: Scale-up policy is 
too aggressive
Effect: unnecessary 
capacity churn
Remedy: reduce scale-up 
amount, increase the # of 
eval periods



Common mistakes - should I stay or should I go

Problem: -up and -down 
thresholds are too close to each 
other
Effect: constant capacity 
oscillation
Remedy: move -up and -down 
thresholds farther apart



AWS target tracking - your best bet!
● Think of it as a step policy with auto-steps
● You can also think of it as a thermostat
● Accounts for the rate of change in monitored metric
● Pick a metric, set the target value and warmup time - that’s it!

Step Target-tracking



Netflix
PMCs on the Cloud

Brendan



Busy Waiting
(“idle”)

90% CPU utilization:



Busy Waiting
(“idle”)

Busy Waiting
(“idle”)

Waiting
(“stalled”)

Reality:

90% CPU utilization:



# perf stat -a -- sleep 10

 Performance counter stats for 'system wide':

      80018.188438      task-clock (msec)    #    8.000 CPUs utilized    (100.00%)
             7,562      context-switches     #    0.095 K/sec            (100.00%)
             1,157      cpu-migrations       #    0.014 K/sec            (100.00%)
           109,734      page-faults          #    0.001 M/sec                  
   <not supported>      cycles                   
   <not supported>      stalled-cycles-frontend  
   <not supported>      stalled-cycles-backend   
   <not supported>      instructions             
   <not supported>      branches                 
   <not supported>      branch-misses            

      10.001715965 seconds time elapsed Performance
Monitoring Counters

(PMCs) in most clouds



# perf stat -a -- sleep 10

 Performance counter stats for 'system wide':

     641320.173626 task-clock (msec)         #   64.122 CPUs utilized    [100.00%]
         1,047,222 context-switches          #    0.002 M/sec            [100.00%]
            83,420 cpu-migrations            #    0.130 K/sec            [100.00%]
            38,905 page-faults               #    0.061 K/sec                  
   655,419,788,755 cycles                    #    1.022 GHz              [75.02%]
   <not supported> stalled-cycles-frontend 
   <not supported> stalled-cycles-backend  
   536,830,399,277 instructions              #    0.82  insns per cycle  [75.02%]
    97,103,651,128 branches                  #  151.412 M/sec            [75.02%]
     1,230,478,597 branch-misses             #    1.27% of all branches  [74.99%]

      10.001622154 seconds time elapsed

AWS EC2 m4.16xl



Interpreting IPC & Actionable Items
IPC: Instructions Per Cycle (invert of CPI)

● IPC < 1.0: likely memory stalled
○ Data usage and layout to improve CPU caching, memory locality.
○ Choose larger CPU caches, faster memory busses and interconnects.

● IPC > 1.0: likely instruction bound
○ Reduce code execution, eliminate unnecessary work, cache operations, 

improve algorithm order. Can analyze using CPU flame graphs.
○ Faster CPUs.



Event Name Umask Event S. Example Event Mask Mnemonic

UnHalted Core Cycles 00H 3CH CPU_CLK_UNHALTED.THREAD_P

Instruction Retired 00H C0H INST_RETIRED.ANY_P

UnHalted Reference Cycles 01H 3CH CPU_CLK_THREAD_UNHALTED.REF_XCLK

LLC Reference 4FH 2EH LONGEST_LAT_CACHE.REFERENCE

LLC Misses 41H 2EH LONGEST_LAT_CACHE.MISS

Branch Instruction Retired 00H C4H BR_INST_RETIRED.ALL_BRANCHES

Branch Misses Retired 00H C5H BR_MISP_RETIRED.ALL_BRANCHES

Intel Architectural PMCs

Now available in AWS EC2 on full dedicated hosts (eg, m4.16xl, …)



# pmcarch 1
CYCLES        INSTRUCTIONS    IPC BR_RETIRED   BR_MISPRED  BMR% LLCREF      LLCMISS     LLC%
90755342002   64236243785    0.71 11760496978  174052359   1.48 1542464817  360223840  76.65
75815614312   59253317973    0.78 10665897008  158100874   1.48 1361315177  286800304  78.93
65164313496   53307631673    0.82 9538082731   137444723   1.44 1272163733  268851404  78.87
90820303023   70649824946    0.78 12672090735  181324730   1.43 1685112288  343977678  79.59
76341787799   50830491037    0.67 10542795714  143936677   1.37 1204703117  279162683  76.83
[...]

tiptop -                  [root]
Tasks:  96 total,   3 displayed                               screen  0: default

  PID [ %CPU] %SYS    P   Mcycle   Minstr   IPC  %MISS  %BMIS  %BUS COMMAND
 3897   35.3  28.5    4   274.06   178.23  0.65   0.06   0.00   0.0 java
 1319+   5.5   2.6    6    87.32   125.55  1.44   0.34   0.26   0.0 nm-applet
  900    0.9   0.0    6    25.91    55.55  2.14   0.12   0.21   0.0 dbus-daemo

https://github.com/brendangregg/pmc-cloud-tools
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