
What Linux can learn from

Solaris performance
and vice-versa

Lead Performance Engineer

brendan@joyent.com

Brendan Gregg

@brendangregg
SCaLE12x
February, 2014

mailto:rod@joyent.com
mailto:rod@joyent.com

Linux vs Solaris Performance Differences

Applications

Block Device Interface Ethernet
Volume Managers IP

File Systems TCP/UDP
VFS Sockets

System Libraries

Device Drivers

Scheduler

Virtual
Memory

System Call Interface

Virtualization

ZFS

DynTicks
RCU

SLUB

I/O
Scheduler

Overcommit
& OOM Killer

Lazy TLB

lik
el

y(
)/u

nl
ik

el
y(

)
C

O
N

FI
G

ur
ab

le

btrfs

Zones

Mature fully
preemptive

MPSS

C
PU

 s
ca

la
bi

lit
y

FireEngineCrossbow

Process
swapping

KVM More device drivers

Up-to-date
packages

DTrace libumem futexMicrostate
Accounting

Symbols

whoami

• Lead Performance Engineer at Joyent

• Work on Linux and SmartOS performance

• Work/Research: tools, visualizations, methodologies

• Did kernel engineering at Sun Microsystems; worked on
DTrace and ZFS

Joyent

• High-Performance Cloud Infrastructure

• Compete on cloud instance/OS performance

• OS Virtualization for bare metal performance (Zones)

• Core developers of illumos/SmartOS and Node.js

• Recently launched Manta: a high performance object store

• KVM for Linux guests

• Certified Ubuntu on Joyent cloud now available!

SCaLE11x: Linux Performance Analysis

sar
dstat
/proc

Various:

Applications
DBs, all server types, ...

Block Device Interface Ethernet
Volume Managers IP

File Systems TCP/UDP
VFS Sockets

Disk Disk Port Port

Expander Interconnect

I/O Bus

Interface Transports
Network Controller

I/O Bridge

System Libraries

Device Drivers

Scheduler

Virtual
Memory

System Call Interface CPU
Interconnect

Memory
Bus

CPU
1

DRAM

Operating System Hardwarestrace

iostat
iotop

blktrace

vmstat
slabtop
free

top ps
pidstat

tcpdump

netstat

perf
dtrace
stap
lttng
ktap

perf

mpstat

pidstat

ping traceroute

perf

perf

nicstat
ip

Swap

I/O Controller

swapon

Li
nu

x
Ke

rn
el

Latest version: http://www.brendangregg.com/linuxperf.html

http://www.brendangregg.com/linuxperf.html
http://www.brendangregg.com/linuxperf.html

SCaLE12x: Linux and Solaris Performance

• Also covered in my new book,
Systems Performance
(Prentice Hall, 2013)

• Focus is on understanding
systems and the methodologies
to analyze them. Linux and
Solaris are used as examples

Agenda

• Why systems differ

• Specific differences

• What Solaris could learn from Linux

• What Linux could learn from Solaris

• What both can learn

• Results

Terminology

• For convenience in this talk:

• Linux = an operating system distribution which uses the Linux kernel.
eg, Ubuntu.

• Solaris = a distribution from the family of operating systems whose
kernel code originated from Sun Solaris.

• SmartOS = a Solaris-family distribution developed by Joyent, based on
the illumos kernel, which was based on the OpenSolaris kernel, which
was based on the Solaris kernel

• System = everything you get when you pick a Linux or Solaris
distribution: the kernel, libraries, tools, and package repos

• Opinions in this presentation are my own, and I do not
represent Oracle Solaris. I'll actually be talking about SmartOS.

Why Systems Differ

Why Systems Differ

• Does the system even matter?

• Will your application perform the same on Linux and Solaris?

Example

• Let's start with this simple program:

• This counts to 100,000,000, setting a variable

• To simplify this further, we're only interested in performance of
the loop, which dominates runtime, not program startup.

perl -e 'for ($i = 0; $i < 100_000_000; $i++) { $s = "SCaLE12x" }'

Example Results

• One of these is Linux, the other SmartOS. Same hardware:

• One system is 14% slower

• Imagine that's your system – you'd want to know why

• I recently had a customer with a complex performance issue try
a one-liner like this, as a simple test, and with a similar result.
It's an interesting tour of some system differences

systemA$ time perl -e 'for ($i = 0; $i < 100_000_000; $i++) { $s = "SCaLE12x" }'

real 0m18.534s
user 0m18.450s
sys 0m0.018s

systemB$ time perl -e 'for ($i = 0; $i < 100_000_000; $i++) { $s = "SCaLE12x" }'

real 0m16.253s
user 0m16.230s
sys 0m0.010s

Possible Differences: Versioning

• Different versions of Perl

• Applications improve performance from release to release

• Linux and SmartOS distributions use entirely different
package repos; different software versions are common

• Different compilers used to build Perl

• Compilers come from package repos, too. I've seen 50%
performance improvements by gcc version alone

• Different compiler options used to build Perl

• Application Makefile: #ifdef Linux -O3 #else -O0. ie, the
performance difference is due to a Makefile decision

• 32-bit vs 64-bit builds

Possible Differences: OS

• Different system libraries

• If any library calls are used. eg: strcmp(), malloc(),
memcpy(), ... These implementations vary between Linux
and Solaris, and can perform very differently

• Robert Mustacchi enhanced libumem to provide improved
malloc() performance on SmartOS. This can make a
noticeable difference for some workloads

• Different background tasks

• Runtime could be perturbed by OS daemons doing async
housekeeping. These differ between Linux and Solaris

Possible Differences: Observability

• Can the 14% be root caused?

• Observability tools differ. These don't cause the 14%, but
can make the difference as to whether you can diagnose
and fix it – or not.

• DTrace has meant that anything can be solved; without an
equivalent on Linux, you may have to live with that 14%

• Although, Linux observability is getting much better...

Possible Differences: Kernel

• Can the kernel make a difference? ... As a reminder:

• The program makes no system calls during the loop

perl -e 'for ($i = 0; $i < 100_000_000; $i++) { $s = "SCaLE12x" }'

Possible Differences: Kernel, cont.

• Can the kernel make a difference? ... As a reminder:

• The program makes no system calls during the loop

• Yes, for a number of reasons:

• Setting the string involves memory I/O, and the kernel
controls memory placement. Allocating nearby memory in
a NUMA system can significantly improve performance

• The kernel may also control the CPU clock speed (eg, Intel
SpeedStep), and vary it for temp or power reasons

• The program could be perturbed by interrupts: eg, network
I/O (although the performance effect should be small).

perl -e 'for ($i = 0; $i < 100_000_000; $i++) { $s = "SCaLE12x" }'

Possible Differences: Kernel, cont.

• During a perturbation, the kernel CPU scheduler may
migrate the thread to another CPU, which can hurt
performance (cold caches, memory locality)

• Sure, but would that happen for this simple Perl program?

Possible Differences: Kernel, cont.

• During a perturbation, the kernel CPU scheduler may
migrate the thread to another CPU, which can hurt
performance (cold caches, memory locality)

• Sure, but would that happen for this simple Perl program?
dtrace -n 'profile-99 /pid == $target/ { @ = lquantize(cpu, 0, 16, 1); }' -c ...
 value ------------- Distribution ------------- count
 < 0 | 0
 0 | 1
 1 |@@@@@ 483
 2 | 1
 3 |@@@@@@@ 663
 4 | 2
 5 |@@@ 276
 6 | 0
 7 |@@@@@@ 512
 8 | 1
 9 |@@@ 288
 10 | 0
 11 |@@@@@@ 576
 12 | 0
 13 |@@@@@ 442
 14 | 2
 15 |@@@ 308
 16 | 0

Yes, a lot!

This shows the CPUs
Perl ran on. It should
stay put, but instead
runs across many.

We've been fixing
this in SmartOS

Kernel Myths and Realities

• Myth: "The kernel gets out of the way for applications"

• The only case where the kernel gets out of the way is
when your software calls halt() or shutdown()

• The performance difference between kernels may be
small, eg, 5% – but I have already seen a 5x difference this
year

arch/ia64/kernel/smp.c:
void
cpu_die(void)
{
 max_xtp();
 local_irq_disable();
 cpu_halt();
 /* Should never be here */
 BUG();
 for (;;);
}

unintentional kernel humor...

Other Differences

• The previous example was simple. Any applications that do
I/O (ie, everything) encounter more differences:

• Different network stack implementations, including support
for different TCP/IP features

• Different file systems, storage I/O stacks

• Different device drivers and device feature support

• Different resource control implementations

• Different virtualization technologies

• Different community support: stackoverflow, meetups, ...

Types of Differences

Applications
DBs, all server types, ...

Block Device Interface Ethernet
Volume Managers IP

File Systems TCP/UDP
VFS Sockets

System Libraries

Device Drivers

Scheduler

Virtual
Memory

System Call Interface

App versions from
system repos

System library
implementations;
malloc(), str*(), ...

Syscall interface

OS
daemons

File systems:
ZFS, btrfs, ...

Compiler
options

Scheduler
classes and
behavior

I/O scheduling Memory
allocation
and locality

Virtualization

TCP/IP stack
and features

Network device
CPU fanout

Observability
tools

Resource
controls

Device driver
support

Virtualization
Technologies

Specific Differences

Specific Differences

• Comparing systems is like comparing countries

• I'm often asked: how's Australia different from the US?

• Where do I start!?

• I'll categorize performance differences into big or small, based
on their engineering cost, not their performance effect

• If one system is 2x faster than another for a given workload,
the real question for the slower system is:

• Is this a major undertaking to fix?

• Is there a quick fix or workaround?

• Using SmartOS for specific examples...

Big Differences

• Major bodies of perf work and other big differences, include:

• Linux

• up-to-date packages, large community, more device
drivers, futex, RCU, btrfs, DynTicks, SLUB, I/O scheduling
classes, overcommit & OOM killer, lazy TLB, likely()/
unlikely(), CONFIGurable

• SmartOS

• Mature: Zones, ZFS, DTrace, fully pre-emptable kernel

• Microstate accounting, symbols by default, CPU scalability,
MPSS, libumem, FireEngine, Crossbow, binary /proc,
process swapping

Big Differences: Linux

Up-to-date packages Latest application versions, with the latest
performance fixes

Large community Weird perf issue? May be answered on
stackoverflow, or discussed at meetups

More device drivers There can be better coverage for high
performing network cards or driver features

futex Fast user-space mutex

RCU Fast-performing read-copy updates

btrfs Modern file system with pooled storage

DynTicks Dynamic ticks: tickless kernel, reduces
interrupts and saves power

SLUB Simplified version of SLAB kernel memory
allocator, improving performance

Big Differences: Linux, cont.

I/O scheduling classes Block I/O classes: deadline, anticipatory, ...

Overcommit & OOM
killer Doing more with less main memory

Lazy TLB Higher performing munmap()

likely()/unlikely() Kernel is embedded with compiler information
for branch prediction, improving runtime perf

CONFIGurable Lightweight kernels possible by disabling
features

Big Differences: SmartOS

Mature Zones OS virtualization for high-performing server
instances

Mature ZFS Fully-featured and high-performing modern
integrated file system with pooled storage

Mature DTrace Programmable dynamic and static tracing for
performance analysis

Mature fully pre-
emptable kernel

Support for real-time systems was an early Sun
differentiator

Microstate accounting Numerous high-resolution thread state times for
performance debugging

Symbols Symbols available for profiling tools by default

CPU scalability Code is often tested, and bugs fixed, for large
SMP servers (mainframes)

MPSS Multiple page size support (not just hugepages)

Big Differences: SmartOS, cont.

libumem High-performing memory allocation library, with
per-thread CPU caches

FireEngine High-performing TCP/IP stack enhancements,
including vertical perimeters and IP fanout

Crossbow High-performing virtualized network interfaces,
as used by OS virtualization

binary /proc Process statistics are binary (slightly more
efficient) by default

Process swapping Apart from paging (what Linux calls swapping),
Solaris can still swap out entire processes

Big Differences: Linux vs SmartOS

Applications

Block Device Interface Ethernet
Volume Managers IP

File Systems TCP/UDP
VFS Sockets

System Libraries

Device Drivers

Scheduler

Virtual
Memory

System Call Interface

Resource Controls

ZFS

DynTicks
RCU

SLUB

I/O
Scheduler

Overcommit
& OOM Killer

Lazy TLB

lik
el

y(
)/u

nl
ik

el
y(

)
C

O
N

FI
G

ur
ab

le

btrfs

Zones

Mature fully
preemptive

MPSS

C
PU

 s
ca

la
bi

lit
y

FireEngineCrossbow

Process
swapping

More device drivers

Up-to-date
packages

DTrace libumem futexMicrostate
Accounting

Symbols

Small Differences

• Smaller performance-related differences, tunables, bugs

• Linux

• glibc, better TCP defaults, better CPU affinity, perf stat, a
working sar, htop, splice(), fadvise(), ionice, /usr/bin/time,
mpstat %steal, voluntary preemption, swappiness, various
accounting frameworks, tcp_tw_reuse/recycle, TCP tail
loss probe, SO_REUSEPORT, ...

• SmartOS

• perf tools by default, kstat, vfsstat, iostat -e, ptime -m,
CPU-only load averages, some STREAMS leftovers, ZFS
SCSI cache flush by default, different TCP slow start
default, ...

Small Differences, cont.

• Small differences change frequently: a feature is added to one
kernel, then the other a year later; a difference may only exist
for a short period of time.

• These small kernel differences may still make a significant
performance difference, but are classified as "small" based on
engineering cost.

System Similarities

• It's important to note that many performance-related features
are roughly equivalent:

• Both are Unix-like systems: processes, kernel, syscalls,
time sharing, preemption, virtual memory, paged virtual
memory, demand paging, ...

• Similar modern features: unified buffer cache, memory
mapped files, multiprocessor support, CPU scheduling
classes, CPU sets, 64-bit support, memory locality,
resource controls, PIC profiler, epoll, ...

Non Performance Differences

• Linux

• Open source (vs Oracle Solaris), "everyone knows it",
embedded Linux, popular and well supported desktop/
laptop use...

• SmartOS

• SMF/FMA, contracts, privileges, mdb (postmortem
debugging), gcore, crash dumps by default, ...

WARNING

The next sections are not suitable for those suffering
Not Invented Here (NIH) syndrome,

or those who are easily trolled

What Solaris can learn from Linux performance

What Solaris can learn from Linux performance

• Packaging

• Community

• Compiler Options

• likely()/unlikely()

• Tickless Kernel

• Process Swapping

• Either learning what to do, or learning what not to do...

• Overcommit & OOM Killer

• SLUB

• Lazy TLB

• TIME_WAIT Recycling

• sar

• KVM

Packaging

• Linux package repositories are often well stocked and updated

• Convenience aside, this can mean that users run newer
software versions, along with the latest perf fixes

• They find "Linux is faster", but the real difference is the version
of: gcc, openssl, mysql, ... Solaris is unfairly blamed

Packaging, cont.

• Packaging is important and needs serious support

• Dedicated staff, community

• eg, Joyent has dedicated staff for the SmartOS package repo,
which is based on pkgsrc from NetBSD

• It's not just the operating system that matters; it's the
ecosystem

Community

• A large community means:

• Q/A sites have performance tips: stackoverflow, ...

• Conference talks on performance (this one!), slides, video

• Weird issues more likely found and fixed by someone else

• More case studies shared: what tuning/config worked

• A community helps people hear about the latest tools, tuning,
and developments, and adopt them

Community, cont.

• Linux users expect to Google a question and find an answer
on stackoverflow

• Either foster a community to share content on tuning, tools,
configuration, or, have staff to create such content.

• Hire a good community manager!

Compiler Options

• Apps may compile with optimizations for Linux only. eg:

• #ifdef Linux -O3 #else -O0

• Developers are often writing software on Linux, and that
platform gets the most attention. (Works on my system.)

• I've also seen 64-bit vs 32-bit. #ifdef Linux USE_FUTEX would
be fine, since Solaris doesn't have them yet.

• Last time I found compiler differences using Flame Graphs:

Linux SmartOS

Extra Function:
UnzipDocid()

Oh, ha ha ha

Compiler Options, cont.

• Can be addressed by tuning packages in the repo

• Also file bugs/patches with developers to tune Makefiles

• Someone has to do this, eg, package repo staff/community
who find and do the workarounds anyway

likely()/unlikely()

• These become compiler hints (__builtin_expect) for branch
prediction, and are throughout the Linux kernel:

• The Solaris kernel doesn't do this yet

• If the kernel is built using profile feedback instead – which should
be even better – I don't know about it

• The actual perf difference is likely to be small

net/ipv4/tcp_output.c, tcp_transmit_skb():

[...]
 if (likely(clone_it)) {
 if (unlikely(skb_cloned(skb)))
 skb = pskb_copy(skb, gfp_mask);
 else
 skb = skb_clone(skb, gfp_mask);
 if (unlikely(!skb))
 return -ENOBUFS;
 }
[...]

likely()/unlikely(), cont.

• Could be adopted by kernel engineering

• Might help readability, might not

Tickless Kernel

• Linux does this already (DynTicks), which reduces interrupts
and improves processor power saving (good for laptops and
embedded devices)

• Solaris still has a clock() routine, to perform various kernel
housekeeping functions

• Called by default at 100 Hertz

• If hires_tick=1, at 1000 Hertz

• I've occasionally encountered perf issues involving 10 ms
latencies, that don't exist on Linux

• ... which become 1 ms latencies after setting hires_tick=1

Tickless Kernel, cont.

• Sun/Oracle did start work on this years ago...

Process Swapping

• Linux doesn't do it. Linux "swapping" means paging.

• Process swapping
made sense on the
PDP-11/20, where
the maximum
process size was
64 Kbytes

• Paging was added
later in BSD, but
the swapping code
remained

Process Swapping, cont.

• Consider ditching it

• All that time learning what swapping is could be spent learning
more useful features

Overcommit & OOM Killer

• On Linux, malloc() may never fail

• No virtual memory limit (main memory + swap) like Solaris
by default. Tunable using vm.overcommit_memory

• More user memory can be allocated than can be stored.
May be great for small devices, running applications that
sparsely use the memory they allocate

• Don't worry, if Linux runs very low on available main memory,
a sacrificial process is identified by the kernel and killed
by the Out Of Memory (OOM) Killer, based on an OOM score

• OOM score was just added to htop (1.0.2, Jan 2014):

Overcommit & OOM Killer, cont.

• Solaris can learn why not to do this (cautionary tale)

• If an important app depended on this, and couldn't be fixed,
the kernel could have an overcommit option that wasn't default

• ... this is why so much new code doesn't check for ENOMEM

SLUB

• Linux integrated the Solaris kernel SLAB allocator, then later
simplified it: The SLUB allocator

• Removed object queues and per-CPU caches, leaving NUMA
optimization to the page allocator's free lists

• Worth considering?

Lazy TLB

• Lazy TLB mode: a way to delay TLB updates (shootdowns)

• munmap() heavy workloads on Solaris can experience heavy
HAT CPU cross calls. Linux doesn't seem to have this problem.

TLB Lazy TLB

As seen by Solaris Correct Reckless

As seen by Linux Paranoid Fast

Lazy TLB, cont.

• This difference needs to be investigated, quantified, and
possibly fixed (tunable?)

TIME_WAIT Recycling

• A localhost HTTP benchmark on Solaris:

• Connection rate drops by 5x due to sessions in TIME_WAIT

• Linux avoids this by recycling better (tcp_tw_reuse/recycle)

• Usually doesn't hurt production workloads, as it must be a
flood of connections from a single host to a single port. It
comes up in benchmarks/evaluations.

netstat -s 1 | grep ActiveOpen
 tcpActiveOpens =728004 tcpPassiveOpens =726547
 tcpActiveOpens = 0 tcpPassiveOpens = 0
 tcpActiveOpens = 4939 tcpPassiveOpens = 4939
 tcpActiveOpens = 5849 tcpPassiveOpens = 5798
 tcpActiveOpens = 1341 tcpPassiveOpens = 1292
 tcpActiveOpens = 1006 tcpPassiveOpens = 1008
 tcpActiveOpens = 872 tcpPassiveOpens = 870
 tcpActiveOpens = 932 tcpPassiveOpens = 932
 tcpActiveOpens = 879 tcpPassiveOpens = 879
 tcpActiveOpens = 562 tcpPassiveOpens = 586
 tcpActiveOpens = 613 tcpPassiveOpens = 594

Fast

Slow

TIME_WAIT Recycling, cont.

• Improve tcp_time_wait_processing()

• This is being fixed for illumos/SmartOS

sar

• Linux sar is awesome, and has extra options:

• -n DEV: network interface statistics
• -n TCP: TCP statistics
• -n ETCP: TCP error statistics

• Linux sar's other metrics are also far less buggy

$ sar -n DEV -n TCP -n ETCP 1
11:16:34 PM IFACE rxpck/s txpck/s rxkB/s txkB/s rxcmp/s txcmp/s rxmcst/s
11:16:35 PM eth0 104.00 675.00 7.35 984.72 0.00 0.00 0.00
11:16:35 PM eth1 7.00 0.00 0.38 0.00 0.00 0.00 0.00
11:16:35 PM ip6tnl0 0.00 0.00 0.00 0.00 0.00 0.00 0.00
11:16:35 PM lo 0.00 0.00 0.00 0.00 0.00 0.00 0.00
11:16:35 PM ip_vti0 0.00 0.00 0.00 0.00 0.00 0.00 0.00
11:16:35 PM sit0 0.00 0.00 0.00 0.00 0.00 0.00 0.00
11:16:35 PM tunl0 0.00 0.00 0.00 0.00 0.00 0.00 0.00

11:16:34 PM active/s passive/s iseg/s oseg/s
11:16:35 PM 0.00 0.00 99.00 681.00

11:16:34 PM atmptf/s estres/s retrans/s isegerr/s orsts/s
11:16:35 PM 0.00 0.00 0.00 0.00 0.00

sar, cont.

• Sar must be fixed for the 21st century

• Use the Linux sar options and column names, which follow a
neat convention

KVM

• The KVM type 2 hypervisor originated for Linux

• While Zones are faster, KVM can run different kernels (Linux)

• vs Type 1 hypervisors (Xen):

• KVM has better perf
observability, as it can
use the regular OS tools

• KVM can use OS
resource controls, just
like any other process

KVM, cont.

• illumos/SmartOS learned this, Joyent ported KVM!

• Oracle Solaris doesn't have it yet

What Linux can learn from Solaris performance

What Linux can learn from Solaris performance

• ZFS
• Zones
• STREAMS
• Symbols
• prstat -mLc
• vfsstat
• DTrace
• Culture

• Either learning what to do, or learning what not to do...

ZFS

• More performance features than you can shake a stick at:

• Pooled storage, COW, logging (batching writes), ARC,
variable block sizes, dynamic striping, intelligent prefetch,
multiple prefetch streams, snapshots, ZIO pipeline,
compression (lzjb can improve perf by reducing I/O load),
SLOG, L2ARC, vdev cache, data deduplication (possibly
better cache reach)

• The Adaptive Replacement Cache (ARC) can make a big
difference: it can resist perturbations (backups) and stay warm

• ZFS I/O throttling (in illumos/SmartOS) throttles disk I/O at the
VFS layer, to solve cloud noisy neighbor issues

• ZFS is Mature. Widespread use in criticial environments

ZFS, cont.

• Linux has been learning about ZFS for a while

• http://zfsonlinux.org/

• btrfs

http://zfsonlinux.org/
http://zfsonlinux.org/

Zones

• Ancestry: chroot  FreeBSD jails  Solaris Zones

• OS Virtualization. Zero I/O path overheads.

Zones, cont.

• Compare to HW Virtualization:

• This shows the initial I/O control flow. There are optimizations/
variants for improving the HW Virt I/O path, esp for Xen.

Zones, cont.

• Comparing 1 GB instances on Joyent

• Max network throughput:

• KVM: 400 Mbits/sec

• Zones: 4.54 Gbits/sec (over 10x)

• Max network IOPS:

• KVM: 18,000 packets/sec

• Zones: 78,000 packets/sec (over 4x)

• Numbers go much higher for larger instances

• http://dtrace.org/blogs/brendan/2013/01/11/virtualization-performance-zones-kvm-xen

http://dtrace.org/blogs/brendan/2013/01/11/virtualization-performance-zones-kvm-xen/
http://dtrace.org/blogs/brendan/2013/01/11/virtualization-performance-zones-kvm-xen/

• Performance analysis for Zones is also easy. Analyze the
applications as usual:

Zones, cont.

Device Drivers

Applications .

Block Device Interface
Volume Managers

File Systems
VFS

System Libraries

Resource Controls

System Call Interface

Metal

Ke
rn

el

Ethernet
IP

TCP/UDP
Sockets

Firmware

Operating System

Scheduler

Virtual
Memory

Zone ... analyze

• Compared
to HW Virt
(KVM):

Device Drivers

Host Applications

Block Device Interface
Volume Managers

File Systems
VFS

System Libraries

Resource Controls

System Call Interface

Metal

Ethernet
IP

TCP/UDP
Sockets

Firmware

Scheduler

Virtual
Memory

KVM

Zones, cont.

QEMU

Device Drivers

Guest Applications

Block Device Interface
Volume Managers

File Systems
VFS

System Libraries

Resource Controls

System Call Interface

 Virtual Devices

Ethernet
IP

TCP/UDP
Sockets Scheduler

Virtual
Memory

...Linux
kernel

host
kernel

observability
boundary

analyze

correlate

Zones, cont.

• Linux has been learning: LXC & cgroups, but not widespread
adoption yet. Docker will likely drive adoption.

STREAMS

• AT&T modular I/O subsystem

• Like Unix shell pipes, but for kernel messages. Can push
modules into the stream to customize processing

• Introduced (fully) in Unix 8th Ed Research Unix, became SVr4
STREAMS, and was used by Solaris for network TCP/IP stack

• With greater demands for TCP/IP performance, the overheads
of STREAMS reduced scalability

• Sun switched high-performing paths to be direct function calls

STREAMS, cont.

• A cautionary tale: not good for high performance code paths

Symbols

• Compilers on Linux strip symbols by default, making perf
profiler output inscrutable without the dbgsym packages

• Linux compilers also drop frame pointers, making stacks hard
to profile. Please use -fno-omit-frame-pointer to stop this.

• as a workaround, perf_events has "-g dwarf" for libunwind

• Solaris keeps symbols and stacks, and often has CTF too,
making Mean Time To Flame Graph very fast

 57.14% sshd libc-2.15.so [.] connect
 |
 --- connect
 |
 |--25.00%-- 0x7ff3c1cddf29
 |
 |--25.00%-- 0x7ff3bfe82761
 | 0x7ff3bfe82b7c
 |
 |--25.00%-- 0x7ff3bfe82dfc
 --25.00%-- [...]

What??

Symbols, cont.

Flame Graphs need
symbols and stacks

Symbols, cont.

• Keep symbols and frame pointers. Faster resolution for
performance analysis and troubleshooting.

prstat -mLc

• Per-thread time broken down into states, from a top-like tool:

• These columns narrow an investigation
immediately, and have been critical for
solving countless issues. Unsung hero
of Solaris performance analysis

• Well suited for the Thread State Analysis
(TSA) methodology, which I've taught
in class, and has helped students get
started and fix unknown perf issues

• http://www.brendangregg.com/tsamethod.html

$ prstat -mLc 1
 PID USERNAME USR SYS TRP TFL DFL LCK SLP LAT VCX ICX SCL SIG PROCESS/LWPID
 63037 root 83 16 0.1 0.0 0.0 0.0 0.0 0.5 30 243 45K 0 node/1
 12927 root 14 49 0.0 0.0 0.0 0.0 34 2.9 6K 365 .1M 0 ab/1
 63037 root 0.5 0.6 0.0 0.0 0.0 3.7 95 0.4 1K 0 1K 0 node/2
[...]

http://www.brendangregg.com/tsamethod.html
http://www.brendangregg.com/tsamethod.html

prstat -mLc, cont.

• Linux has various thread states: delay accounting, I/O
accounting, schedstats. Can they be added to htop?
See TSA Method for use case and desired metrics.

vfsstat

• VFS-level iostat (added to SmartOS, not Solaris):

• Shows what the applications request from
the file system, and the true performance
that they experience

• iostat includes asynchronous I/O

• vfsstat sees issues iostat can't:

• lock contention

• resource control throttling

$ vfsstat -M 1
 r/s w/s Mr/s Mw/s ractv wactv read_t writ_t %r %w d/s del_t zone
761.0 267.1 15.4 1.6 0.0 0.0 12.0 24.7 0 0 1.3 23.5 5716a5b6
4076.8 2796.0 41.7 2.3 0.1 0.0 16.6 3.1 6 0 0.0 0.0 5716a5b6
4945.1 2807.4 157.1 2.3 0.1 0.0 25.2 3.4 12 0 0.0 0.0 5716a5b6
3550.9 1910.4 109.7 1.6 0.4 0.0 112.9 3.3 39 0 0.0 0.0 5716a5b6
[...]

Applications

Block Device Interface
Volume Managers

File Systems
VFS

System Libraries
System Call Interface

vfsstat

iostat
Device Drivers

Storage Devices

vfsstat, cont.

• Add vfsstat, or VFS metrics to sar.

DTrace

• Programmable, real-time, dynamic and static
tracing, for performance analysis and
troubleshooting, in dev and production

• Used on Solaris, illumos/SmartOS,
Mac OS X, FreeBSD, ...

• Solve virtually any perf issue. eg,
fix the earlier Perl 15% delta,
no matter where the problem is.
Without DTrace's capabilities, you
may have to wear that 15%.

• Users can write their own custom DTrace
one-liners and scripts, or use/modify others
(eg, mine).

• Some of my DTrace scripts from the DTraceToolkit, DTrace book...

DTrace: illumos Scripts

Applications
DBs, all server types, ...

Block Device Interface Ethernet
Volume Managers IP

File Systems TCP/UDP
VFS Sockets

System Libraries

Device Drivers

Scheduler

Virtual
Memory

System Call Interface

iosnoop, iotop
disklatency.d

satacmds.d
satalatency.d

scsicmds.d
scsilatency.d

sdretry.d, sdqueue.d

ide*.d, mpt*.d

priclass.d, pridist.d
cv_wakeup_slow.d
displat.d, capslat.d

opensnoop, statsnoop
errinfo, dtruss, rwtop
rwsnoop, mmap.d, kill.d
shellsnoop, zonecalls.d
weblatency.d, fddistdnlcsnoop.d

zfsslower.d
ziowait.d

ziostacks.d
spasync.d

metaslab_free.d

fswho.d, fssnoop.d
sollife.d

solvfssnoop.d

hotuser, umutexmax.d, lib*.d
node*.d, erlang*.d, j*.d, js*.d
php*.d, pl*.d, py*.d, rb*.d, sh*.d
mysql*.d, postgres*.d, redis*.d, riak*.d

Language Providers:

Databases:

soconnect.d, soaccept.d, soclose.d, socketio.d, so1stbyte.d
sotop.d, soerror.d, ipstat.d, ipio.d, ipproto.d, ipfbtsnoop.d
ipdropper.d, tcpstat.d, tcpaccept.d, tcpconnect.d, tcpioshort.d
tcpio.d, tcpbytes.d, tcpsize.d, tcpnmap.d, tcpconnlat.d, tcp1stbyte.d
tcpfbtwatch.d, tcpsnoop.d, tcpconnreqmaxq.d, tcprefused.d
tcpretranshosts.d, tcpretranssnoop.d, tcpsackretrans.d, tcpslowstart.d
tcptimewait.d, udpstat.d, udpio.d, icmpstat.d, icmpsnoop.d

cifs*.d, iscsi*.d
nfsv3*.d, nfsv4*.d

ssh*.d, httpd*.d

:Services

minfbypid.d
pgpginbypid.d

macops.d, ixgbecheck.d
ngesnoop.d, ngelink.d

DTrace, cont.

• What Linux needs to learn about DTrace:

Feature #1 is production safety
• There should be NO risk of panics or freezes. It should be an

everyday tool like top(1).

• Related to production safety is the minimization of overheads,
which can be done with in-kernel summaries. Some of the
Linux tools need to learn how to do this, too, as the overheads
of dump & post-analysis can get too high.

• Features aren't features if users don't use them

DTrace, cont.

• Linux might get DTrace-like capabilities via:

• dtrace4linux
• perf_events
• ktap
• SystemTap
• LTTng

• The Linux kernel has the necessary frameworks which are
sourced by these tools: tracepoints, kprobes, uprobes

• ... and another thing Linux can learn:

• DTrace has a memorable unofficial mascot (the ponycorn
by Deirdré Straughan, using General Zoi's pony creator).
She's created some for the Linux tools too...

dtrace4linux

• Two DTrace ports in development for Linux:

• 1. dtrace4linux

• https://github.com/dtrace4linux/linux

• Mostly by Paul Fox

• Not safe for production use yet;
I've used it to solve issues by
first reproducing them in the lab

• 2. Oracle Enterprise Linux DTrace

• Has been steady progress. Oracle
Linux 6.5 featured "full DTrace
integration" (Dec 2013)

• Tracing ext4 read/write calls with size distributions (bytes):

dtrace4linux: Example

#!/usr/sbin/dtrace -s

fbt::vfs_read:entry, fbt::vfs_write:entry
/stringof(((struct file *)arg0)->f_path.dentry->d_sb->s_type->name) == "ext4"/
{
 @[execname, probefunc + 4] = quantize(arg2);
}

dtrace:::END
{
 printa("\n %s %s (bytes)%@d", @);
}

./ext4rwsize.d
dtrace: script './ext4rwsize.d' matched 3 probes
^C
CPU ID FUNCTION:NAME
 1 2 :END
[...]
 vi read (bytes)
 value ------------- Distribution ------------- count
 128 | 0
 256 | 1
 512 |@@@@@@@ 17
 1024 |@ 2
 2048 | 0
 4096 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 75
 8192 | 0

• Tracing TCP retransmits (tcpretransmit.d for 3.11.0-17):

dtrace4linux: Example

#!/usr/sbin/dtrace -qs

dtrace:::BEGIN { trace("Tracing TCP retransmits... Ctrl-C to end.\n"); }

fbt::tcp_retransmit_skb:entry {
 this->so = (struct sock *)arg0;
 this->d = (unsigned char *)&this->so->__sk_common; /* 1st is skc_daddr */
 printf("%Y: retransmit to %d.%d.%d.%d, by:", walltimestamp,
 this->d[0], this->d[1], this->d[2], this->d[3]);
 stack(99);
}

./tcpretransmit.d
Tracing TCP retransmits... Ctrl-C to end.
1970 Jan 1 12:24:45: retransmit to 50.95.220.155, by:
 kernel`tcp_retransmit_skb
 kernel`dtrace_int3_handler+0xcc
 kernel`dtrace_int3+0x3a
 kernel`tcp_retransmit_skb+0x1
 kernel`tcp_retransmit_timer+0x276
 kernel`tcp_write_timer
 kernel`tcp_write_timer_handler+0xa0
 kernel`tcp_write_timer+0x6c
 kernel`call_timer_fn+0x36
 kernel`tcp_write_timer
 kernel`run_timer_softirq+0x1fd
 kernel`__do_softirq+0xf7
 kernel`call_softirq+0x1c
[...]

that
used to
work...

perf_events

• In the Linux tree. perf-tools package. Can do sampling, static
and dynamic tracing, with stack traces and local variables

• Often involves an enablecollectdumpanalyze cycle

• A powerful profiler, loaded with
features (eg, libunwind stacks!)

• Isn't programmable, and so has
limited ability for processing data
in-kernel. Does counts.

• You can post-process in user-
land, but the overheads of
passing all event data incurs
overhead; can be Gbytes of data

perf_events: Example

• Dynamic tracing of tcp_sendmsg() with size:
perf probe --add 'tcp_sendmsg size'
[...]
perf record -e probe:tcp_sendmsg -a
^C[perf record: Woken up 1 times to write data]
[perf record: Captured and wrote 0.052 MB perf.data (~2252 samples)]
perf script
========
captured on: Fri Jan 31 23:49:55 2014
hostname : dev1
os release : 3.13.1-ubuntu-12-opt
[...]
========
#
 sshd 1301 [001] 502.424719: probe:tcp_sendmsg: (ffffffff81505d80) size=b0
 sshd 1301 [001] 502.424814: probe:tcp_sendmsg: (ffffffff81505d80) size=40
 sshd 2371 [000] 502.952590: probe:tcp_sendmsg: (ffffffff81505d80) size=27
 sshd 2372 [000] 503.025023: probe:tcp_sendmsg: (ffffffff81505d80) size=3c0
 sshd 2372 [001] 503.203776: probe:tcp_sendmsg: (ffffffff81505d80) size=98
 sshd 2372 [001] 503.281312: probe:tcp_sendmsg: (ffffffff81505d80) size=2d0
[...]

ktap

• A new static/dynamic tracing tool for Linux

• Lightweight, simple, based on lua. Uses bytecode for
programmable and safe tracing

• Suitable for use on embedded Linux

• http://www.ktap.org

• Features are limited (still in
development), but I've been
impressed so far

• In development, so I can't recommend
production use yet

http://www.ktap.org/
http://www.ktap.org/

ktap: Example

• Summarize read() syscalls by return value (size/err):

• Write scripts (excerpt from syslatl.kp, highlighting time delta):

ktap -e 's = {}; trace syscalls:sys_exit_read { s[arg2] += 1 }
 trace_end { histogram(s); }'
^C
 value ------------- Distribution ------------- count
 -11 |@@@@@@@@@@@@@@@@@@@@@@@@ 50
 18 |@@@@@@ 13
 72 |@@ 6
 1024 |@ 4
 0 | 2
 2 | 2
 446 | 1
 515 | 1
 48 | 1

trace syscalls:sys_exit_* {
 if (self[tid()] == nil) { return }
 delta = (gettimeofday_us() - self[tid()]) / (step * 1000)
 if (delta > max) { max = delta }
 lats[delta] += 1
 self[tid()] = nil
}

histogram
of a key/
value table

ktap: Setup

• Installing on Ubuntu (~5 minutes):

• Example dynamic tracing of tcp_sendmsg() and stacks:

apt-get install git gcc make
git clone https://github.com/ktap/ktap
cd ktap
make
make install
make load

ktap -e 's = ptable(); trace probe:tcp_sendmsg { s[backtrace(12, -1)] <<< 1 }
 trace_end { for (k, v in pairs(s)) { print(k, count(v), "\n"); } }'
Tracing... Hit Ctrl-C to end.
^C
ftrace_regs_call
sock_aio_write
do_sync_write
vfs_write
SyS_write
system_call_fastpath
 17

SystemTap

• Sampling, static and dynamic tracing, fully programmable

• The most featured of all the tools. Does some things that
DTrace can't (eg, loops).

• http://sourceware.org/systemtap

• Has its own tracing language,
which is compiled (gcc) into
kernel modules (slow; safe?)

• I used it a lot in 2011, and had
problems with panics/freezes;
never felt safe to run it on my
customer's production systems

• Needs vmlinux/debuginfo

http://sourceware.org/systemtap/
http://sourceware.org/systemtap/

SystemTap: Setup

• Setting up a SystemTap on ubuntu (2014):
./opensnoop.stp
semantic error: while resolving probe point: identifier 'syscall' at ./
opensnoop.stp:11:7
 source: probe syscall.open
 ^
semantic error: no match
Pass 2: analysis failed. [man error::pass2]
Tip: /usr/share/doc/systemtap/README.Debian should help you get started.

more /usr/share/doc/systemtap/README.Debian
[...]
supported yet, see Debian bug #691167). To use systemtap you need to
manually install the linux-image-*-dbg and linux-header-* packages
that match your running kernel. To simplify this task you can use the
stap-prep command. Please always run this before reporting a bug.

stap-prep
You need package linux-image-3.11.0-17-generic-dbgsym but it does not seem
to be available
 Ubuntu -dbgsym packages are typically in a separate repository
 Follow https://wiki.ubuntu.com/DebuggingProgramCrash to add this
repository

helpful tips...

SystemTap: Setup, cont.

• After following ubuntu's DebuggingProgramCrash site:

• In fairness:

• 1. The Red Hat SystemTap developer's primary focus is to
get it working on Red Hat (where they say it works fine)

• 2. Lack of CTF isn't SystemTap's fault, as said earlier

apt-get install linux-image-3.11.0-17-generic-dbgsym
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following NEW packages will be installed:
 linux-image-3.11.0-17-generic-dbgsym
0 upgraded, 1 newly installed, 0 to remove and 0 not upgraded.
Need to get 834 MB of archives.
After this operation, 2,712 MB of additional disk space will be used.
Get:1 http://ddebs.ubuntu.com/ saucy-updates/main linux-image-3.11.0-17-
generic-dbgsym amd64 3.11.0-17.31 [834 MB]
0% [1 linux-image-3.11.0-17-generic-dbgsym 1,581 kB/834 MB 0%] 215 kB/s
1h 4min 37s

but my perf issue
is happening now...

https://wiki.ubuntu.com/DebuggingProgramCrash
https://wiki.ubuntu.com/DebuggingProgramCrash

SystemTap: Example

• opensnoop.stp:

• Output:

#!/usr/bin/stap

probe begin
{
 printf("\n%6s %6s %16s %s\n", "UID", "PID", "COMM", "PATH");
}

probe syscall.open
{
 printf("%6d %6d %16s %s\n", uid(), pid(), execname(), filename);
}

./opensnoop.stp
 UID PID COMM PATH
 0 11108 sshd <unknown>
 0 11108 sshd <unknown>
 0 11108 sshd /lib/x86_64-linux-gnu/libwrap.so.0
 0 11108 sshd /lib/x86_64-linux-gnu/libpam.so.0
 0 11108 sshd /lib/x86_64-linux-gnu/libselinux.so.1
 0 11108 sshd /usr/lib/x86_64-linux-gnu/libck-connector.so.0
[...]

LTTng

• Profiling, static and dynamic tracing

• Based on Linux Trace Toolkit (LTT), which dabbled with
dynamic tracing (DProbes) in 2001

• Involves an enablestartstopview cycle

• Designed to be highly efficient

• I haven't used it properly yet,
so I don't have an informed
opinion (sorry LTTng, not
your fault)

LTTng, cont.

• Example sequence:
lttng create session1
lttng enable-event sched_process_exec -k
lttng start
lttng stop
lttng view
lttng destroy session1

• 2014 is an exciting year for dynamic tracing and Linux –
one of these may reach maturity and win!

DTrace, cont.

DTrace, final word

• What Oracle Solaris can learn from dtrace4linux:

• Dynamic tracing is crippled without source code

• Oracle could give customers scripts to run, but customers
lose any practical chance of writing them themselves

• If the dtrace4linux port is completed, it will be
more useful than Oracle Solaris
DTrace (unless they open
source it again)

Culture

• Sun Microsystems, out of necessity, developed a performance
engineering culture that had an appetite for understanding and
measuring the system: data-driven analysis

• If your several-million-dollar Ultra Enterprise 10000
doesn’t perform well and your company is losing non-
trivial sums of money every minute because of it, you call
Sun Service and start demanding answers.
– System Performance Tuning [Musumeci 02]

• Includes the diagnostic cycle:

• hypothesis  instrumentation  data  hypothesis

• Some areas of Linux are already learning this (and some
areas of Solaris never did)

Culture, cont.

top layer

tcpdump layer

strace layer

Ke
rn

el

• Linux perf issues are often debugged using only top(1), *stat,
sar(1), strace(1), and tcpdump(8). These leave many areas
not measured.

• What about the other tools and metrics that are part of Linux?
perf_events, tracepoints/kprobes/uprobes, schedstats, I/O
accounting, blktrace, etc.

If only
it were
this
simple...

Culture, cont.

• Understand the system, and measure if at all possible

• Hypothesis  instrumentation  data  hypothesis

• Use perf_events (and others once they are stable/safe)

• strace(1) is intermediate, not advanced

• High performance doesn't just mean hardware, system, and
config. It foremost means analysis of performance limiters.

What Both can Learn

What Both can Learn

• Get better at benchmarking

Benchmarking

• How Linux vs Solaris performance is often compared

• Results incorrect or misleading almost 100% of the time

• Get reliable benchmark results by active benchmarking:

• Analyze performance of all components during the
benchmark, to identify limiters

• Takes time: benchmarks may take weeks, not days

• Opposite of passive benchmarking: fire and forget

• If SmartOS loses a benchmark, my management demands
answers, and I almost always overturn the result with analysis

• Test variance as well as steady workloads. Measure jitter.
These differ between systems as well.

Results

Out-of-the-Box

• Out-of-the-box, which is faster, Linux or Solaris?

Out-of-the-Box

• Out-of-the-box, which is faster, Linux or Solaris?

• There are many differences, it's basically a crapshoot.
I've seen everything from 5% to 5x differences either way

• It really depends on workload and platform characteristics:

• CPU usage, FS I/O, TCP I/O, TCP connect rates, default
TCP tunables, synchronous writes, lock calls, library calls,
multithreading, multiprocessor, network driver support, ...

• From prior Linux vs SmartOS comparisons, it's hard to pick a
winner, but in general my expectations are:

• SmartOS: for heavy file system or network I/O workloads

• Linux: for CPU-bound workloads

Out-of-the-Box Relevance

• Out-of-the-box performance isn't that interesting: if you care
about performance, why not do some analysis and tuning?

In Practice

• With some analysis and tuning, which is faster?

In Practice

• With some analysis and tuning, which is faster?

• Depends on the workload, and which differences matter to you

• With analysis, I can usually make SmartOS beat Linux

• DTrace and microstate accounting give me a big
advantage: I can analyze and fix all the small differences
(which sometimes exist as apps are developed for Linux)

• Although, perf/ktap/... are catching up

• I can do the same and make Linux beat SmartOS, but it's
much more time-consuming without an equivalent DTrace

• On the same hardware, it's more about the performance
engineer than the kernel. DTrace doesn't run itself.

At Joyent

• Joyent builds high performance SmartOS instances that
frequently beat Linux, but that's due to more than just the OS.
We use:

• Config: OS virtualization (Zones), all instances on ZFS

• Hardware: 10 GbE networks, plenty of DRAM for the ARC

• Analysis: DTrace to quickly root-cause issues and tune

• With SmartOS (ZFS, DTrace, Zones, KVM) configured for
performance, and with some analysis, I expect to win most
head-to-head performance comparisons

Learning From Linux

• Joyent has also been learning from Linux to improve SmartOS.

• Package repos: dedicated staff

• Community: dedicated staff

• Compiler options: dedicated repo staff

• KVM: ported!

• TCP TIME_WAIT: fixed localhost; more fixes to come

• sar: fix understood

• More to do...

References

• General Zoi's Awesome Pony Creator: http://
generalzoi.deviantart.com/art/Pony-Creator-v3-397808116

• More perf examples: http://www.brendangregg.com/perf.html

• More ktap examples: http://www.brendangregg.com/ktap.html

• http://www.ktap.org/doc/tutorial.html

• Flame Graphs: http://www.brendangregg.com/flamegraphs.html

• Diagnostic cycle: http://dtrace.org/resources/bmc/cec_analytics.pdf

• http://www.brendangregg.com/activebenchmarking.html

• https://blogs.oracle.com/OTNGarage/entry/doing_more_with_dtrace_on

http://generalzoi.deviantart.com/art/Pony-Creator-v3-397808116
http://generalzoi.deviantart.com/art/Pony-Creator-v3-397808116
http://generalzoi.deviantart.com/art/Pony-Creator-v3-397808116
http://generalzoi.deviantart.com/art/Pony-Creator-v3-397808116
http://www.brendangregg.com/perf.html
http://www.brendangregg.com/perf.html
http://www.brendangregg.com/ktap.html
http://www.brendangregg.com/ktap.html
http://www.ktap.org/doc/tutorial.html
http://www.ktap.org/doc/tutorial.html
http://www.brendangregg.com/flamegraphs.html
http://www.brendangregg.com/flamegraphs.html
http://dtrace.org/resources/bmc/cec_analytics.pdf
http://dtrace.org/resources/bmc/cec_analytics.pdf
http://www.brendangregg.com/activebenchmarking.html
http://www.brendangregg.com/activebenchmarking.html

Thank You

• More info:

• illumos: http://illumos.org

• SmartOS: http://smartos.org

• DTrace: http://dtrace.org

• Joyent: http://joyent.com

• Systems Performance book:
http://www.brendangregg.com/sysperf.html

• Me: http://www.brendangregg.com, http://dtrace.org/blogs/
brendan, @brendangregg, brendan@joyent.com

