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Abstract
Program Synthesis, which is the task of discovering programs
that realize user intent, can be useful in several scenarios: en-
abling people with no programming background to develop util-
ity programs, helping regular programmers automatically discover
tricky/mundane details, program understanding, discovery of new
algorithms, and even teaching.

This paper describes three key dimensions in program synthesis:
expression of user intent, space of programs over which to search,
and the search technique. These concepts are illustrated by brief de-
scription of various program synthesis projects that target synthesis
of a wide variety of programs such as standard undergraduate text-
book algorithms (e.g., sorting, dynamic programming), program
inverses (e.g., decoders, deserializers), bitvector manipulation rou-
tines, deobfuscated programs, graph algorithms, text-manipulating
routines, mutual exclusion algorithms, etc.

Categories and Subject Descriptors D.1.2 [Programming Tech-
niques]: Automatic Programming; I.2.2 [Artificial Intelligence]:
Automatic Programming – Program Synthesis; F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Reasoning
about Programs

General Terms Languages, Theory

Keywords Deductive Synthesis, Inductive Synthesis, Program-
ming by Examples, Programming by Demonstration, SAT Solving,
SMT Solving, Machine Learning, Probabilistic Inference, Belief
Propagation, Genetic Programming

1. Introduction
Program Synthesis is the task of discovering an executable pro-
gram from user intent expressed in the form of some constraints.
Unlike compilers, which take as input programs written in a struc-
tured language and mostly perform syntax-directed translations,
synthesizers can accept a variety and mixed form of constraints
(such as input-output examples, demonstrations, logical relations
between inputs and outputs, natural language, partial or inefficient
programs), and mostly perform some kind of search over some
space of programs.

A synthesizer is typically characterized by three key dimen-
sions: the kind of constraints that it accepts as expression of user

intent, the space of programs over which it searches, and the search
technique it employs. (i) The user intent can be expressed in the
form of logical relations between inputs and outputs, input-output
examples, demonstrations, natural language, and inefficient or re-
lated programs. (ii) The search space can be over imperative or
functional programs (with possible restrictions on the control struc-
ture or the operator set), or over restricted models of computations
such as regular/context-free grammars/transducers, or succinct log-
ical representations. (iii) The search technique can be based on
exhaustive search, version space algebras, machine learning tech-
niques (such as belief propagation or genetic programming), or log-
ical reasoning techniques. Most logical reasoning techniques in-
volve two main steps: constraint generation, and constraint solv-
ing. (a) Constraint generation can be invariant-based, path-based,
or input-based. (b) Constraint solving of resultant second-order
quantified formulas typically involves reducing second-order un-
knowns to first-order unknowns (by use of templates), and elimi-
nating universal quantifiers (by use of techniques such as Farkas
lemma, cover algorithms, sampling), and then solving the resultant
first-order quantifier-free constraints using off-the-shelf SAT/SMT
solvers.

In this paper, we illustrate the above concepts by brief descrip-
tion of various program synthesis projects that target synthesis of
a wide variety of programs such as standard undergraduate text-
book algorithms (e.g., sorting, dynamic programming), program
inverses (e.g., decoders, deserializers), bitvector manipulation rou-
tines, deobfuscated programs, graph algorithms, text-manipulating
routines, mutual exclusion algorithms, etc.

This paper is organized as follows. We start by describing a
few applications where program synthesis would be feasible and
valuable (Section 2). We then describe the three dimensions in pro-
gram synthesis: user intent (Section 3), search space (Section 4),
and search technique (Section 5). We then describe the class of
search techniques based on logical reasoning in more detail. These
techniques typically have two main steps: Constraint Generation
(described in Section 6) and Constraint Solving (described in Sec-
tion 7). Finally, we conclude by describing some open research
questions and mentioning how different areas of computer science
can play a role in realizing the revolutionary potential of program
synthesis technology (Section 8).

2. Applications
Program Synthesis has the potential to influence various classes of
users in the technology pyramid ranging from algorithm design-
ers (Section 2.1) and regular programmers (Sections 2.4-2.6) at the
top of the pyramid to end-users (Section 2.2) and students (Sec-
tion 2.3) at the bottom of the pyramid. Synthesis technology can
also be useful for designers of cyber-physical systems, which are
being increasingly deployed in transportation, health-care and other

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PPDP’10, July 26–28, 2010, Hagenberg, Austria.
Copyright c© 2010 ACM 978-1-4503-0132-9/10/07. . . $10.00

13



societal applications [27, 34]. We discuss below few applications of
program synthesis.

2.1 Discovery of New Algorithms
Finding a new algorithmic solution for a given problem requires
human ingenuity: “The process of preparing programs for a digital
computer is especially attractive, not only because it can be eco-
nomically and scientifically rewarding, but also because it can be an
aesthetic experience much like composing poetry or music” [40].
Use of computational techniques to discover new algorithmic in-
sights can be the ultimate application of program synthesis.

One domain of algorithms that has been shown amenable to
automated synthesis is the class of bitvector algorithms [39, 74].
These algorithms “typically describe some plausible yet unusual
operation on integers or bit strings that could easily be programmed
using either a longish fixed sequence of machine instructions or a
loop, but the same thing can be done much more cleverly using just
four or three or two carefully chosen instructions whose interac-
tions are not at all obvious until explained or fathomed” [74]. Such
programs can be quite unintuitive and extremely difficult for aver-
age, or sometimes even expert, programmers to discover methodi-
cally. Initial work [2, 52, 21] on automated synthesis of such algo-
rithms used brute-force search, while recent work [23, 33] uses log-
ical reasoning based techniques (powered by underlying SAT/SMT
solvers) and scales much better.

Another domain of algorithms that has been shown amenable to
automated synthesis is that of mutual exclusion algorithms, which
guarantee mutually exclusive access to a critical section among a
number of competing processes [17]. The essence of mutual ex-
clusion algorithms is the code before and after the critical sec-
tion that together ensures properties such as mutual exclusion,
deadlock-freedom, and possibly starvation-freedom. Mutual exclu-
sion algorithms differ based on number and size of shared/local
variables, number of commands in the entry/exit sections, the kind
of conditionals used, and whether starvation-freedom is desired or
not. Initial work [5] for automatically discovering such algorithms
used brute-force search (carefully trimmed by various optimiza-
tions) and successfully discovered many new algorithms (and re-
discovered some known ones). Recent work [38] uses a novel tech-
nique based on combining genetic programming and model check-
ing. It reports performance better than brute-force methods, but re-
quires carefully designed fitness functions.

2.2 Automating Repetitive Programming for End-Users
Computational devices have become accessible to people at large
at an impressive rate. Most computer users are end-users, who are
at the end of the process of computer programming, far removed
from the programmer. These business end-users have a myriad of
diverse backgrounds and include commodity traders, graphic de-
signers, chemists, human resource managers, finance pros, market-
ing managers, underwriters, compliance officers, and even mail-
room clerks – they are not professional programmers, but they need
to create small, often one-off, applications to support business func-
tions [22].

Graphical user interfaces have been designed to make it easier
for these end-users to use computers. However, they are still not
ideal since users struggle to find the correct feature or succession
of commands to use from a maze of features to accomplish their
task. Figuring out the right parameters to provide as trigger/input
to the feature is also sometimes difficult. More significantly, pro-
gramming is still required to perform tedious and repetitive tasks.
Examples of such repetitive tasks include: transforming lists of
addresses from one format to another, extracting data from sev-
eral web pages into a single document, renaming files in a direc-
tory, managing bibliographies, etc. The programs that end-users use

to manage/manipulate their data, such as spreadsheets, databases,
browsers, and scripting platforms, are not written with their partic-
ular needs in mind. These programs attempt to do an average job
for meeting average needs and are far from doing a perfect job for
personalized task-oriented needs.

Program synthesis can play an extremely useful role for end-
users who can easily illustrate their intent by input-output examples
or traces, but find it difficult to write programs. A good start in
this direction has been made by Programming by demonstration
systems that enable users to write programs by demonstrating the
program on one or more concrete examples [13, 44].

2.3 Teaching
The importance of automation in teaching cannot be understated.
Most public schools, especially in developing countries, struggle to
find good teachers. Many parents spend several man-years helping
their kids with their homeworks and imparting knowledge. If this
motivation is too earthly, consider the role that educational robots
play in the frozen embryos approach to inter-stellar travel.1

Program synthesis can play a revolutionary role in automating
the teaching landscape. In particular, program synthesis technology
can help with automated problem solving. Manna and Waldinger
observed that the ability to construct proofs of theorems can yield a
program to solve the corresponding problem [51]. Since then, many
new program synthesis approaches have emerged that can also be
used to classroom problem solving.

As part of this effort, the author is currently working on a
technique to automatically synthesize high-school geometrical con-
structions such as construction of a regular hexagon given a side.
Another example of class of problems (taught in an undergraduate
class) whose solutions can be automated (using a current synthesis
technology [4]), is that of construction of finite automatas such as
the smallest automata that accepts all strings with even number of
1s but not more than 4 consecutive 0s.

Among other teaching tasks that can be automated (besides
problem solving) using synthesis technology are construction of
problems of a measured difficulty, and interactive grading with
explanations of any errors and fixes. The latter task of pointing
errors and suggesting fixes might benefit from the work on bug
localization and automated debugging in the program analysis and
software engineering community.

2.4 General Purpose Programming Assistance
Since synthesis is a very hard problem, fully automated synthesis
of large pieces of software might not be possible in the near fu-
ture. However, an effective use of synthesis technology for general
purpose programming can be its role as a programmer’s assistance.
Synthesis can be used to synthesize small program fragments from
higher-order logical specifications [43, 31]. Synthesis can be used
to find tricky/mundane implementation details after human insight
has been expressed in the form of a partial program [65]. Various
interesting forms of interactivity can also be employed between the
programmer and the synthesizer in a semi-automated software de-
velopment process [64, 6, 72].

Another interesting application of synthesis technology in the
software development process can be to assist with the debugging
process, as explained below.

1 Wikipedia defines it as: “A robotic space mission carrying some number
of frozen early stage human embryos is another theoretical possibility. This
method of space colonization requires, among other things, the development
of a method to replicate conditions in a uterus, the prior detection of a
habitable terrestrial planet, and advances in the field of fully autonomous
mobile robots and educational robots which would replace human parents.”
on http://en.wikipedia.org/wiki/Interstellar travel#Frozen embryos.
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Automated Debugging Debugging is a time-consuming and dif-
ficult process that is today mostly done manually, often requiring
hours to fix a single bug, and unnecessary taxation of brain power,
better saved for less mundane tasks. Debugging can be phrased as a
program synthesis problem after identification of a region of code
that is suspected of incorrect behavior, and a description of the de-
sired behavior, possibly in the form of input-output examples or
symbolic relations between values of variables at the beginning and
end of the identified region of code. The buggy region of code may
be identified by the programmer [36] or may be guessed to be those
regions of code that are executed on the failing runs, but not on the
passing runs [75].

The debugging application also provides for some unique ad-
vantages that can be exploited by program synthesis techniques,
especially those based on machine learning techniques.

The probabilistic inference based program synthesis technique
described in [36] can take advantage of the existence of initial
buggy piece of code. The core idea of this technique is to model
the program as a graph consisting of instructions and states as
potentially unknown variables, connected by constraint nodes, and
then use belief propagation to infer both the intermediate program
states and the instructions that satisfy all the constraints. In the
debugging scenario, the beliefs about instructions can be initialized
based on the initial buggy piece of code, and belief propagation
is performed (which leads to altering the code) until the resultant
code satisfies the input-output constraints. It is shown that such an
initialization speeds up inference. This technique has been used to
fix small bugs involving up to six incorrect instructions. These bugs
may be simple ones like use of a wrong variable name, resetting
a variable to zero at the wrong location, inverting the order of
two instructions, forgetting to increase a counter (or decreasing
it instead), etc, or more complex ones that are best addressed by
completely replacing a short code fragment.

The genetic programming based program synthesis technique
described in [75] takes advantage of the hypothesis that a missing
important functionality in a program can be copied and adapted
from another location in the program. The core idea of this genetic
programming technique is to evolve program variants until one is
found that both retains required functionality and also avoids the
defect in question. This technique has been used to automatically
generate repairs for ten C programs totaling 63,000 lines of code.

2.5 Synthesis of Program Inverses
The problem of program inversion is to derive a program P−1 that
negates the computation of a given program P . More formally, it is
the problem of inverting an injective program P by finding another
program P−1 that is its left-inverse. This problem arises naturally
in paired computations such as compression/decompression, en-
cryption/decryption, serialization/deserialization, insert/delete op-
erations on data structures, transactional memory rollback, bidirec-
tional programming, and even client-server applications. Given the
prevalence of program inverses and the cost associated with main-
taining two closely related programs, automatic program inversion
can be beneficial in ensuring correctness and maintainability.

Initial work on deriving program inverses used proof-based [16]
or grammar-based [18] approaches. Recent work [67] phrases the
program inversion problem as a finite synthesis problem, and uses
a novel path-based inductive synthesis technique (described in Sec-
tion 6.2) to invert a larger class of programs than was possible
before. In particular, it can synthesize inverses for compressors
(e.g., LZ77), packers (e.g., UUEncode), and arithmetic transform-
ers (e.g., image rotations). The inverses for these non-trivial pro-
grams range from 5 to 20 lines of code, and are automatically syn-
thesized in a median time of 40 seconds.

2.6 Program Understanding
A given program may often be non-trivial to understand if it is,
for example, obfuscated, too low-level, or missing documenta-
tion. Program synthesis technology can help in program under-
standing by translating such a given piece of code to a semanti-
cally equivalent code written in some target language that is more
readable/understandable/higher-level. The given program acts as a
specification of the desired equivalent program in the target lan-
guage.

One instance of program understanding arises in the context
of malware deobfuscation, where the challenge is to understand
what the malicious code is doing. The need for deobfuscation tech-
niques has arisen in recent years, especially due to an increase in the
amount of malicious, and mostly obfuscated, code (malware) [70].
Currently, human experts use decompilers and manually deobfus-
cate the resulting code (see, e.g., [59]). Clearly, this is a tedious
task that could benefit from automated tool support. The program
synthesis technique described in [33] has been applied to malware
deobfuscation by deobfuscating examples drawn from and inspired
by the Conficker [59] and MyDoom [54] viruses.

A related instance is in the context of reverse engineering of a
binary, when the source code is not available. Program synthesis
techniques for learning programs from traces are well suited to
be applied in this context since the program state can easily be
observed even though the source code is not [47].

Another instance arises in the context of software maintenance
tasks (such as bug fixing or refactoring), where the challenge is
to first understand a given piece of poorly documented low-level
code, possibly by translating it into some higher level representa-
tion involving, for example, sets and second-order logic. This is an
application of synthesis technology that is an antithesis of its more
traditional application of converting programs written using higher-
order primitives such as sets and higher-order quantifiers into effi-
cient code (as is done in [31]). The QuickSpec tool [12] takes an-
other interesting approach in this context and generates algebraic
specifications for modules consisting of pure functions. It has been
applied to understanding of a heap library for Haskell and a fixed-
point arithmetic library for Erlang.

3. First Dimension: User Intent
The most important dimension in program synthesis from the per-
spective of the user is the mechanism for describing intent. There
are various choices possible that have been briefly explained be-
low: logical specifications, natural language, input-output exam-
ples, traces, and higher-order, inefficient or partial programs. A par-
ticular choice may be more suited in a given scenario depending on
the underlying task as well as on the technical background of the
user. An important open research question is to identify how to
combine these various choices in a unified interface.

3.1 Logical Specifications
A logical specification is a logical relation between inputs and
outputs of a program. It can act as a precise and succinct form of
functional specification of the desired program.

For example, the logical specification for a sorting algorithm
would be the following logical relation that asserts that the output
array B is sorted (Eqn 1) and is a permutation of the input array A
of size n (Eqn 2).2

2 Eqn 2 correctly states the permutation requirement under the assumption
that all elements in the input array are distinct, which is assumed for
simplicity.
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x = 1 0 1 0 1 1 0 0
↓

y = 1 0 1 0 1 0 0 0

(a)

y := x&(x− 1)

x = 1 0 1 0 1 1 0 0
↓

x− 1 = 1 0 1 0 1 0 1 1
x &(x− 1) = 1 0 1 0 1 0 0 0

∃i { 0 ≤ i ≤ n ∧ (∀k. 0 ≤ k < i =⇒ x[k] = 0)

∧ (i = n ∨ (i < n ∧ x[i] = 1 ∧ y[i] = 0))

∧ (∀k. (0 ≤ k < n ∧ k ∕= i) =⇒ y[k] = x[k]) }

(b) (c) (d)

Figure 1. Consider the problem of masking off the rightmost significant one-bit in a given bitvector. (a) describes an example input-output
pair (x, y). (b) describes a 2-step program to solve the problem. (c) describes the working of the 2 step program. (d) describes the intent
using a logical relation between input bitvector x and output bitvector y. For notational convenience, we represent an n-bit bitvector as an
array of n bits, with the bit positions starting from 0 and numbered from right to left.

x = 1 0 1 0 1 1 0 0
↓

y = 1 0 1 0 0 0 0 0

(a)

y := x&(1+(x∣(x−1)))

∃i, j. { 0 ≤ i, j < n ∧ (∀k. j ≤ k ≤ i =⇒ x[k] = 1)

∧ (∀k. 0 ≤ k < j =⇒ x[k] = 0)

∧ (j ≤ i ∨ j = n− 1)

∧ (∀k. i < k < n =⇒ x[k] = y[k])

∧ (∀k. 0 ≤ k ≤ i =⇒ y[k] = 0) }

TurnOffRightMostOnes(x)
i := 0;
while(x[i]==0 ∧ i < n)

i := i+1;
while(x[i]==1 ∧ i < n)

x[i] := 0; i := i+1;
return x;

(b) (c) (d)

Figure 2. Consider the problem of masking off the rightmost contiguous sequence of 1’s in a given bitvector. (a) describes an example
input-output pair (x, y). (b) describes a 4-step program to solve the problem. (c) describes the intent using a logical relation between input
bitvector x and output bitvector y, both of which are of size n. (d) describes the intent using an inefficient program.

∀k. (0 ≤ k < n− 1) =⇒ (B[k] ≤ B[k + 1]) (1)
∧ ∀k ∃j. (0 ≤ k < n) =⇒ (0 ≤ j < n ∧B[j] = A[k]) (2)

Note that the above specification of sorting property does not sug-
gest in any way how to efficiently implement a sorting algorithm.
The approach described in [69] can discover algorithms from log-
ical specifications as above. In particular, given the above sorting
specification, it discovers five sorting algorithms: InsertionSort, Se-
lectionSort, BubbleSort, MergeSort, and QuickSort3.

As another example, consider the logical specifications pro-
vided in Figure 1(d) and Figure 2(c) for the corresponding bitvec-
tor tasks illustrated in Figure 1(a) and Figure 2(a) respectively. The
technique described in [23] is specialized to discovering efficient
bitvector tricks (as in Figure 1(b) and Figure 2(b)) from such logi-
cal specifications.

Several synthesis systems accept user intent in the form of
logical specifications [51, 69, 23, 31]. Compared to other forms of
specifications such as input-output examples and demonstrations,
logical relations require additional knowledge of logic and might be
harder to get right, and may not be a preferred form of specification
for end-users.

3.2 Natural Language
Given advances in natural language processing, it is possible to map
natural language sentences into logical representations [77]. Natu-
ral language can be used as a substitute for logical relations, and
end-users might find it very valuable. In particular, natural language
interfaces have been designed to query databases to accommodate

3 One might ask why the system described in [69] only discovers these
five sorting algorithms. This is because the underlying search space was
expressive enough to only represent these algorithms.

the need of end-users who interact with databases, but are intimi-
dated by the idea of using languages such as SQL [3, 49].

One disadvantage with natural language is that it can be ambigu-
ous. This issue can potentially be resolved by using the concept of
paraphrasing where the system interacts with the user to resolve
any ambiguity in the user-provided description [29].

3.3 Input-Output Examples
In several scenarios, input-output examples can act as the simplest
form of specification, with relatively little chances of error. Quite
contrary to what it may seem initially, input-output examples, in
conjunction with interactive rounds, can often play the role of a
full functional specification.

It is natural to ask what prevents the synthesizer from synthesiz-
ing a trivial program that simply performs a table lookup as follows,
when provided with the set {(x1, y1), (x2, y2), . . . , (xn, yn)} of
input-output pairs.

switch x
case x1: return y1;
case x2: return y2;

...
case xn: return yn;

The restriction on the search space is the first line of defense against
allowing such trivial solutions. In particular, the search space might
permit only a bounded number of statements or conditionals.

Another concern with input-output examples is the selection cri-
terion and the number of input-output examples. In other words,
identifying what constitutes a good input-output example, and how
many examples should the user provide? The user may start by pro-
viding few input-output examples (possibly a couple of examples
for each of the corner cases) and then add more input-output exam-

16



User Oracle
Input→ Output Program 1 Program 2 Distinguishing Input ?
01011→ 01000 (x+ 1)& (x− 1) (x+ 1)&x 00000 ?
00000→ 00000 −(¬x)&x (((x&− x) ∣ − (x− 1))&x)⊕ x 00101 ?
00101→ 00100 (x+ 1)&x ⋅ ⋅ ⋅ 01111 ?
01111→ 00000 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 00110 ?
00110→ 00000 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 01100 ?
01100→ 00000 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 01010 ?
01010→ 01000 (((x− 1)∣x) + 1)&x None Program is

(((x− 1)∣x) + 1)&x

Figure 3. An illustration of the synthesizer driven interaction model for synthesis from input-output examples of the task illustrated in
Figure 2(a). Program 1 and Program 2 are two semantically different programs generated by the synthesizer that are consistent with the past
set of input-output pairs provided by the user. The synthesizer also produces a distinguishing input on which the two programs yield different
results, and asks the user for the output corresponding to the distinguishing input. The process is repeated until the synthesizer can find at
most one program.

ples in each interactive round. The interaction may either be driven
by the user or by the synthesizer, as explained below.

User Driven Interaction The user may inspect the program re-
turned by the synthesizer, either by studying the program itself, or
by testing it on several other inputs. If the user finds any discrep-
ancy in the behavior of the program and the expected behavior on
some new input, the user may repeat the synthesis process after
adding the new input-output pair to the previous set of input-output
examples.

Synthesizer Driven Interaction Given a set of input-output pairs,
the synthesizer searches for programs that map each input in the
given set to the corresponding output. The number of such pro-
grams may usually be unbounded, if the search space consists of
all possible programs. However, since the search space is usually
restricted, the number of such programs may either be 0, 1, or
more than 1. If the synthesizer is unable to find any such program
over the search space, the synthesizer declares failure. If the syn-
thesizer finds exactly 1 program, the synthesizer declares success
and presents the program to the user.

If the synthesizer finds at least two programs P1 and P2, both of
which map each input in the given set to the corresponding output,
the synthesizer declares the user specification to be partial. It then
generates a distinguishing input, an input on which the two pro-
grams P1 and P2 yield different results, and asks the user to provide
the output corresponding to the distinguishing input. The synthesis
process is then repeated after adding this new input-output pair to
the previous set of input-output examples. This interaction model
is described in [33].

For example, consider the task of synthesizing the bitvector pro-
gram that masks off the rightmost contiguous sequence of 1s in
the input bitvector (i.e., the problem described in Figure 2). One
would agree that it is easier to provide input-output examples for
the task than write down the logical specification described in Fig-
ure 2(c). The synthesizer driven input-output interaction process is
illustrated in Figure 3. The user may start out by providing one
input-output example (01011, 01000) for the desired program. The
synthesizer generates a candidate program (x + 1)& (x − 1) that
is consistent with the input-output pair (01011, 01000). Then, it
checks whether a semantically different program also exists and
comes up with an alternative program (x + 1)&x and a distin-
guishing input 00000 that distinguishes the two programs, and asks
the user for the output for the distinguishing input. The newly ob-
tained input-output pair (00000, 00000) rules out one of the can-
didate programs, namely, (x + 1)& (x − 1). In the next iteration,

with the updated set of input-output pairs, the synthesizer finds two
different programs−(¬x)&x and (((x&−x) ∣ −(x−1))&x)⊕x
and a distinguishing input 00101. It then asks the user for the out-
put for 00101. The newly added pair (00101, 00100) rules out
(((x&− x) ∣ − (x− 1))&x)⊕ x. Note that at this stage, the pro-
gram (x+ 1)&x remains a candidate, since it was not ruled out in
the earlier iterations. In next four iterations, the synthesizer driven
interaction leads to four more input-output pairs: (01111, 00000),
(00110, 00000), (01100, 00000) and (01010, 01000). The seman-
tically unique program generated from the resulting set of input-
output pairs is the desired program: (((x− 1)∣x) + 1)&x.

Number of Interactive Rounds A concern in an interactive pro-
cess might be the number of interactive rounds required. In the
worst case, the number of interactive rounds required might be the
size of the input space. However, this may not happen in prac-
tice because the search would typically be restricted to space of
programs with low Kolmogorov (descriptive) complexity [48], or
small teaching dimension [20]. In fact, experimental results for syn-
thesis of bitvector programs indicate that the number of interactive
rounds required is roughly equal to the number of instructions in
the synthesized program [33].

3.4 Traces
A trace is a detailed step-by-step description of how the program
should behave on a given input. A trace is a more detailed descrip-
tion than an input-output example since it also illustrates how a
specific input should be transformed into the corresponding output
as opposed to just describing what the output should be. This input
model can be used when the user already knows how to perform the
task, and the goal is to create a program to perform the task. Traces
are an appropriate model for programming by demonstration sys-
tems for end-users [13], where the intermediate states resulting
from the user’s successive actions on a user interface constitute a
valid trace. Traces may also be easier to provide than writing a pro-
gram in the context of general purpose programming [7]. Traces
are also readily available for reverse engineering scenarios [47].

From the perspective of the synthesizer, traces are preferable to
input-output examples since the former contains more information.
The synthesizer needs to generalize from given demonstrations or
traces such that the generalized trace or the program can work
for other inputs as well. This is a relatively easier challenge than
searching for a program that is consistent with a given input-output
example.

From the perspective of the user, providing demonstrations in
general may be more taxing than providing input-output examples.
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However, in certain scenarios, demonstrations may be more prefer-
able than input-output examples. This happens when the output is
not easy to compute. For example, suppose the user wants to syn-
thesize a program for computing factorial. A demonstration for in-
put 7 can be the string “7 × 6 × 5 × 4 × 3 × 2” or the recursive
trace “7× factorial(6)”, which is easier to describe than providing
the final simplified output 5040.

3.5 Programs
Programmers might sometimes find a programming language as the
best means of specifying their intent. This happens quite trivially
for certain applications such as deobfuscation (Section 2.6) and
synthesis of program inverses (Section 2.5), where the program to
be deobfuscated or inverted respectively forms the specification.

However, even for applications such as discovery of new algo-
rithms, some people might find it easier to write the specification
as an inefficient program than a logical relation. For example, con-
sider the bitvector problem described in Figure 2, and contrast its
logical representation shown in Figure 2(c) with its program repre-
sentation shown in Figure 2(d). The latter might be more appealing
to programmers.

4. Second Dimension: Search Space
The second dimension in program synthesis is the space of pro-
grams over which the desired program will be searched. This
choice is made by the developer of the synthesizer and may op-
tionally be restricted by the user of the synthesizer.

The developer of the synthesizer needs to strike a good balance
between expressiveness and efficiency of the search space. On one
hand, the space of the programs should be large/expressive enough
to include programs that users care about. While on the other hand,
the space of the programs should be restrictive enough so that it
is amenable to efficient search, and it should be over a domain of
programs that are amenable to efficient reasoning.

The user of the synthesizer can optionally restrict the search
space to obtain programs with specific resource usage. For exam-
ple, the user might desire a loop-free program, or a program whose
memory usage does not exceed a specified amount.

Broadly speaking, the search space can be over the space of
(Turing-complete) programs, or restricted form of computational
models such as grammars or logics.

4.1 Programs
The space of programs can be qualified by at least two attributes:
(i) the operators used in the program, and (ii) the control structure
of the program.

4.1.1 Operators
The choice of operators can be restricted to comparison operators
(sufficient for algorithms such as sorting), arithmetic operators,
APIs exported by a given library, combination of arithmetic and
bitwise operators etc. We discuss the choice of combination of
arithmetic and bitwise operators in some detail below.

Arithmetic + Bitwise Operators We use the term bitvector pro-
grams to refer to those programs that involve combination of the
following two kinds of operators:

∙ Arithmetic Operators such as Addition +, Subtraction −, Mul-
tiplication ∗, Division /.

∙ Bitwise Operators such as bitwise-and &, bitwise-or ∣, bitwise-
xor ⊕, left-shift, right-shift, rotate, etc.

Bitvector programs (also described in Section 2.1) are useful be-
cause they often provide the most efficient way to accomplish

various tasks on standard architectures. Such programming prob-
lems often arise while developing low level embedded code, net-
work applications or in other domains where bit-level manipula-
tion is needed. They are of great significance for people who write
optimizing compilers or high-performance code as these code-
fragments can be used to speed up the inner loop of some integer
or bit-fiddly computation. Bitvector tricks are also helpful for de-
signing specialized hardware.

For example, consider the problem of masking off the right-
most significant 1-bit in a bitvector, as shown in Figure 1(a). An
approach that comes to mind immediately is to use a loop to iter-
ates over the bitvector from right to left, checking each bit one by
one, until a 1-bit is found, and then convert that bit to 0. The prob-
lem with this approach is that it involves too many steps (worst-case
linear in the number of bits in the bitvector), and additionally each
step involves use of conditionals. However, the desired task can be
achieved by computing x&(x− 1) (which involves composing the
bitwise & operator and the arithmetic subtraction operator in an
unintuitive manner), as illustrated in Figure 1(c). [23] describes a
system for synthesis of bitvector programs from logical specifica-
tions while [33] describes a system for bitvector program synthesis
using the synthesizer driven input-output interaction model.

4.1.2 Control Structure
The control structure of the program may be restricted to a given
looping template [69], a program with bounded number of state-
ments [5], a partial program with holes [65], or even to loop-free
programs [23, 33, 76, 46, 32, 43, 50]. We discuss the choice of
loop-free programs in some detail below.

Loop-free Programs The class of straight-line programs, or more
generally, loop-free programs, parametrized by the set of opera-
tors/components used, can often express a wide range of useful
computations. Following are some interesting examples of such
programs.

∙ Bitvector algorithms [23, 33]. The set of components includes
arithmetic operators and bitwise operators.

∙ Text-editing programs [76, 46]. The set of components includes
basic editing commands (available in a text-editor) such as
insert, locate, select and delete.

∙ Geometrical constructions [32]. The set of components includes
geometrical constructors such as ruler and compass.

∙ Unbounded data type manipulation [43]. The set of components
include those that the underlying decision procedure can reason
about such as linear arithmetic operators and set operators.

∙ API call sequences [50]. The set of components includes the
API calls.

Even though these programs may not involve loops, they may
still be challenging to synthesize. The space of loop-free programs
is still huge: the number of possible programs is exponential in
the number of components in the program, and hence brute-force
search methods do not usually scale. The problem of synthesis of
straight-line programs may be likened to the problem of solving a
Jigsaw puzzle.

4.2 Grammars
There has been a lot of work in learning various kinds of grammars
such as regular expressions [55, 63], DFAs [8, 4], NFAs [10],
context-free grammars [15], regular transducers [73, 56]. Learning
grammars has a wide range of applications ranging over robotics
and control systems, pattern recognition, computational linguistics,
computational biology, data compression, data mining, etc. [14].
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Learning regular expressions, in particular, is important for at
least two scenarios:

∙ Regular expressions are a key component of text-editing pro-
grams, where they are used to select substrings inside a piece of
text. Learning such regular expressions [55, 63] is a key step of
learning text-editing programs.

∙ Regular expressions can represent the control structure of a
program. Learning such regular expressions (as done in [60])
can increase the usability of general program synthesis schemes
that assume that the control structure has been provided, for
example, in the form of a sketch [65] or a scaffold [69].

4.3 Logics
Logical representations, because of their succinctness, can serve
as good target languages for program synthesis. In particular, the
class of first order logic together with fixed point equals the class
of PTIME algorithms over ordered structures such as graphs, trees,
strings [30]. Hence, this class and also some of its useful subclasses
(such as those with a fixed quantifier depth) can serve as good target
languages for synthesizing efficient graph/tree algorithms [31].

5. Third Dimension: Search Technique
In this section, we provide a high-level description of some general
techniques that have been used for program synthesis. The appli-
cability and the specifics of these techniques may depend on the
search space of the programs and may also depend on the form of
input constraints.

5.1 Brute-force Search
The brute-force search technique refers to the process of enumerat-
ing the programs in the search space in some order and checking for
each program whether it satisfies the input constraints. There have
been few success stories of using brute-force search to discover
new algorithms: mutual-exclusion algorithms [5] and bitvector al-
gorithms [2, 52, 21].

Brute-force search has also been experimented with in the con-
text of functional programs. [37] presents a system that searches
for desired small functional programs by generating a sequence
of type-correct programs in a systematic and exhaustive manner
and evaluating them against given specifications. The QuickSpec
tool [12] automatically generates algebraic specifications for mod-
ules consisting of pure functions for the purpose of program under-
standing.

Brute-force search is the simplest search strategy, but is more of-
ten than not prohibitively expensive. Each of the above-mentioned
system makes brute-force search feasible by implementing various
optimizations for pruning the search space.

5.2 Version Space Algebra
Version space algebra is another relatively simple, but efficient,
concept that has been used for program synthesis. Version space al-
gebras have been used for learning repetitive robot programs [57],
shell scripts [45], text-editing programs [46], and imperative
Python programs [47].

It is based on the notion of version space that was introduced
by Mitchell who proposed a general search technique for discover-
ing boolean functions given positive/negative examples and a lan-
guage/space over which to search for the boolean function [53].
The basic idea is to maintain a set of all boolean functions in the
language that could be the desired unknown function (referred to
as version space), i.e., those that correctly classify the given train-
ing inputs, and then iteratively refine the hypothesis as more data
becomes available. The notion of generality of functions imposes a

partial order that allows more efficient representation of the version
space by the boundary sets representing the most specific and most
general functions in the space.

Lau et.al. later extended Mitchell’s version space concept to ver-
sion space algebra for learning more complex functions that have
any range [46]. The basic idea is to build up a complex version
space by composing together version spaces containing simpler
functions as opposed to defining a single version space containing
the entire function space. Just as two functions can be composed to
create a new function, two version spaces can be composed to cre-
ate a new version space, containing functions that are composed
from the functions in the original version spaces. As Pardowitz
et.al. point out, this allows to represent hypotheses on programs
and underlying loop structures in a hierarchical manner [57]. They
are constructed out of atomic or other compound hypotheses, re-
sembling the tree-like structure of the syntax-tree of a program.

5.3 Machine Learning Based Techniques
We now discuss two very different techniques from the machine
learning community that have applied to program synthesis.

5.3.1 Probabilistic Inference
A program can be modeled as a graph consisting of instructions and
states, connected by constraint nodes. Each constraint node estab-
lishes the semantics of some instruction by relating the instruction
with the state immediately before the instruction and the state im-
mediately after the instruction. Such a modeling allows for use of a
probabilistic inference technique known as belief propagation [58]
to infer states and/or instructions. [24] uses this modeling to infer
abstract states (i.e., invariants) given the program instructions for
the purpose of program verification. [36] uses this modeling to infer
both the instructions and concrete states (before and after each in-
struction) that satisfy a given set of concrete input-output examples
for the purpose of program synthesis. [36] applies this technique to
synthesis of imperative program fragments that execute polynomial
computations and list manipulations.

5.3.2 Genetic Programming
Genetic programming is a computational method inspired by bio-
logical evolution, which discovers computer programs tailored to
a particular task [42]. It maintains a population of individual pro-
grams. Computational analogs of biological mutation and crossover
produce program variants. Mutation introduces random changes,
while crossover facilitates sharing of useful pieces of code between
programs being evolved. The referential transparency of functional
programs, such as Lisp, makes crossover possible, as the state does
not impact the evaluation of the exchanged subexpressions. In case
of imperative programs, the meaning of a code fragment depends
on the state in which the fragment is executed, hence there is no ref-
erential transparency and the crossover can produce faulty code or
dead code. These problems may be avoided by discarding variants
that do not compile or using a post-processing step to remove dead
code. Each variant’s suitability is evaluated using a user-defined
fitness function, and successful variants are selected for continued
evolution. The success of a genetic programming based system cru-
cially depends on the fitness function, which require non-trivial cre-
ativity.

Genetic programming has been used to discover mutual exclu-
sion algorithms [38] and to fix bugs in imperative programs [75].
Genetic programming may be an interesting alternative to con-
sider for program synthesis when other conventional techniques fail
to provide solutions, or when an approximate solution is accept-
able. An interesting prospect is to develop techniques that combine
the strengths of genetic programming with that of logical reason-
ing [35, 38].
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5.4 Logical Reasoning Based Techniques
This class of techniques reduce the program synthesis problem
to that of solving a SAT/SMT formula and let an off-the-shelf
SAT/SMT solver efficiently explore the search space. The idea
is to exploit the recent advances made in the Satisfiability (SAT)
and Satisfiability Modulo Theory (SMT) solving technology4 to
efficiently explore the search space of programs. The reduction
typically involves two main steps:

1. Constraint Generation, which generates a logical constraint,
referred to as the synthesis constraint, such that the solution
to the constraint yields the desired program. This is mostly a
syntactic process.

2. Constraint Solving for solving the synthesis constraint. This
involves reducing the generated constraint to a corresponding
SAT/SMT constraint that can be solved using off-the-shelf con-
straint solvers.

We next describe these two steps in a little detail. We rather present
a simplistic view; for more details, we refer the reader to work
on template based program synthesis [69, 67, 71] and component
based program synthesis [23, 33]. The former requires a back-
ground into template based program verification [68, 25, 26, 66, 27]
with the connection that the synthesis problem is a more general
form of the verification problem.

6. Constraint Generation
We illustrate the principle of constraint generation by briefly de-
scribing few methodologies for the special case when the user in-
tent is specified in the form of a precondition and postcondition pair
(Pre, Post), which is a form of a logical relation between inputs and
outputs, and the search space consists of a single while loop with
guard c and body S. Figure 4 briefly summarizes the relative merits
and challenges of these methodologies.

These methodologies can be extended to generate constraints
for other forms of intent specifications, and more general forms of
program structures. Other methodologies may also be possible.

6.1 Invariant-based
This methodology (described in [69]) generates a synthesis con-
straint that asserts that the unknown program should be such that
it behaves correctly on all inputs. It is inspired by proof-based
deductive synthesis [51]. It has been applied to synthesis of sev-
eral undergraduate textbook algorithms such as sorting, dynamic
programming, Strassen’s matrix multiplication, Bresenham’s line
drawing [69]. Unlike inductive synthesis based techniques that re-
quire an external verifier (in a refinement loop) for checking cor-
rectness of the generated program, this methodology guarantees
correctness of the generated solution by integrating verification as
part of synthesis.

∃I, r, c, S ∀x, x1

⎛⎜⎜⎜⎜⎜⎝
Pre⇒ I (1)

∧ (I ∧ ¬c)⇒ Post (2)
∧ (I ∧ c ∧ S)⇒ I1 (3)
∧ I ⇒ (r ≥ 0) (4)

∧ (I ∧ c ∧ S)⇒ (r1 < r) (5)

⎞⎟⎟⎟⎟⎟⎠

4 SMT solving is an extension of SAT solving technology to work with
theory facts, rather than just propositional facts. In fact, there is a SMT
solving competition that is now held every year, and it has stimulated
improvement in solver implementations [1].

Constraint Constraint Sophisti- Coverage
Generation Size cation of
Methodology Constraints
Invariant-based Smallest Most Full
Path-based Medium Medium Medium
Input-based Largest Least Least

Figure 4. This figure illustrates the trade-off between the follow-
ing aspects for various constraint generation methodologies: size of
generated constraints, sophistication of generated constraints, and
level of coverage achieved.

The occurrence of S, as a formula in the above equation, refers
to its transition system representation that assigns to fresh version
x1 of original program variables x. I1 and r1 refers to the formula
obtained from I and r respectively by replacing variables x by x1.

Eqns 1 and 2 encode that I is an inductive invariant of the
while loop (Eqn 1 encodes the base case while Eqn 2 encodes the
inductive case). Eqn 3 encodes that I is strong enough to imply the
postcondition Post. Eqns 4 and 5 encode that r is a ranking function
of the loop, i.e., the loop terminates.

6.2 Path-based
This methodology (described in [67]) generates a synthesis con-
straint that asserts that the unknown program should be such that it
behaves correctly on all inputs that exercise a given set of paths. It
combines ideas from symbolic execution based testing and con-
straint based program analysis. It has been applied to synthesis
of program inverses (see Section 2.5 for examples) and client-
server applications [67]. Unlike the invariant-based methodology,
the path-based methodology does not guarantee that the generated
program always meets the desired pre/post specification, and hence
requires an external verifier. On the other hand, it leads to simpler
constraints that avoid quantification over invariants. The language
of invariants is usually far more sophisticated than the program con-
structs (guards and statements) and usually itself involves quanti-
fiers.

∃c, S ∀x0, . . , xn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

(Pre0 ∧ ¬c0)⇒ Post0 (6)
∧ (Pre0 ∧ �1 ∧ ¬c1)⇒ Post1 (7)
∧ (Pre0 ∧ �2 ∧ ¬c2)⇒ Post2 (8)

...
∧ (Pre0 ∧ �n ∧ ¬cn)⇒ Postn (9)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
where �i ≡ (c0∧S0∧c1∧S1∧ . . .∧ci−1∧Si−1). ci and Posti

are obtained from c and Post respectively by replacing program
variables x by xi. Si is obtained from S by replacing variables x
and x1 by xi and xi+1 respectively.

Eqn 6 asserts that the condition c and loop body S are such that
the while loop satisfies the pre-post specification for all inputs x
that do not go through the loop body. Eqns 7, 8, and 9 assert the
same thing for all inputs that go through one, two, and n iterations
respectively of the loop. A larger number of such constraints (i.e., a
larger value of n) ensures more correctness, and in the limit would
guarantee correctness. The hope is that few such constraints would
constrain the search space enough that it would lead to a correct
solution.
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6.3 Input-based
This methodology generates a synthesis constraint that asserts that
the unknown program should be such that it behaves correctly
on a given set of inputs. It is used when the input constraints
are in the form of input-output examples (as in oracle guided
synthesis applied to bitvector algorithms and deobfuscation [33]),
or in a counterexample guided iterative synthesis technique like
sketching [65]. This methodology provides even less coverage than
the path-based methodology, but has the advantage of generating
constraints that are simplest to solve. In particular, there is no
quantification over invariants, and no universal quantification.

∃c, S ( (P1, Q1) ∧ . . . ∧  (Pk, Qk)) (10)

where  (P,Q) is as follows:

∃x0, . . , xn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(¬c0 ∧ x0 = P ∧ x0 = Q) (11)
∨ (�1 ∧ ¬c1 ∧ x0 = P ∧ x1 = Q) (12)
∨ (�2 ∧ ¬c2 ∧ x0 = P ∧ x2 = Q) (13)

...
∨ (�n ∧ ¬cn ∧ x0 = P ∧ xn = Q) (14)

∨ (�n ∧ cn) (15)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�i and ci are as defined in Section 6.2. Eqn 10 asserts that the

unknown program should be such that it satisfies the input-output
pairs (P1, Q1), . . . , (Pk, Qk). The formula  (P,Q) asserts that if
the unknown program is executed in the initial state P , then its
final state satisfies Q, if it terminates within n iterations of the loop
body. A larger value of n would thus achieve more coverage. The
conjuncts �i∧¬ci (in Eqns 12-14) encode that the program should
terminate in exactly i iterations of the loop, while the conjuncts
x0 = P ∧ xi = Q encode that the initial state should be P and the
output state should beQ. Eqn 15 encodes that the program executes
more than n loop iterations.

7. Constraint Solving
The synthesis constraints generated (in Section 6) are second-order
logic formulas with universal quantification. Unfortunately, these
constraints cannot be solved using off-the-shelf constraint solvers
(such as SAT/SMT solvers) because of two challenges: presence of
second-order unknowns, and presence of universal quantification.
Next, we describe few techniques for eliminating second order
unknowns (Section 7.1) and universal quantification (Section 7.2).
This allows for use of off-the-shelf constraint solvers to solve the
resultant constraints, which yields the desired program.

7.1 Reducing Second-order Unknowns to First-order
Unknowns

The key idea here is to assume some template structure for the var-
ious second-order unknowns (e.g., invariants, conditional guards,
and assignment statements) in the synthesis constraint. The tem-
plates are such that the holes/unknowns in the templates are only
first-order entities. This reduces the second-order constraints to
first-order constraints over the unknown parameters of the tem-
plates. Examples of templates for invariants include boolean com-
bination of arithmetic constraints [25, 27], boolean combination of
predicates from a given set [26], quantified formulas over a given
set of predicates [66]. Examples of templates for guards and state-
ments include those that involve arithmetic and predicate abstrac-
tion [69, 67, 71].

7.2 Universal Quantifier Elimination
The synthesis constraint also contains universal quantification over
the program variables. We describe below few options for eliminat-
ing universal quantifiers.

7.2.1 Domain-specific Methods
Farkas Lemma is a beautiful concept for reasoning about the theory
of linear arithmetic and can be used to translate universal quanti-
fiers into existential quantifiers [25]. For the theory of predicate ab-
straction, we can use cover algorithms to eliminate universal quan-
tifiers [26, 66].

7.2.2 Sampling
Sampling is a generic method for approximating a universally
quantified formula of the form ∀x �(x) by �(P1) ∧ �(P2) ∧ . . . ∧
�(Pk) for few values P1, . . . , Pk. The values P1, . . . , Pk can be
chosen using various means described below.

Counterexample Driven This is a general approach that requires
an external verifier that either validates the correctness of a given
solution to the synthesis constraint against the user intent, or pro-
vides a new counterexample. The new counterexample yields a
new value Pi. This approach forms the basis of counterexample
guided iterative synthesis technique [19, 62], which involves choos-
ing some initial set of test values for the universally quantified vari-
ables and then solving for the existentially quantified variables in
the resulting constraint using SMT solvers. If the solution for the
existentially quantified variables works for all choices of univer-
sally quantified variables, then a solution has been found. Else,
a counterexample is discovered and the process is repeated after
adding the counterexample to the set of test values for the univer-
sally quantified variables. This approach is used in [65, 23, 31].

Random In this approach, Pi’s are simply chosen randomly. This
approach may work well for synthesis of programs whose correct-
ness can be verified using randomly chosen inputs (with high prob-
ability over the choice of those inputs). In other words, this ap-
proach works well for programs for which a few randomly cho-
sen inputs can act as a full functional specification of the program
(with high probability over the choice of the random inputs). This
includes polynomials [61] and free boolean graphs [9].

Biased Not all inputs in the input space are equally important.
In certain domains, combining some form of bias with random-
ness works better compared to simply using pure randomness. For
example, a program may take an integer input i, but have the same
behavior for all i > 5 and have interesting behaviors only on values
0 ≤ i ≤ 5. For many applications, the user knows apriori which
inputs are more crucial in defining the overall program.

Biased sampling works well for synthesis of bitvector programs,
which combine fixed-width arithmetic operations with bitwise op-
erations [33]. The input space for bitvector programs consists of all
(tuples of) bitvectors of a certain bit width. It is well-known that,
for a very large class of commonly-used bitvector functions, the
rightmost bits influence the output more than the leftmost bits.

PROPERTY 1 (See [74], Chapter 2). A function mapping bitvec-
tors to bitvectors can be implemented with add, subtract, bitwise
and, bitwise or, and bitwise not instructions if and only if each bit
of the output depends only on bits at and to the right of that bit in
each input operand.

This suggests biasing the sampling so that there is more variety on
the rightmost bits. For example, if 4 values can be selected, then
this should include bitvectors whose rightmost two bits include all
possible four combinations: 00, 01, 10, and 11, while the leftmost
bits can be kept random.
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Basis For some class of programs, the behavior of a program is
fully specified by its behavior on a certain subset of its inputs, re-
ferred to as basis inputs. For example, the behavior of a compari-
son machine (programs that only use comparison operators) is de-
termined by its behavior on boolean arrays [41]. The behavior of
functions over a vector space is determined by their behavior over
any basis of the vector space. For such programs, we can restrict
sampling to the basis inputs.

8. Conclusion
Program Synthesis has the potential to bring about a revolution
in computing. Computing has become accessible to people at an
impressive rate over the last few years. However, the fundamental
programming model has not changed much since the last several
years. Program Synthesis has the potential to make the computer
understand our “what” language, as opposed to us interacting with
the computer in its language of step-by-step detailed instructions
on “how” to accomplish the desired task.

The true success of program synthesis would require a multi-
disciplinary effort for each of the dimensions in program synthesis.
For the first dimension of understanding user intent, Human Com-
puter Interface can help in identifying the most natural interface for
solving problems in a particular domain. Natural Language Pro-
cessing can also play a key role since natural language could be
an integral part of most interfaces. The second dimension of se-
lecting useful space/domain of programs for synthesis (which is
usually limited by availability of reasoning technology for those
programs) can benefit from domain expertise in corresponding dis-
ciplines such as Information Extraction (for text manipulating pro-
grams), Graphics (for image manipulating programs), and Pro-
gramming Languages (for data-structure manipulating programs).
For the third dimension of searching a program over a given space,
Logical Reasoning and Machine Learning communities can play a
big role.

Research Questions Following are some important research
questions for developing next generation of program synthesis tools
and techniques.

∙ How do we combine various forms of user intent (such as
logical specifications, natural language, input-output examples,
traces, and higher-order, inefficient, or partial programs) in a
unified programming interface?

∙ How do we ensure a modular architecture that would al-
low reuse of various synthesis components including domain
knowledge (both facts and rules for manipulating objects such
as text, images, data-structures) and search techniques across
different synthesis tools and applications?

∙ How do we combine the power of various search techniques
such as version space algebras, logical reasoning techniques
(based on abstraction, mathematical induction, theorem prov-
ing, SAT/SMT/QBF solving) and machine learning techniques
(probabilistic inference, bayesian learning, genetic program-
ming) for automated program synthesis from user intent? How
do we further incorporate quantitative program analysis tech-
niques [28, 11] to produce programs that are not just function-
ally correct, but also meet performance and resource availability
constraints?
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